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THE BEZIER VARIANT OF LUPAS KANTOROVICH
OPERATORS BASED ON POLYA DISTRIBUTION
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(Communicated by V. Gupta)

Abstract. In this paper we introduce the Bézier variant of Lupas Kantorovich operators based
on Polya distribution. We establish a direct approximation by means of the Ditzian-Totik mod-
ulus of smoothness and a global approximation theorem in terms of second order modulus of
continuity. Furthermore, we give the rate of convergence for absolutely continuous functions
having a derivative equivalent to a bounded function. Our results extend the work of Agrawal
[P.N. Agrawal, N. Ispir and A. Kajla, Approximation properties of Lupas-Kantorovich operators
based on polya distribution, Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65
(2): 185-208] and Ispir [N. Ispir, P. N. Agrawal and A. Kajla, Rate of convergence of Lupas
Kantorovich operators based on Polya distribution, Appl. Math. Comput., 2015, 261: 323-329].

1. Introduction

In the year 1987, Lupas [1] introduced Polya-Bernstein operators

n % k n
B = 3 (2 )l ), 0
k=0

1 2(n) /n
where f € C[0,1], p\{" (x) = k() (e (n—nx) s (W) =n(n+ 1) (n+k—1).
In [2], Miclaus studied some approximation properties of Bernstein-Stancu type
operators based on Polya distribution. Recently, Gupta and Rassias [3] introduced the
Durrmeyer variant of the operators (1) as follows:

n 1
D (f0) = 1) X P00 [ paste)s 0 @

k=0

where p, (1) = (2)t*(1—#)"~*. They established some direct results which include an
asymptotic formula, local and global approximaiton results. To approximate Lebesgue
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integrable functions, Agrawal et al. [4] introduced the following integral modification
of the operators (1):

n kel
G = e )X P [ far 3)
k=0 FEa}

In [4], Agrawal et al. studied the voronovskaja type theorem, local approximation,
pointwise estimates and global approximation results. Later, Ispir et al. [5] estimated
the rate of convergence for absolutely continuous functions having a derivative coincid-
ing a.e. with a function of bounded variation. For the related research work, we can see
[6-9].

It is well known that Bézier curves play an important role in computer aided de-
signs and computer graphics systems. Zeng and Piriou [10] pioneered the study of two
Bernstein-Bézier type operators for bounded variation functions. Then many scholars
[11-14] have done research work in related fields. Agrawal et al. [15] and Neer et
al. [16] introduced the Bézier variant of Lupas-Durrmeyer type operators and genuine-
Durrmeyer type operators based on Polya distribution. They obtained some direct ap-
proximaiton theorem and the rate of convergence for absolutely continuous functions
having a derivative equivalent to a function of bounded variation.

Inspired by the idea of Zeng and Agrawal, we propose the modified variant of the
operators (3) in the following way:

n ket

* n n+1
D" (f) =+ 1) Y 0 ) [ foyar, @)
k=0 T
where o > 1 and
(
0 () = [x(3)] = g ()], an "
Obviously for o = 1, the operators Dn a ( f,x) reduces to the operators fomtt n)( f,x).
Let )
Kna(x.t) = Y (1 )0 ()74(0)
k=0
and .
Ry a(x,1) =/ Ky o(x,s)ds,
where x(¢) is the characteristic function of the interval [m, %] with respect to

I=10,1]. By the Lebesgue-Stieltjes integral representations, we have

1 1
DY (f,x) = /0 F(O) Ko (6,1)dlt = /0 F(0)di R (r.1). 5)

The aim of this paper is to establish a direct approximaiton by means of the
Ditzian-Totik modulus of smoothness and a global approximation theorem in terms
of second order modulus of continuity. Furthermore, the rate of convergence for some
absolutely continuous functions having a derivative equivalent to a bounded function is
obtained. The results extend the work of Agrawal and Ispir.
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2. Some lemmas

The proof of our results are based on the following lemmas.

LEMMA 1. [4] Forej=t', i=0,1,2, we have

*(1/n) _ *(1/n) _ 2nx+1
Dn (60,){?)—17 Dn (el’X)_z(l’l—Fl)’

3m3x% + 9%y — 302 + 3nx+n+ 1

*(1/n
D" (er,) = 3(n+ 1)

By simple applications of Lemma 1, we get

(1/n) 1—2x
D, —XX) = )
(t —x,x) T 1)

2

(/) 2 ) <
D, ((t—x)",x) < pE

LEMMA 2. [4] For f € C[0,1], x €[0,1], we have

D (0l < IIF-

LEMMA 3. For f € C[0,1], x € [0,1], we have
#(1
1D (9l < e ]

Proof. Using the inequality |[x* —y%*| <
get

Hence from the definition D,, o ( f,x) and Lemma 2, we obtain

1D (£ < e DM (F)l < el f]. O

LEMMA 4. (i) For 0 <y < x < 1, there holds

Rna(x )—/yK (o) < —2%
n,o 7y - 0 n,o\\y X (n+1)(x_y)2

(ii) For 0 < x < z < 1, there holds

20

1
l—Rn,a(va) :‘/Z Kn’a()@l‘)dl < m

0< [Jn,k(x)]a - [Jn,k+l(x)]a g (04 (Jn,k(x) _Jn,kJrl(x)) = (Xpn k

1109

(6)

(7

<ojx—ylwith0<x,y<1land a > 1, we
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Proof. (i) By (5) and (7), we get

xX—1

2
y y
Roa(t,y) = /O Koo (x,1)dt < /0 (E) Koo (x,1)dt

1
< ﬁ /0 (t — %) Ko (5,1 )

L «(/m) 2
= (x—y)zD"’a ((r—x)",x)
o (1/n) 2
< —=Dy t—x)°,x
PRI (GRORe)
20

S a2

(i1) Using a similar method we can get (9) easily. [

3. Main results

Let f(x) € C[0,1], >0 and W?[0,1] = {g € C[0,1] : g"” € C[0,1]}, the appropri-
ate Peetre’s K-functional is defined by

Ky (f,r)= inf {[If—gll+llgll+)¢"[1}-
gew?2[0,1]

From [17], there exists an absolute constant C > 0, such that
K2(f7t) <C(02(f7\/;)7 (10)

where @, is the second order modulus of continuity of f € C[0,1], defined as

o (f, V1) = sup sup |f(x+2h) =2f(x+h)+ f(x)].
0<h<y/t  xx+hx+2he(0,1]

THEOREM 1. For f € C[0,1] and x € [0,1]. Then there exists an absolute con-
stant C > 0, such that

(11)

«(1/n) o
Y010 < on (13225 ).

Proof. Let g € W2. By Taylor’s expansion, we get
T
8(1) = g(x) + g (e —x)+ [ (1~ g (w)du
(1/n)

Applying D, /" (-,x) to both sides of the above equation, we have

t
D" (g.x) = gx) + ¢ (D" (= x.x) + D" ([ (1 = w)g (w)du.x).
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By Cauchy Schwarz inequality, (7) and Lemma 3, we have

1/")(/x (t—u)g”(u)dmx)

n 8 n
< 81054/ e~ + LDy o — w2,

(1/n) 12 llg"ll Iy (u/m)
< |lg'(|Dnie! ™ (£ —x)%,x) 3 ((t—x)%.x)

«(1/n 1/2 n
< Va0 (- 020) e ”gz” I 2 x)
, 'l 2
< Valgly 2 ol
Thus

D3 (f,x) — 0] < D" (F — g.x)| 4 1f — g\+\D B/ (g.x) — g ()]

/ ||g//H 2
<2 + .
Hf g|| \/_||g || 2 n+1

Taking the infimum on the right hand side over all g € W2, we obtain

D35 (g,%) — ()| < |g' D™ (|t —x|,x)| + |D.

i) - sl < 2k (1505 ).

By (10), we get (11) immediately. This completes the proof. [

REMARK 1. When o = 1, we have

«(1/n) 1
D7) - <x><aoz<f, 2(n+1)>,

which extend the work of Agrawal et al. [4].
To describe our next result, we recall the definitions of the Ditzian-Totik first order

modulus of smoothness and the K-functional [18]. Let ¢(x) = \/x(1—x) and f €
CJ0, 1], the first order modulus of smoothness is given by
h h h
0y (f,1) = sup f(x+ q)(x))—f(x— ¢(x)> , X+ ?(x) €0,1].
0<h<t 2 2 2

Further, the corresponding K-functional to @y (f,7) is defined by
Ky (f,1) = et {Ilf gl +1ll9g'I}r > 0),

€Wy (0,1

where Wy [0,1]={g:g € AC[0,1], ||9g’|| < o=} and ACI0, 1] is the class of all absolutely
continuous functions on [0, 1]. From [18], there exists a constant C > 0 such that

Ko (f.1) < Cay(f,1). 12)
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THEOREM 2. For f€C|0,1], x€ (0,1) and ¢ (x) = \/x(1 —x). Then there exists
an absolute constant C > 0, such that

(1 / n) < 4o ]
D™ (f,%) — (XH\\Cw¢<f, E;;iXRTj35>. (13)
Proof. Using the representation

X)+ /x[ g (u)du

D" (gx) = ¢ 1/"/g )du,x).

For any x,7 € (0,1), we find that

[ sl <

we get

—du

But

I s

4 1 1
, (ﬁ*m)‘”’
2 (IWi= vl + VT=1 = vVT=x])

=2Jt—x

1 1
(s =)
1 2fmw
<2
< 2= (f ¢—1—> o0
Using Cauchy-Schwarz inequality, we obtain
1D, (g.3) — ()] < 2v210g[10 ™ () D3/ (|t x| x)
<2v2)6g'll97 () D:;fé/"’((r—x)%x))

< 2v2valo o7 @) (Di (520

1

<4V g9 (W) -

1/2

Thus
D, (f,x) = )] < D" (f =2, + 1 f — gl + 1D " (g,%) — (%)

o 1
<2f —gll+4vellogllo™ (0 -
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Taking the infimum on the right hand side over all g € W, [0, 1], we obtain
D () P < 2K ( oy [ ).
n,o 9 X q) ) (n+l)x(1_x)
By (12), we get (13) immediately. This completes the proof. [

REMARK 2. When o = 1, we have

«(1/n) 4
1D (f %) = fx)] < Carg <f7 m) ;

which extend the work of Agrawal et al. [4].

Lastly, we study the approximation properties of Dn a ( f,x) for some absolutely
continuous functions f € ®pp, which is defined by

DB = {f|f(x) :f(0)+/0xh(t)dt; x>0, his bounded on [0, 1}}

For a bounded function f on [0, 1], we also introduce the following metric form

Q(f,A)=sup |f(t)— f(x)|, where x€[0,1] is fixed, A >0
te[x—A x+A]

It is clear that
(1) Q,(f,A) is monotone non-decreasing with respect to A .
(ii) limy _o Q. (f,A) =0, if f is continuous at the point x.

THEOREM 3. Let f € ®pp. If h(x+) and h(x—) exist at a fixed point x € (0,1),
then we have

1/n 2
DY~ 7] < e e )y
%ZQ (9u,1/0),

where

Proof. Let f satisfy the conditions of Theorem 3, by using Bojanic-Cheng’s met-

hod [19], we have
t
x):/ h(u)du (14)
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and h(u) can be expressed as

h(u) = w + @ (u) + wszgﬂ(u —X)
£ u) [y - LTI, as)

where
1, u=nx;

0= g7

1, x>0;
sign(x) =4 0, x=0;
—1,x<0.

From (14), (15), and noting [} sign(u — x)du = |t — x|, [* 6;(u)du = 0, we find that

DAY (720 = 0] = (DAY (0 = 700.5] = |8 [ )
_ |h(x—|—) —;h(x—)D (1/")(t—x x)
+7h(x+);h( )D 1/" (|t —x|,x l/n /(p dux

*(1/n)
< (IGen)] 1) )DL (1 =)
—|—’D l/n / qox(u)du7x)|.
X
By Cauchy Schwarz inequality, (7) and Lemma 3, we have

)1/2 2

(1/n) 1/n *(1/n)
D (It —x|,x) < (|t —x|,x) < abDy, ((t—x)z,x <o PR

Thus we have

D70~ 10| < )]+ =) =+ D )

(16)
To complete the proof, we must estimate the term D x(L/m) ([ oo (u)du,x).
From (5), the term D, (3/m) (J! @c(u)du,x) can be stated as

1/" /(px )du,x) //QDX )du)Kn, o (x,1)dt = //(Px Jdu)diRy o (x,1)
—/ /(px )du)d; Ry o (x,1 +/ /(Px )du)d; Ry, (x,1).

A (f,x) / /‘Px )du)di Ry o (x,1),

Let
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Aon(f ) _/ /(px Ydt)di Ry o (x, ).

Then we have

il / 0 (u)dit,x) = At (f,%) + Mg (f,). a7

Using partial integration and noticing Ry, ¢ (x,0) =0, [ ¢y (u)du = 0, we get
t X X
Atn(f,x) = Rua(x.1) / ou(u)dul’ — / R (6,1) (1)1

_/Oan,a(x,t)wx(t)dtz— / +/ Rua(%,) (1)t

Thus, it follows that

a|><

A (£,2)] < / Y R (6 1) (@, — 1)t + / R (6, 1) (s — 1)dit
0 x—2
vn

From Lemma 4 (i) and 0 < Ry, o (x,7) < 1, we get

“ [ V7 "”" D@Dy X0 (/). (8)

}Aln f7 \/—

n—l—l

Putting # = x — & for the integral of (18), we get

/ Vi (px’ / Qu(@u,x/u)d EQ (pu,1/K).  (19)

From (17), (18), it follows that

4
[0l < 5 ZQ (9, 1/K) +—ZQ (9, 1/K)
ﬂf
\406+2x EQ (0, 1/K). 20)

From Lemma 4 (ii), using the same method, we also get

4o +2(1

|A2n(f7x)} X n(l

ZQ (v, 1/k). 1)

Theorem 3 now follows from (16), (17), (20) and (21). This completes the proof. [

REMARK 3. If f is afunction with derivative of bounded variation, then f € ®pp.

Thus when o = 1, the approximaiton of Df,(l/ n) (f,x) for functions with derivatives of
bounded variation in [5] is a special case of Theorem 3.
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