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ESTIMATES FOR PARAMETRIC MARCINKIEWICZ

INTEGRALS ON MUSIELAK–ORLICZ HARDY SPACES

XIONG LIU, BAODE LI, XIAOLI QIU AND BO LI ∗

(Communicated by S. Li)

Abstract. Let ϕ : Rn × [0, ∞) → [0, ∞) satisfy that ϕ(x, ·) , for any given x ∈ Rn , is an Orlicz
function and ϕ(· ,t) is a Muckenhoupt A∞ weight uniformly in t ∈ (0, ∞) . The Musielak-
Orlicz Hardy space Hϕ (Rn) generalizes both of the weighted Hardy space and the Orlicz Hardy
space and hence has a wide generality. In this paper, the authors first prove the completeness
of both of the Musielak-Orlicz space Lϕ (Rn) and the weak Musielak-Orlicz space WLϕ (Rn) .
Then the authors obtain two boundedness criterions of operators on Musielak-Orlicz spaces. As
applications, the authors establish the boundedness of parametric Marcinkiewicz integral μρ

Ω
from Hϕ (Rn) to Lϕ (Rn) (resp. WLϕ (Rn) ) under weaker smoothness condition (resp. some
Lipschitz condition) assumed on Ω . These results are also new even when ϕ(x, t) := φ(t) for
all (x, t) ∈ Rn × [0, ∞) , where φ is an Orlicz function.

1. Introduction

Suppose that Sn−1 is the unit sphere in the n -dimensional Euclidean space Rn (n �
2) . Let Ω be a homogeneous function of degree zero on Rn which is locally integrable
and satisfies the cancellation condition∫

Sn−1
Ω(x′)dσ(x′) = 0, (1.1)

where dσ is the Lebesgue measure and x′ := x/|x| for any x �= 0 . For a function f on
Rn and parameter ρ ∈ (0, ∞) , the parametric Marcinkiewicz integral μρ

Ω is defined by
setting, for any x ∈ Rn ,

μρ
Ω( f )(x) :=

(∫ ∞

0

∣∣∣Fρ
Ω,t( f )(x)

∣∣∣2 dt
t2ρ+1

)1/2

,

where

Fρ
Ω,t( f )(x) :=

∫
|x−y|�t

Ω(x− y)
|x− y|n−ρ f (y)dy.
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When ρ := 1, we shall denote μ1
Ω simply by μΩ , which is reduced to the classic

Marcinkiewicz integral. In 1938, Marcinkiewicz [25] first defined the operator μΩ for
n = 1 and Ω(t) := signt . The Marcinkiewicz integral of higher dimensions was studied
by Stein [28] in 1958. He showed that, if Ω ∈ Lipα(Sn−1) with α ∈ (0, 1] , then μΩ is
bounded on Lp(Rn) with p∈ (1, 2] and bounded from L1(Rn) to weak L1(Rn) . On the
other hand, in 1960, Hörmander [10] proved that, if Ω ∈ Lipα(Sn−1) with α ∈ (0, 1] ,
then μρ

Ω is bounded on Lp(Rn) provided that p ∈ (1, ∞) and ρ ∈ (0, ∞) . Notice that
all the results mentioned above hold true depending on some smoothness condition of
Ω . However, in 2009, Jiang et al. [26] obtained the following celebrated result that μρ

Ω
is bounded on Lp

ω (Rn) without any smoothness condition of Ω , where ω ∈ Ap and Ap

denotes the Muckenhoupt weight class.

THEOREM A. Let ρ ∈ (0, ∞) , q ∈ (1, ∞) , q′ := q/(q− 1) and Ω ∈ Lq(Sn−1)
satisfying (1.1). If ωq′ ∈ Ap with p ∈ (1, ∞) , then there exists a positive constant C
independent of f such that ∥∥μρ

Ω( f )
∥∥

Lp
ω (Rn) � C‖ f‖Lp

ω (Rn).

It is now well known that Hardy space Hp(Rn) is a good substitute of the Lebesgue
space Lp(Rn) with p ∈ (0, 1] in the study for the boundedness of operators and hence,
in 2007, Lin et al. [23] proved that the μΩ is bounded from weighted Hardy space to
weighted Lebesgue space under weaker smoothness condition assumed on Ω , which
is called Lq -Dini type condition of order α with q ∈ [1, ∞] and α ∈ (0, 1] (see Sec-
tion 4 below for its definition). In 2016, Wang [31] discussed the boundedness of μρ

Ω
from weighted Hardy space to weighted Lebesgue space or to weighted weak Lebesgue
space if Ω ∈ Lipα(Sn−1) with α ∈ (0, 1] . More conclusions of Marcinkiewicz integral
are referred to [1, 7, 24].

On the other hand, recently, Ky [16] studied a new Hardy space called Musielak-
Orlicz Hardy space Hϕ(Rn) , which generalizes both of the weighted Hardy space (cf.
[29]) and the Orlicz Hardy space (cf. [12, 13]), and hence has a wide generality. Apart
from interesting theoretical considerations, the motivation to study Hϕ(Rn) comes
from applications to elasticity, fluid dynamics, image processing, nonlinear PDEs and
the calculus of variation (cf. [4, 5]). More Musielak-Orlicz-type spaces are referred to
[20, 11, 21, 3, 18, 19, 6, 32].

In light of Lin [23], Wang [31] and Ky [16], it is a natural and interesting problem
to ask whether parametric Marcinkiewicz integral μρ

Ω is bounded from Hϕ(Rn) to
Lϕ(Rn) (resp. WLϕ (Rn)) under weaker smoothness condition (resp. some Lipschitz
condition) assumed on Ω . In this paper we shall answer this problem affirmatively.

Precisely, this paper is organized as follows.
In Section 2, we recall some notions concerning Muckenhoupt weights, growth

functions, Musielak-Orlicz space Lϕ(Rn) and weak Musielak-Orlicz space WLϕ (Rn) .
Then we establish the completeness of Lϕ (Rn) and WLϕ (Rn) (see Theorems 2.6 and
2.9 below).

Section 3 is devoted to establishing two boundedness criterions of operators from
Hϕ(Rn) to Lϕ (Rn) or from Hϕ(Rn) to WLϕ (Rn) (see Theorems 3.11 and 3.14 below).
In the process of the proofs of Theorem 3.11 and Theorem 3.14, the Aoki-Rolewicz
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theorem (see Lemma 3.9 below) and the weak type superposition principle (see Lemma
3.12 below) play indispensable roles, respectively.

In Section 4, we obtain the boundedness of μρ
Ω from Hϕ(Rn) to Lϕ (Rn) (resp.

WLϕ (Rn)) under weaker smoothness condition (resp. some Lipschitz condition) as-
sumed on Ω (see Theorem 4.1, Theorem 4.2, Corollary 4.3, Theorem 4.4 and Theorem
4.5 below). In the process of the proof of Theorem 4.1, it is worth pointing out that,
since the space variant x and the time variant t appeared in ϕ(x, t) are inseparable, we
can not directly use the method of Lin [23]. This difficulty is overcame via establishing
a more subtle pointwise estimate for μρ

Ω(b) (see Lemma 4.8 below for more details),
where b is a multiple of an atom.

Finally, we make some conventions on notation. Let Z+ := {1, 2, . . .} and N :=
{0}∪Z+ . For any β := (β1, . . . ,βn) ∈ Nn , let |β | := β1 + · · ·+ βn . Throughout this
paper the letter C will denote a positive constant that may vary from line to line but will
remain independent of the main variables. The symbol P � Q stands for the inequality
P � CQ . If P � Q � P , we then write P ∼ Q . For any sets E, F ⊂ Rn , we use E� to
denote the set Rn \E , |E| its n-dimensional Lebesgue measure, χE its characteristic
function and E + F the algebraic sum {x + y : x ∈ E, y ∈ F} . For any s ∈ R , �s�
denotes the unique integer such that s−1 < �s�� s . If there are no special instructions,
any space X (Rn) is denoted simply by X . For instance, L2(Rn) is simply denoted
by L2 . For any index q ∈ [1, ∞] , q′ denotes the conjugate index of q , namely, 1/q+
1/q′ = 1. For any set E of Rn , t ∈ [0, ∞) and measurable function ϕ , let ϕ(E, t) :=∫
E ϕ(x, t)dx and {| f | > t} := {x ∈ Rn : | f (x)| > t} . As usual we use Br to denote the

ball {x ∈ Rn : |x| < r} with r ∈ (0, ∞) .

2. Completeness of Lϕ and WLϕ

In this section, we first recall some notions concerning Muckenhoupt weights,
growth functions, Musielak-Orlicz space Lϕ and weak Musielak-Orlicz space WLϕ ,
and then establish the completeness of Lϕ and WLϕ .

Recall that a nonnegative function ϕ on Rn × [0, ∞) is called a Musielak-Orlicz
function if, for any x ∈ Rn , ϕ(x, ·) is an Orlicz function on [0, ∞) and, for any t ∈
[0, ∞) , ϕ(· , t) is measurable on Rn . Here a function φ : [0, ∞) → [0, ∞) is called an
Orlicz function, if it is nondecreasing, φ(0) = 0, φ(t) > 0 for any t ∈ (0, ∞) , and
limt→∞ φ(t) = ∞ .

Given a Musielak-Orlicz function ϕ on Rn × [0, ∞) , ϕ is said to be of uniformly
lower (resp. upper) type p with p ∈ (0, ∞) , if there exists a positive constant C := Cϕ
such that, for any x ∈ Rn , t ∈ [0, ∞) and s ∈ (0, 1] (resp. s ∈ [1, ∞)),

ϕ(x, st) � Cspϕ(x, t).

The critical uniformly lower type index and the critical uniformly upper type index of
ϕ are, respectively, defined by

i(ϕ) := sup{p ∈ (0, ∞) : ϕ is of uniformly lower type p}, (2.1)
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and

I(ϕ) := inf{p ∈ (0, ∞) : ϕ is of uniformly upper type p}. (2.2)

Observe that i(ϕ) or I(ϕ) may not be attainable, namely, ϕ may not be of uniformly
lower type i(ϕ) or of uniformly upper type I(ϕ) (see [20, p. 415] for more details).

DEFINITION 2.1.

(i) Let q ∈ [1, ∞) . A locally integrable function ϕ(· ,t) : Rn → [0, ∞) is said to
satisfy the uniform Muckenhoupt condition Aq , denoted by ϕ ∈ Aq , if there
exists a positive constant C such that, for any ball B ⊂ Rn and t ∈ (0, ∞) , when
q = 1,

1
|B|
∫

B
ϕ(x, t)dx

{
esssup

x∈B
[ϕ(x, t)]−1

}
� C

and, when q ∈ (1,∞) ,

1
|B|
∫

B
ϕ(x, t)dx

{
1
|B|
∫

B
[ϕ(x, t)]−

1
q−1 dx

}q−1

� C.

(ii) Let q ∈ (1, ∞] . A locally integrable function ϕ(· , t) : Rn → [0, ∞) is said to
satisfy the uniformly reverse Hölder condition RHq , denoted by ϕ ∈ RHq , if
there exists a positive constant C such that, for any ball B ⊂ Rn and t ∈ (0, ∞) ,
when q ∈ (1,∞) ,{

1
|B|
∫

B
ϕ(x, t)dx

}−1{ 1
|B|
∫

B
[ϕ(x, t)]q dx

}1/q

� C

and, when q = ∞ , {
1
|B|
∫

B
ϕ(x, t)dx

}−1

esssup
x∈B

ϕ(x, t) � C.

Define A∞ :=
⋃

q∈[1,∞) Aq and, for any ϕ ∈ A∞ ,

q(ϕ) := inf{q ∈ [1, ∞) : ϕ ∈ Aq}. (2.3)

Observe that, if q(ϕ) ∈ (1, ∞) , then ϕ /∈ Aq(ϕ) , and there exists ϕ /∈ A1 such that
q(ϕ) = 1 (cf. [14]).

DEFINITION 2.2. [16, Definition 2.1] A function ϕ : Rn × [0, ∞) → [0, ∞) is
called a growth function if the following conditions are satisfied:

(i) ϕ is a Musielak-Orlicz function;

(ii) ϕ ∈ A∞ ;
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(iii) ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper type
1.

Suppose that ϕ is a Musielak-Orlicz function. Recall that the Musielak-Orlicz
space Lϕ is defined to be the set of all measurable functions f such that, for some
λ ∈ (0, ∞) , ∫

Rn
ϕ
(

x,
| f (x)|

λ

)
dx < ∞

equipped with the Luxembourg-Nakano (quasi-)norm

‖ f‖Lϕ := inf

{
λ ∈ (0, ∞) :

∫
Rn

ϕ
(

x,
| f (x)|

λ

)
dx � 1

}
.

Similarly, the weak Musielak-Orlicz space WLϕ is defined to be the set of all
measurable functions f such that, for some λ ∈ (0, ∞) ,

sup
t∈(0,∞)

ϕ
(
{| f | > t}, t

λ

)
< ∞

equipped with the quasi-norm

‖ f‖WLϕ := inf

{
λ ∈ (0, ∞) : sup

t∈(0,∞)
ϕ
(
{| f | > t}, t

λ

)
� 1

}
.

REMARK 2.3. Let ω be a classic Muckenhoupt weight and φ an Orlicz function.

(i) If ϕ(x, t) := ω(x)t p for all (x, t) ∈ Rn× [0, ∞) with p ∈ (0, ∞) , then Lϕ (resp.
WLϕ ) is reduced to weighted Lebesgue space Lp

ω (resp. weighted weak Lebesgue
space WLp

ω ), and particularly, when ω ≡ 1, the corresponding unweighted spaces
are also obtained.

(ii) If ϕ(x, t) := ω(x)φ(t) for all (x, t) ∈ Rn × [0, ∞) , then Lϕ (resp. WLϕ ) is re-
duced to weighted Orlicz space Lφ

ω (resp. weighted weak Orlicz space WLφ
ω ),

and particularly, when ω ≡ 1, the corresponding unweighted spaces are also ob-
tained.

Throughout the paper, we always assume that ϕ is a growth function.
In order to obtain the completeness of Lϕ , we need the following several lemmas,

which are some properties of growth functions.

LEMMA 2.4. [16, Lemma 4.2] Let ϕ be a growth function as in Definition 2.2.
Then the following hold true:

(i) for any f ∈ Lϕ satisfying f �≡ 0 ,∫
Rn

ϕ
(

x,
| f (x)|
‖ f‖Lϕ

)
dx = 1;
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(ii) lim
k→∞

‖ fk‖Lϕ = 0 if and only if lim
k→∞

∫
Rn ϕ (x, | fk(x)|) dx = 0.

The following lemma comes from [16, Lemma 4.1], and also can be found in [32].

LEMMA 2.5. Let ϕ be a growth function as in Definition 2.2. Then there exists a
positive constant C such that, for any (x, t j) ∈ R

n × [0, ∞) with j ∈ Z+ ,

ϕ

(
x,

∞

∑
j=1

t j

)
� C

∞

∑
j=1

ϕ (x, t j) .

THEOREM 2.6. The space Lϕ is complete.

Proof. In order to prove the completeness of Lϕ , it suffices to prove that, for any
sequence { f j} j∈Z+ ⊂ Lϕ satisfying ‖ f j‖Lϕ � 2− j , the series {∑k

j=1 f j}k∈Z+ converges
in Lϕ . By the uniformly lower type p property of ϕ and Lemma 2.4(i), we see that,
for any j ∈ Z+ ,∫

Rn
ϕ(x, | f j(x)|)dx �

∫
Rn

ϕ
(

x, 2− j | f j(x)|
‖ f j‖Lϕ

)
dx � 2− jp. (2.4)

Noticing that the series {∑k
j=1 f j}k∈Z+ is a Cauchy sequence in Lϕ , we have

lim
k,m→∞

∥∥∥∥∥ k

∑
j=1

f j −
m

∑
j=1

f j

∥∥∥∥∥
Lϕ

= 0,

which, together with Lemma 2.4(ii), implies that

lim
k,m→∞

∫
Rn

ϕ

(
x,

∣∣∣∣∣ k

∑
j=1

f j(x)−
m

∑
j=1

f j(x)

∣∣∣∣∣
)

dx = 0. (2.5)

By the uniformly lower type p and the uniformly upper type 1 properties of ϕ , and
(2.5), we know that, for any σ ∈ (0, ∞) ,

lim
k,m→∞

ϕ

({∣∣∣∣∣ k

∑
j=1

f j −
m

∑
j=1

f j

∣∣∣∣∣> σ

}
, 1

)

= lim
k,m→∞

ϕ

({∣∣∣∣∣ k

∑
j=1

f j −
m

∑
j=1

f j

∣∣∣∣∣> σ

}
,

1
σ

σ

)

� max
{

σ−1,σ−p} lim
k,m→∞

ϕ

({∣∣∣∣∣ k

∑
j=1

f j −
m

∑
j=1

f j

∣∣∣∣∣> σ

}
, σ

)

� max
{

σ−1,σ−p} lim
k,m→∞

∫{∣∣∣∑k
j=1 f j−∑m

j=1 f j

∣∣∣>σ
}ϕ

(
x,

∣∣∣∣∣ k

∑
j=1

f j(x)−
m

∑
j=1

f j(x)

∣∣∣∣∣
)

dx
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� max
{

σ−1,σ−p} lim
k,m→∞

∫
Rn

ϕ

(
x,

∣∣∣∣∣ k

∑
j=1

f j(x)−
m

∑
j=1

f j(x)

∣∣∣∣∣
)

dx ∼ 0.

Hence, there exists some f such that ∑k
j=1 f j converges to f as k → ∞ in mea-

sure. From this and using Riesz’s theorem, we deduce that there exists a subsequence
∑ki

j=1 f j → f as i → ∞ almost everywhere. By this, Lemma 2.5 and (2.4), we obtain
that∫

Rn
ϕ

(
x,

∣∣∣∣∣ f (x)− ki

∑
j=1

f j(x)

∣∣∣∣∣
)

dx � ∑
j�ki+1

∫
Rn

ϕ
(
x,
∣∣ f j(x)

∣∣) dx � ∑
j�ki+1

2− jp → 0

as i → ∞ . From Lemma 2.4(ii) again, it follows that lim
i→∞

‖ f −∑ki
j=1 f j‖Lϕ = 0. On the

other hand, noticing that {∑k
j=1 f j}k∈Z+ is a Cauchy sequence in Lϕ , then it is easy to

see that limk→∞ ‖∑k
j=1 f j − f‖Lϕ = 0 and f ∈ Lϕ . This finishes the proof of Theorem

2.6. �
In order to obtain the completeness of WLϕ , we need the following several lem-

mas, which are some properties of growth functions.

LEMMA 2.7. Let ϕ be a growth function as in Definition 2.2. Then the following
hold true:

(i) [22, Lemma 3.3(ii)] for any f ∈WLϕ satisfying f �≡ 0 ,

sup
t∈(0,∞)

ϕ
(
{| f | > t}, t

‖ f‖WLϕ

)
= 1;

(ii) lim
k→∞

‖ fk‖WLϕ = 0 if and only if lim
k→∞

sup
t∈(0,∞)

ϕ ({| fk| > t}, t) = 0.

Proof. We only prove (ii) of Lemma 2.7 since (i) of Lemma 2.7 was proved in
[22, Lemma 3.3(ii)]. By the uniformly lower type p and the uniformly upper type 1
properties of ϕ , we conclude that, for any x ∈ Rn , s ∈ (0, ∞) and t ∈ (0, ∞) ,

ϕ (x, st) � max{s,sp}ϕ (x, t) (2.6)

and

ϕ (x, st) � min{s,sp}ϕ (x, t) . (2.7)

Thus, from (2.6) and Lemma 2.7(i) , we deduce that

sup
t∈(0,∞)

ϕ ({| fk| > t}, t)

= sup
t∈(0,∞)

ϕ
(
{| fk| > t}, ‖ fk‖WLϕ

t
‖ fk‖WLϕ

)
� max

{‖ fk‖WLϕ ,‖ fk‖p
WLϕ
}

sup
t∈(0,∞)

ϕ
(
{| fk| > t}, t

‖ fk‖WLϕ

)
∼ max

{‖ fk‖WLϕ ,‖ fk‖p
WLϕ
}

.
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On the other hand, by (2.7) and Lemma 2.7(i) , we obtain that

sup
t∈(0,∞)

ϕ ({| fk| > t}, t)

= sup
t∈(0,∞)

ϕ
(
{| fk| > t}, ‖ fk‖WLϕ

t
‖ fk‖WLϕ

)
� min

{‖ fk‖WLϕ ,‖ fk‖p
WLϕ
}

sup
t∈(0,∞)

ϕ
(
{| fk| > t}, t

‖ fk‖WLϕ

)
∼ min

{‖ fk‖WLϕ ,‖ fk‖p
WLϕ
}

.

From the above two inequalities, it follows that

min
{‖ fk‖WLϕ ,‖ fk‖p

WLϕ
}

� sup
t∈(0,∞)

ϕ ({| fk| > t}, t) � max
{‖ fk‖WLϕ ,‖ fk‖p

WLϕ
}

,

which implies that (ii) of Lemma 2.7 holds true. This finishes the proof of Lemma
2.7. �

LEMMA 2.8. [8, p. 10] Let ϕ be a growth function as in Definition 2.2. If
liminf
k→∞

| fk| = | f | almost everywhere, then, for any t ∈ (0, ∞) ,

ϕ ({| f | > t}, t) � liminf
k→∞

ϕ ({| fk| > t}, t) .

THEOREM 2.9. The space WLϕ is complete.

Proof. To prove that WLϕ is complete, take { fk}k∈Z+ ⊂ WLϕ such that
lim

k,m→∞
‖ fk − fm‖WLϕ = 0. By Lemma 2.7(ii), we know that, for any chosen posi-

tive number ε , however small, there exists a positive integer K such that, whenever
k, m ∈ [K, ∞)∩Z+ , then

sup
t∈(0,∞)

ϕ({| fk − fm| > t}, t) < ε. (2.8)

By the uniformly lower type p and the uniformly upper type 1 properties of ϕ , and
(2.8), we know that, for any σ ∈ (0, ∞) ,

lim
k,m→∞

ϕ ({| fk − fm| > σ} , 1) = lim
k,m→∞

ϕ
(
{| fk − fm| > σ} ,

1
σ

σ
)

� max
{

σ−1,σ−p} lim
k,m→∞

ϕ ({| fk − fm| > σ} , σ) ∼ 0.

Hence, there exists some f such that fk → f as k → ∞ in measure, which, together
with Riesz’s theorem, implies that some subsequence

fks → f as s → ∞ almost everywhere. (2.9)
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For the K mentioned above, take J ∈Z+ such that, for any j ∈ [J, ∞)∩Z+ , the positive
integer k j � K . By (2.9) and Lemma 2.8, we know that, there exists a positive integer
J such that, whenever j ∈ [J, ∞)∩Z+ , then

sup
t∈(0,∞)

ϕ({| fk j − f | > t}, t) = sup
t∈(0,∞)

ϕ
({

lim
s→∞

| fk j − fks | > t
}

, t
)

� lim
s→∞

sup
t∈(0,∞)

ϕ
({

| fk j − fks | > t
}

, t
)

< ε,

that is to say,

lim
j→∞

sup
t∈(0,∞)

ϕ({| fk j − f | > t}, t) = 0.

Applying Lemma 2.7(ii) again, we conclude that

lim
j→∞

‖ fk j − f‖WLϕ = 0.

On the other hand, noticing that { fk}k∈Z+ is a Cauchy sequence in WLϕ , then it is easy
to see that limk→∞ ‖ fk − f‖WLϕ = 0 and f ∈WLϕ . This finishes the proof of Theorem
2.9. �

3. Two boundedness criterions of operators

In this section, we first recall the notion concerning the Musielak-Orlicz Hardy
space Hϕ via the non-tangential grand maximal function, and then establish two bound-
edness criterions of operators from Hϕ to Lϕ or from Hϕ to WLϕ .

In what follows, we denote by S the set of all Schwartz functions and by S ′ its
dual space (namely, the set of all tempered distributions). For any m ∈ N , let Sm be
the set of all ψ ∈ S such that ‖ψ‖Sm � 1, where

‖ψ‖Sm := sup
α∈Nn, |α |�m+1

sup
x∈Rn

(1+ |x|)(m+2)(n+1)|∂ α ψ(x)|.

Then, for any m ∈ N and f ∈ S ′ , the non-tangential grand maximal function f ∗m of f
is defined by setting, for all x ∈ Rn ,

f ∗m(x) := sup
ψ∈Sm

sup
|y−x|<t,t∈(0,∞)

| f ∗ψt(y)|,

where, for any t ∈ (0, ∞) , ψt(·) := t−nψ( ·t ) . When

m = m(ϕ) :=
⌊
n

(
q(ϕ)
i(ϕ)

−1

)⌋
, (3.1)

we denote f ∗m simply by f ∗ , where q(ϕ) and i(ϕ) are as in (2.3) and (2.1), respectively.
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DEFINITION 3.1. [16, Definition 2.2] Let ϕ be a growth function as in Definition
2.2. The Musielak-Orlicz Hardy space Hϕ is defined as the set of all f ∈S ′ such that
f ∗ ∈ Lϕ endowed with the (quasi-)norm

‖ f‖Hϕ := ‖ f ∗‖Lϕ .

REMARK 3.2. Let ω be a classic Muckenhoupt weight and φ an Orlicz function.

(i) If ϕ(x, t) := ω(x)t p for all (x, t) ∈ Rn × [0, ∞) with p ∈ (0, 1] , then Hϕ is
reduced to weighted Hardy space Hp

ω , and particularly, when ω ≡ 1, the corre-
sponding unweighted space is also obtained.

(ii) If ϕ(x, t) := ω(x)φ(t) for all (x, t)∈Rn× [0, ∞) , then Hϕ is reduced to weighted
Orlicz Hardy space Hφ

ω , and particularly, when ω ≡ 1, the corresponding un-
weighted space is also obtained.

DEFINITION 3.3. [16, Definition 2.4] Let ϕ be a growth function as in Definition
2.2.

(i) A triplet (ϕ , q, s) is said to be admissible, if q ∈ (q(ϕ), ∞] and s ∈ [m(ϕ), ∞)∩
N , where q(ϕ) and m(ϕ) are as in (2.3) and (3.1), respectively.

(ii) For an admissible triplet (ϕ , q, s) , a measurable function a is called a (ϕ , q, s)-
atom if there exists some ball B ⊂ R

n such that the following conditions are
satisfied:

(a) a is supported in B ;

(b) ‖a‖Lq
ϕ(B) � ‖χB‖−1

Lϕ , where

‖a‖Lq
ϕ(B) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup

t∈(0,∞)

[
1

ϕ(B, t)

∫
B
|a(x)|qϕ(x, t)dx

]1/q

, q ∈ [1, ∞),

‖a‖L∞(B), q = ∞;

(c)
∫
Rn a(x)xαdx = 0 for any α ∈ Nn with |α| � s .

(iii) For an admissible triplet (ϕ , q, s) , the Musielak-Orlicz atomic Hardy space Hϕ,q,s
at

is defined as the set of all f ∈ S ′ which can be represented as a linear combi-
nation of (ϕ , q, s)-atoms, that is, f = ∑ j b j in S ′ , where b j for each j is a
multiple of some (ϕ , q, s)-atom supported in some ball x j +Brj , with the prop-
erty

∑
j

ϕ
(
x j +Brj , ‖b j‖Lq

ϕ (x j+Br j )

)
< ∞.

For any given sequence of multiples of (ϕ , q, s)-atoms, {b j} j , let

Λq({b j} j) := inf

{
λ ∈ (0, ∞) : ∑

j
ϕ

(
x j +Brj ,

‖b j‖Lq
ϕ (x j+Br j )

λ

)
� 1

}
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and then the (quasi-)norm of f ∈ S ′ is defined by

‖ f‖Hϕ,q, s
at

:= inf
{

Λq ({b j} j)
}

,

where the infimum is taken over all admissible decompositions of f as above.

We refer the readers to [16] and [32] for more details on the real-variable theory
of Musielak-Orlicz Hardy spaces.

DEFINITION 3.4. Let X and Y be two linear spaces. An operator T : D⊂ X →Y
is called a positive sublinear operator if, for any x ∈ Rn , the following conditions are
satisfied:

(i) T ( f )(x) � 0;

(ii) T (α f )(x) � |α|T ( f )(x) , where α ∈ C ;

(iii) T ( f +g)(x) � T ( f )(x)+T (g)(x) .

LEMMA 3.5. Let X and Y be two linear spaces and T : D⊂ X →Y be a positive
sublinear operator as in Definition 3.4. Then, for any f ,g ∈ D,

|T ( f )−T (g)| � T ( f −g).

Proof. By Definition 3.4(ii), we obtain that

T (− f ) � |−1|T( f ) = T ( f ) � |−1|T (− f ) = T (− f ) ,

therefore, T (− f ) = T ( f ) . Moreover, by Definition 3.4(iii), we know that

T ( f )−T (g) = T ( f −g+g)−T(g) � T ( f −g)+T(g)−T(g) = T ( f −g)

and

T (g)−T( f ) = T (g− f + f )−T ( f ) � T (g− f )+T( f )−T ( f ) = T (g− f ).

From the above two inequalities and T (− f ) = T ( f ) , we deduce that |T ( f )−T (g)| �
T ( f −g) . This finishes the proof of Lemma 3.5. �

The following two lemmas come from [16, Lemma 4.3(i), Theorem 3.1], respec-
tively, and also can be found in [32].

LEMMA 3.6. Let ϕ be a growth function as in Definition 2.2. For a given positive
constant C̃ , there exists a positive constant C such that, for any λ ∈ (0, ∞) ,∫

Rn
ϕ
(

x,
| f (x)|

λ

)
dx � C̃ implies that ‖ f‖Lϕ � Cλ .
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LEMMA 3.7. Let (ϕ , q, s) be an admissible triplet as in Definition 3.3. Then

Hϕ = Hϕ,q,s
at

with equivalent (quasi-)norms.

LEMMA 3.8. [32, Remark 4.1.4] Let ϕ be a growth function as in Definition 2.2.
Then Hϕ ∩L2 is dense in Hϕ .

Recall that a quasi-Banach space B is a linear space endowed with a quasi-norm
‖ · ‖B which is nonnegative, non-degenerate (i.e., ‖ f‖B = 0 if and only if f = 0 ),
homogeneous, and obeys the quasi-triangle inequality, i.e., there exists a constant K no
less than 1 such that, for any f ,g ∈ B , ‖ f +g‖B � K (‖ f‖B +‖g‖B) .

LEMMA 3.9. [27, Aoki-Rolewicz’s theorem] Let B be a quasi-Banach space
and K a constant associated with B as above. Then, for any f , g ∈ B ,

‖ f +g‖γ
B � ‖ f‖γ

B +‖g‖γ
B,

where γ := [log2(2K)]−1 .

LEMMA 3.10. Let B be a quasi-Banach space equipped with the quasi-norm
‖ · ‖B . For any { fk}k∈Z+ ⊂ B and f ∈ B , if lim

k→∞
‖ fk − f‖B = 0 , then

lim
k→∞

‖ fk‖B = ‖ f‖B .

Proof. By Lemma 3.9, we obtain that, for any k ∈ Z+

‖ fk‖γ
B −‖ f‖γ

B = ‖ fk − f + f‖γ
B −‖ f‖γ

B � ‖ fk − f‖γ
B ,

where γ is a harmless constant as in Lemma 3.9. Similarly, we have ‖ f‖γ
B −‖ fk‖γ

B �
‖ f − fk‖γ

B , which, together with the above inequality, implies that∣∣‖ fk‖γ
B −‖ f‖γ

B

∣∣� ‖ fk − f‖γ
B → 0 as k → ∞.

This finishes the proof of Lemma 3.10. �
The following theorem gives a boundedness criterion of operators from Hϕ to Lϕ .

THEOREM 3.11. Let ϕ be a growth function as in Definition 2.2. Suppose that a
linear or a positive sublinear operator T is bounded on L2 . If there exists a positive
constant C such that, for any λ ∈ (0, ∞) and multiple of a (ϕ , q, s)-atom b associated
with some ball B ⊂ Rn ,∫

Rn
ϕ
(

x,
|T (b)(x)|

λ

)
dx � Cϕ

(
B,

‖b‖Lq
ϕ(B)

λ

)
, (3.2)

then T extends uniquely to a bounded operator from Hϕ to Lϕ .
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Proof. We first assume that f ∈ Hϕ ∩ L2 . By the well known Calderón repro-
ducing formula (see also [17, Theorem 2.14]), we know that there exists a sequence of
multiples of (ϕ , q, s)-atoms {b j} j∈Z+ associated with balls {x j +Brj} j∈Z+ such that

f = lim
k→∞

k

∑
j=1

b j =: lim
k→∞

fk in S ′ and also in L2. (3.3)

From the assumption that the linear or positive sublinear operator T is bounded on L2 ,
Lemma 3.5 and (3.3), it follows that

lim
k→∞

‖T ( f )−T ( fk)‖L2 � lim
k→∞

‖T ( f − fk)‖L2 � lim
k→∞

‖ f − fk‖L2 ∼ 0,

which implies that

T ( f ) = lim
k→∞

T ( fk) � lim
k→∞

k

∑
j=1

T (b j) =
∞

∑
j=1

T (b j) almost everywhere. (3.4)

By this, Lemma 2.5 and (3.2) with taking λ = Λq({b j} j) , we obtain∫
Rn

ϕ
(

x,
|T ( f )(x)|
Λq({b j} j)

)
dx �

∞

∑
j=1

∫
Rn

ϕ
(

x,
|T (b j)(x)|
Λq({b j} j)

)
dx

�
∞

∑
j=1

ϕ

(
x j +Brj ,

‖b j‖Lq
ϕ (x j+Br j )

Λq({b j} j)

)
� 1,

which, together with Lemma 3.6, further implies that

‖T ( f )‖Lϕ � Λq({b j} j).

Taking infimum for all admissible decompositions of f as above and using Lemma 3.7,
we obtain that, for any f ∈ Hϕ ∩L2 ,

‖T ( f )‖Lϕ � ‖ f‖Hϕ,q, s
at

∼ ‖ f‖Hϕ . (3.5)

Next, suppose f ∈ Hϕ . By Lemma 3.8, we know that there exists a sequence of
{ f j} j∈Z+ ⊂ Hϕ ∩ L2 such that f j → f as j → ∞ in Hϕ . Therefore, { f j} j∈Z+ is a
Cauchy sequence in Hϕ . From this, Lemma 3.5 and (3.5), we deduce that, for any
j, k ∈ Z+ , ∥∥T ( f j)−T( fk)

∥∥
Lϕ �
∥∥T ( f j − fk)

∥∥
Lϕ �
∥∥ f j − fk

∥∥
Hϕ .

Thus, by this, we know that {T ( f j)} j∈Z+ is a Cauchy sequence in Lϕ . Applying
Theorem 2.6, we conclude that there exists some g∈ Lϕ such that T ( f j)→ g as j → ∞
in Lϕ . Consequently, define T ( f ) := g . Below, we claim that T ( f ) is well defined.
Indeed, for any other sequence { f ′j} j∈Z+ ⊂ Hϕ ∩L2 satisfying f ′j → f as j → ∞ in
Hϕ , by Lemma 3.5 and (3.5), we have∥∥T ( f ′j)−T( f )

∥∥
Lϕ �
∥∥T ( f ′j)−T ( f j)

∥∥
Lϕ +
∥∥T ( f j)−g

∥∥
Lϕ

�
∥∥ f ′j − f j

∥∥
Hϕ +
∥∥T ( f j)−g

∥∥
Lϕ

�
∥∥ f ′j − f

∥∥
Hϕ +
∥∥ f − f j

∥∥
Hϕ +
∥∥T ( f j)−g

∥∥
Lϕ → 0 as j → ∞,
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which is wished. From this, Lemma 3.10 and (3.5), it follows that, for any f ∈ Hϕ ,

‖T ( f )‖Lϕ = ‖g‖Lϕ = lim
j→∞

‖T ( f j)‖Lϕ � lim
j→∞

‖ f j‖Hϕ ∼ ‖ f‖Hϕ .

This finishes the proof of Theorem 3.11. �
To show the boundedness criterion of operators from Hϕ to WLϕ , we need the

following superposition principle of weak type estimates.

LEMMA 3.12. [2, Lemma 7.13] Let ϕ be a growth function as in Definition 2.2
satisfying I(ϕ)∈ (0, 1) , where I(ϕ) is as in (2.2). Assume that { f j} j∈Z+ is a sequence
of measurable functions such that, for some λ ∈ (0, ∞) ,

∑
j∈Z+

sup
α∈(0,∞)

ϕ
(
{| f j| > α}, α

λ

)
< ∞.

Then there exists a positive constant C , depending only on ϕ , such that, for any η ∈
(0, ∞) ,

ϕ

({
∑

j∈Z+
| f j| > η

}
,

η
λ

)
� C ∑

j∈Z+
sup

α∈(0,∞)
ϕ
(
{| f j| > α}, α

λ

)
.

By an argument similar to that used in the proof of [16, Lemma 4.3], we easily
obtain the following lemma, the details being omitted.

LEMMA 3.13. Let ϕ be a growth function as in Definition 2.2. For a given posi-
tive constant C̃ , there exists a positive constant C such that, for any λ ∈ (0, ∞) ,

sup
α∈(0,∞)

ϕ
(
{| f | > α}, α

λ

)
� C̃ implies that ‖ f‖WLϕ � Cλ .

The following theorem gives a boundedness criterion of operators from Hϕ to
WLϕ .

THEOREM 3.14. Let ϕ be a growth function as in Definition 2.2 satisfying I(ϕ)∈
(0, 1) , where I(ϕ) is as in (2.2). Suppose that a linear or a positive sublinear operator
T is bounded on L2 . If there exists a positive constant C such that, for any λ ∈ (0, ∞)
and multiple of a (ϕ , q, s)-atom b associated with some ball B ⊂ R

n ,

sup
α∈(0,∞)

ϕ
(
{|T (b)| > α} ,

α
λ

)
� Cϕ

(
B,

‖b‖Lq
ϕ(B)

λ

)
, (3.6)

then T extends uniquely to a bounded operator from Hϕ to WLϕ .

Proof. Since the proof of Theorem 3.14 is similar to that of Theorem 3.11, we use
the same notation as in the proof of Theorem 3.11. Here we just give out the necessary
modifications.



MUSIELAK-ORLICZ HARDY SPACES 1131

By (3.4), Lemma 3.12 and (3.6) with taking λ = Λq({b j} j) , we obtain that, for
any α ∈ (0, ∞) ,

ϕ
(
{|T ( f )| > α}, α

Λq({b j} j)

)
� ϕ

({
∞

∑
j=1

|T (b j) | > α

}
,

α
Λq({b j} j)

)

�
∞

∑
j=1

sup
α∈(0,∞)

ϕ
({|T (b j) | > α

}
,

α
Λq({b j} j)

)

�
∞

∑
j=1

ϕ

(
x j +Brj ,

‖b j‖Lq
ϕ (x j+Br j )

Λq({b j} j)

)
� 1,

which, together with Lemma 3.13, implies that

‖T ( f )‖WLϕ � Λq({b j} j).

Taking infimum for all admissible decompositions of f as above and using Lemma 3.7,
we obtain that, for any f ∈ Hϕ ∩L2 ,

‖T ( f )‖WLϕ � ‖ f‖Hϕ,q, s
at

∼ ‖ f‖Hϕ . (3.7)

Next, suppose f ∈ Hϕ . By Lemma 3.8, we know that there exists a sequence of
{ f j} j∈Z+ ⊂ Hϕ ∩ L2 such that f j → f as j → ∞ in Hϕ . Therefore, { f j} j∈Z+ is a
Cauchy sequence in Hϕ . From this, Lemma 3.5 and (3.7), we deduce that, for any
j, k ∈ Z+ , ∥∥T ( f j)−T ( fk)

∥∥
WLϕ �

∥∥T ( f j − fk)
∥∥

WLϕ �
∥∥ f j − fk

∥∥
Hϕ .

Thus, by this, we know that {T ( f j)} j∈Z+ is a Cauchy sequence in WLϕ . Applying
Theorem 2.9, we conclude that there exists some g ∈ WLϕ such that T ( f j) → g as
j → ∞ in WLϕ . Consequently, define T ( f ) := g . Below, we claim that T ( f ) is well
defined. Indeed, for any other sequence { f ′j} j∈Z+ ⊂ Hϕ ∩ L2 satisfying f ′j → f as
j → ∞ in Hϕ , by Lemma 3.5 and (3.7), we have∥∥T ( f ′j)−T ( f )

∥∥
WLϕ �

∥∥T ( f ′j)−T ( f j)
∥∥

WLϕ +
∥∥T ( f j)−g

∥∥
WLϕ

�
∥∥ f ′j − f j

∥∥
Hϕ +
∥∥T ( f j)−g

∥∥
WLϕ

�
∥∥ f ′j − f

∥∥
Hϕ +
∥∥ f − f j

∥∥
Hϕ +
∥∥T ( f j)−g

∥∥
WLϕ → 0 as j → ∞,

which is wished. From this, Lemma 3.10 and (3.7), it follows that, for any f ∈ Hϕ ,

‖T ( f )‖WLϕ = ‖g‖WLϕ = lim
j→∞

‖T ( f j)‖WLϕ � lim
j→∞

‖ f j‖Hϕ ∼ ‖ f‖Hϕ .

This finishes the proof of Theorem 3.14. �
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4. Boundedness of parametric Marcinkiewicz integrals

In this section, we first recall the notion concerning the Lq -Dini type condition of
order α , with q ∈ [1, ∞] and α ∈ (0, 1] , and then obtain the boundedness of μρ

Ω from
Hϕ to Lϕ or from Hϕ to WLϕ .

Here and hereafter, we always assume that Ω is homogeneous of degree zero and
satisfies (1.1).

Recall that, for any q ∈ [1, ∞) and α ∈ (0, 1] , a function Ω ∈ Lq(Sn−1) is said to
satisfy the Lq -Dini type condition of order α (when α = 0, it is called the Lq -Dini
condition), if ∫ 1

0

ωq(δ )
δ 1+α dδ < ∞,

where ωq(δ ) is the integral modulus of continuity of order q of Ω defined by setting,
for any δ ∈ (0, 1] ,

ωq(δ ) := sup
‖γ‖<δ

(∫
Sn−1

|Ω(γx′)−Ω(x′)|q dσ(x′)
)1/q

and γ denotes a rotation on Sn−1 with ‖γ‖ := supy′∈Sn−1 |γy′−y′| . For any α, β ∈ (0, 1]
with β < α , it is easy to see that if Ω satisfies the Lq -Dini type condition of order
α , then it also satisfies the Lq -Dini type condition of order β . We thus denote by
Dinq

α(Sn−1) the class of all functions which satisfy the Lq -Dini type conditions of all
orders β < α . For any α ∈ (0, 1] , we define

Din∞
α(Sn−1) :=

⋂
q�1

Dinq
α(Sn−1).

See [23, pp. 89–90] for more properties of Dinq
α(Sn−1) with q ∈ [1, ∞] and α ∈ (0, 1] .

The main results of this section are as follows.

THEOREM 4.1. Let ρ ∈ (0, ∞) , α ∈ (0, 1] , β :=min{α, 1/2} and ϕ be a growth
function as in Definition 2.2 with p∈ (n/(n+ β ), 1) therein. Suppose that Ω∈Lq(Sn−1)
∩Din1

α(Sn−1) with q ∈ (1, ∞] . If q and ϕ satisfy one of the following conditions:

(i) q ∈ (1, 1/p] and ϕq′ ∈ A pβ
n(1−p)

;

(ii) q ∈ (1/p, ∞] and ϕ1/(1−p) ∈ A pβ
n(1−p)

,

then there exists a positive constant C independent of f such that∥∥μρ
Ω( f )
∥∥

Lϕ � C‖ f‖Hϕ .

THEOREM 4.2. Let ρ ∈ (0, ∞) , α ∈ (0, 1] , β :=min{α, 1/2} and ϕ be a growth
function as in Definition 2.2 with p ∈ (n/(n+ β ), 1] therein. Suppose that Ω ∈
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Dinq
α(Sn−1) with q ∈ (1, ∞) . If ϕq′ ∈ A

(p+ pβ
n − 1

q )q′ , then there exists a positive con-

stant C independent of f such that∥∥μρ
Ω( f )
∥∥

Lϕ � C‖ f‖Hϕ .

COROLLARY 4.3. Let ρ ∈ (0, ∞) , α ∈ (0, 1] , β := min{α, 1/2} and ϕ be a
growth function as in Definition 2.2 with p ∈ (n/(n+ β ), 1] therein. Suppose that
Ω ∈ Din∞

α(Sn−1) . If ϕ ∈ A
p(1+ β

n )
, then there exists a positive constant C independent

of f such that ∥∥μρ
Ω( f )
∥∥

Lϕ � C‖ f‖Hϕ .

THEOREM 4.4. Let ρ ∈ (0, ∞) and ϕ be a growth function as in Definition 2.2
with p := 1 therein. For a given positive constant C̃ , suppose Ω ∈ Lq(Sn−1) with
q ∈ (1, ∞) such that, for any y �= 0 , h ∈ Rn and t ∈ [0, ∞) ,∫

|x|�2|y|

∣∣∣∣Ω(x− y)
|x− y|n − Ω(x)

|x|n
∣∣∣∣ϕ(x+h, t)dx � C̃ϕ(y+h, t).

If ϕq′ ∈ A1 , then there exists a positive constant C independent of f such that∥∥μρ
Ω( f )
∥∥

Lϕ � C‖ f‖Hϕ .

THEOREM 4.5. Let ρ ∈ (0, ∞) , α ∈ (0, 1] , β :=min{α, 1/2} and ϕ be a growth
function as in Definition 2.2 with p := n/(n+ β ) therein, and I(ϕ)∈ (0, 1) , where I(ϕ)
is as in (2.2). Suppose that Ω ∈ Lipα(Sn−1) . If ϕ ∈ A1 , then there exists a positive
constant C independent of f such that∥∥μρ

Ω( f )
∥∥

WLϕ � C‖ f‖Hϕ .

REMARK 4.6.

(i) It is worth noting that Corollary 4.3 can be regarded as the limit case of Theorem
4.2 by letting q → ∞ .

(ii) Theorem 4.1, Theorem 4.2 and Corollary 4.3 jointly answer the question: when
Ω ∈ Dinq

α(Sn−1) with q = 1, q ∈ (1, ∞) or q = ∞ , respectively, what kind of
additional conditions on growth function ϕ and Ω can deduce the boundedness
of μρ

Ω from Hϕ to Lϕ ?

(iii) When ρ := 1, Theorem 4.1, Theorem 4.2 and Corollary 4.3 are reduced to [24,
Theorem 2.4, Theorem 2.5 and Corollary 2.6], respectively.

(iv) Let ω be a classic Muckenhoupt weight and φ an Orlicz function.

(a) When ϕ(x, t) := ω(x)φ(t) for all (x, t) ∈ Rn× [0, ∞) , we have Hϕ = Hφ
ω .

In this case, Theorem 4.1, Theorem 4.2, Corollary 4.3 and Theorem 4.4 hold true
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for weighted Orlicz Hardy space. Even when ϕ(x, t) := φ(t) , the above results
are also new.

(b) When ϕ(x, t) := ω(x)t p for all (x, t) ∈ R
n × [0, ∞) , we have Hϕ = Hp

ω .
In this case, if ρ := 1, Theorem 4.1, Theorem 4.2, Corollary 4.3 and Theorem
4.4 are reduced to [23, Theorem 1.4, Theorem 1.5, Corollary 1.7 and Theorem
1.8], respectively.

(c) When ϕ(x, t) := ω(x)t p for all (x, t) ∈ Rn × [0, ∞) , we have Hϕ = Hp
ω .

In this case, the assumptions of ρ and Ω in Corollary 4.3 are weaker than
that in [31, Theorem 1.1]. Precisely, in [31, Theorem 1.1], ρ ∈ (0, n) and
Ω ∈ Lipα(Sn−1) , however, in our case, ρ ∈ (0, ∞) and Ω satisfies some weaker
smoothness conditions, i.e., Ω ∈ Din∞

α(Sn−1) .

(d) When ϕ(x, t) := ω(x)t p for all (x, t) ∈ Rn × [0, ∞) , we have Hϕ = Hp
ω .

In this case, if ρ is restricted to (0, n) , Theorem 4.5 is reduced to [31, Theorem
1.2].

To show main results, let us begin with some lemmas. Since ϕ satisfies the uni-
form Muckenhoupt condition, the proofs of (i) , (ii) and (iii) of the following Lemma
4.7 are identity to that of [9, Exercises 9.1.3, Theorem 9.2.5 and Corollary 9.2.6], re-
spectively, the details being omitted.

LEMMA 4.7. Let q ∈ [1, ∞] . If ϕ ∈ Aq , then the following statements hold true:

(i) ϕε ∈ Aq for any ε ∈ (0, 1];

(ii) ϕη ∈ Aq for some η ∈ (1, ∞);

(iii) ϕ ∈ Ad for some d ∈ (1, q) with q �= 1 .

The following Lemma 4.8 is a subtle pointwise estimate for μρ
Ω(b) , where b is a

multiple of a (ϕ , ∞, s) atom. And this lemma plays an important role in the proof of
Theorem 4.1.

LEMMA 4.8. Let ρ ∈ (0, ∞) and b be a multiple of a (ϕ , ∞, s)-atom associated
with some ball Br . Then, for any x ∈ B2R \BR with R ∈ [2r, ∞) ,

μρ
Ω(b)(x) � ‖Ω‖L1(Sn−1)‖b‖L∞

1
ρ

{
ln

2R+ r
R− r

+
[(2R+ r)ρ − (R− r)ρ]2

2ρ(2R+ r)2ρ

}1/2

.

Proof. The key of the proof is to find a subtle segmentation. From supp b ⊂ Br ,
we deduced that, for any y ∈ Br and x ∈ B2R \BR with R ∈ [2r, ∞) ,

R− r < |x− y|< 2R+ r. (4.1)
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Therefore, for any x ∈ B2R \BR with R ∈ [2r, ∞) , write

[
μρ

Ω(b)(x)
]2 =

∫ ∞

0

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ b(y)dy

∣∣∣∣2 dt
t2ρ+1

=
∫ R−r

0

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ b(y)dy

∣∣∣∣2 dt
t2ρ+1 +

∫ 2R+r

R−r
· · ·+

∫ ∞

2R+r
· · ·

=: I1 + I2 + I3.

For I1 , from t ∈ (0, R− r] and (4.1), it follows that {y ∈ Rn : |x−y|� t} = /0 and
hence I1 = 0.

For I2 , by the spherical coordinates transform and Ω ∈ L1(Sn−1) (see (1.1)), we
obtain

I2 � ‖b‖2
L∞

∫ 2R+r

R−r

(∫
Sn−1

∫ t

0

|Ω(z′)|
un−ρ un−1 dudσ(z′)

)2 dt
t2ρ+1

= ‖Ω‖2
L1(Sn−1)‖b‖2

L∞
1

ρ2

∫ 2R+r

R−r

1
t

dt = ‖Ω‖2
L1(Sn−1)‖b‖2

L∞
1

ρ2 ln
2R+ r
R− r

.

For I3 , by (4.1), the spherical coordinates transform and Ω∈ L1(Sn−1) (see (1.1)),
we have

I3 � ‖b‖2
L∞

∫ ∞

2R+r

(∫
B2R+r\BR−r

|Ω(z)|
|z|n−ρ dz

)2 dt
t2ρ+1

= ‖b‖2
L∞

∫ ∞

2R+r

(∫
Sn−1

∫ 2R+r

R−r

|Ω(z′)|
un−ρ un−1 dudσ(z′)

)2 dt
t2ρ+1

= ‖Ω‖2
L1(Sn−1)‖b‖2

L∞
1

ρ2 [(2R+ r)ρ − (R− r)ρ ]2
∫ ∞

2R+r

1
t2ρ+1 dt

= ‖Ω‖2
L1(Sn−1)‖b‖2

L∞
1

ρ2

[(2R+ r)ρ − (R− r)ρ ]2

2ρ(2R+ r)2ρ .

Combining the estimates of I1 , I2 and I3 , we obtain the desired inequality. This
finishes the proof of Lemma 4.8. �

LEMMA 4.9. [16, Lemma 4.5] Let ϕ ∈ Aq with q ∈ [1, ∞) . Then there exists a
positive constant C such that, for any ball B ⊂ Rn , λ ∈ (1, ∞) and t ∈ (0, ∞) ,

ϕ(λB, t) � Cλ nqϕ(B, t).

Since ϕ satisfies the uniform Muckenhoupt condition, the proof of Lemma 4.10
is identity to that of [30, Corollary 6.2], the details being omitted.

LEMMA 4.10. Let d ∈ (1, ∞) . Then, ϕd ∈ A∞ if and only if ϕ ∈ RHd .

The proof of the following Lemma 4.11 is motivated by [15, Lemma 5].
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LEMMA 4.11. Suppose that ρ ∈ (0, ∞) , q ∈ [1, ∞) and Ω satisfies the Lq -Dini
condition. Then there exists a positive constant C such that, for any R ∈ (0, ∞) and
y ∈ BR/2 ,(∫

R�|x|<2R

∣∣∣∣ Ω(x− y)
|x− y|n−ρ − Ω(x)

|x|n−ρ

∣∣∣∣q dx

)1/q

� CRn/q−(n−ρ)
( |y|

R
+
∫ |y|/R

|y|/2R

ωq(δ )
δ

dδ
)

.

Proof. Noticing that |x| � R and |y| < R/2, we have |x− y| ∼ |x| . From this and
the mean value theorem, it follows that∣∣∣∣ Ω(x− y)

|x− y|n−ρ − Ω(x)
|x|n−ρ

∣∣∣∣� ∣∣∣∣ Ω(x)
|x|n−ρ − Ω(x)

|x− y|n−ρ

∣∣∣∣+ ∣∣∣∣ Ω(x)
|x− y|n−ρ − Ω(x− y)

|x− y|n−ρ

∣∣∣∣
� C

(
|Ω(x)| |y|

|x|n−ρ+1 +
|Ω(x− y)−Ω(x)|

|x|n−ρ

)
.

We then write(∫
R�|x|<2R

∣∣∣∣ Ω(x− y)
|x− y|n−ρ − Ω(x)

|x|n−ρ

∣∣∣∣q dx

)1/q

� C

(∫
R�|x|<2R

|Ω(x)|q |y|q
|x|(n−ρ+1)q dx

)1/q

+C

(∫
R�|x|<2R

|Ω(x− y)−Ω(x)|q
|x|(n−ρ)q dx

)1/q

=: C(I1 + I2).

For I1 , by the spherical coordinates transform and Ω ∈ Lq(Sn−1) , we know that,
for any y ∈ BR/2 ,

I1 = |y|
(∫

Sn−1

∫ 2R

R
|Ω(x′)|q rn−1

r(n−ρ+1)q drdσ(x′)
)1/q

∼ |y|
(∫ 2R

R
rn−1−(n−ρ+1)qdr

)1/q

∼ Rn/q−(n−ρ)
( |y|

R

)
.

For I2 , from the spherical coordinates transform and Fubini’s theorem, it follows
that, for any y ∈ BR/2 ,

I2 =
(∫

Sn−1

∫ 2R

R

|Ω(rx′ − y)−Ω(rx′)|q
r(n−ρ)q rn−1drdσ(x′)

)1/q

∼ Rn/q−(n−ρ)
[∫ 2R

R

(∫
Sn−1

∣∣∣∣Ω( x′ −α
|x′ −α|

)
−Ω(x′)

∣∣∣∣q dσ(x′)
)

dr
r

]1/q

,

where α := y/r . Proceeding as in the proof of [15, Lemma 5], I2 is bounded by a
positive constant times

Rn/q−(n−ρ)
(∫ |y|/R

|y|/2R
ωq(δ )

dδ
δ

)
.
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Combining the estimates of I1 and I2 , we obtain the desired inequality. This
finishes the proof of Lemma 4.11. �

The following Lemma 4.12 extends [23, Lemma 4.4] from non-parametric case to
the parametric case.

LEMMA 4.12. For α ∈ (0, 1] and q ∈ [1, ∞) , suppose that Ω satisfies the Lq -
Dini type condition of order α . Let ρ ∈ (0, ∞) , β := min{α, 1/2} and b be a multiple
of a (ϕ ,∞,s)-atom associated with some ball Br .

(i) If q = 1 , then there exists a positive constant C independent of b such that, for
any R ∈ [2r, ∞) , ∫

B2R\BR

μρ
Ω(b)(x)dx � C‖b‖L∞Rn

( r
R

)n+β
.

(ii) If q ∈ (1, ∞) , then there exists a positive constant C independent of b such that,
for any R ∈ [2r, ∞) and t ∈ [0, ∞) ,∫

B2R\BR

μρ
Ω(b)(x)ϕ(x, t)dx � C‖b‖L∞

[
ϕq′(B2R, t)

]1/q′
Rn/q
( r

R

)n+β
.

Proof. We only prove for case (ii), since the proof of case (i) is analogous to that
of case (ii) and is left to the readers. For any R ∈ [2r, ∞) and t ∈ [0, ∞) , write∫

R�|x|<2R
μρ

Ω(b)(x)ϕ(x, t)dx

�
∫

R�|x|<2R

(∫ |x|+r

0

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ b(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

ϕ(x, t)dx

+
∫

R�|x|<2R

(∫ ∞

|x|+r

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ b(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

ϕ(x, t)dx =: I1 + I2.

For I1 , noticing that y ∈ Br and x ∈ B2R \BR with R ∈ [2r, ∞) , we know that

|x− y| ∼ |x| ∼ |x|+ r (4.2)

and

R/2 < |x− y|< 5R/2. (4.3)

From (4.2) and the mean value theorem, it follows that, for any y ∈ Br and x ∈ B2R \BR

with R ∈ [2r, ∞) , ∣∣∣∣ 1
|x− y|2ρ − 1

(|x|+ r)2ρ

∣∣∣∣� r
|x− y|2ρ+1 .
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By Minkowski’s inequality for integrals, the above inequality and Fubini’s theorem, we
obtain that, for any R ∈ [2r, ∞) and t ∈ [0, ∞) ,

I1 �
∫

R�|x|<2R

[∫
Br

∣∣∣∣ Ω(x− y)
|x− y|n−ρ b(y)

∣∣∣∣(∫ |x|+r

|x−y|
dt

t2ρ+1

)1/2

dy

]
ϕ(x, t)dx

� ‖b‖L∞

∫
R�|x|<2R

[∫
Br

|Ω(x− y)|
|x− y|n−ρ

∣∣∣∣ 1
|x− y|2ρ − 1

(|x|+ r)2ρ

∣∣∣∣1/2

dy

]
ϕ(x, t)dx

� ‖b‖L∞r1/2
∫

Br

(∫
R�|x|<2R

|Ω(x− y)|
|x− y|n+1/2

ϕ(x, t)dx

)
dy.

On the other hand, from Hölder’s inequality, (4.3), the spherical coordinates transform
and Ω ∈ Lq(Sn−1) , we deduced that, for any y ∈ Br , R ∈ [2r, ∞) and t ∈ [0, ∞) ,∫

R�|x|<2R

|Ω(x− y)|
|x− y|n+1/2

ϕ(x, t)dx

�
(∫

R�|x|<2R

|ϕ(x, t)|q′
|x− y|n+1/2

dx

)1/q′(∫
R�|x|<2R

|Ω(x− y)|q
|x− y|n+1/2

dx

)1/q

�
[
ϕq′(B2R, t)

]1/q′
R(−n−1/2)/q′

(∫
R/2<|z|<5R/2

|Ω(z)|q
|z|n+1/2

dz

)1/q

∼
[
ϕq′(B2R, t)

]1/q′
R(−n−1/2)/q′

(
R−n−1/2

∫
Sn−1

∫ 5R/2

0

∣∣Ω(z′)
∣∣q un−1dudσ(z′)

)1/q

∼
[
ϕq′(B2R, t)

]1/q′
R−n/q′−1/2.

Substituting the above inequality into I1 and using the fact that β = min{α, 1/2} , we
know that, for any R ∈ [2r, ∞) and t ∈ [0, ∞) ,

I1 � ‖b‖L∞

[
ϕq′(B2R, t)

]1/q′
Rn/q
( r

R

)n+1/2
� ‖b‖L∞

[
ϕq′(B2R, t)

]1/q′
Rn/q
( r

R

)n+β
.

For I2 , noticing that for t > |x|+r , it is easy to see that Br ⊂{y ∈ Rn : |x− y|� t} .
From this, vanishing moments of b , Minkowski’s inequality for integrals and Fubini’s
theorem, it follows that, for any R ∈ [2r, ∞) and t ∈ [0, ∞) ,

I2 =
∫

R�|x|<2R

(∫ ∞

|x|+r

∣∣∣∣∫|x−y|�t

(
Ω(x− y)
|x− y|n−ρ − Ω(x)

|x|n−ρ

)
b(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

ϕ(x, t)dx

�
∫

R�|x|<2R

[∫
Br

∣∣∣∣ Ω(x− y)
|x− y|n−ρ − Ω(x)

|x|n−ρ

∣∣∣∣ |b(y)|
(∫ ∞

R

dt
t2ρ+1

)1/2

dy

]
ϕ(x, t)dx

� ‖b‖L∞R−ρ
∫

Br

(∫
R�|x|<2R

∣∣∣∣ Ω(x− y)
|x− y|n−ρ − Ω(x)

|x|n−ρ

∣∣∣∣ϕ(x, t)dx

)
dy.
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On the other hand, from Hölder’s inequality and Lemma 4.11 (since Ω satisfies the
Lq -Dini type condition of order α , it also satisfies the Lq -Dini condition), we deduced
that, for any y ∈ Br , R ∈ [2r, ∞) and t ∈ [0, ∞) ,∫

R�|x|<2R

∣∣∣∣ Ω(x− y)
|x− y|n−ρ − Ω(x)

|x|n−ρ

∣∣∣∣ϕ(x, t)dx

�
(∫

R�|x|<2R
|ϕ(x, t)|q′dx

)1/q′(∫
R�|x|<2R

∣∣∣∣ Ω(x− y)
|x− y|n−ρ − Ω(x)

|x|n−ρ

∣∣∣∣q dx

)1/q

�
[
ϕq′(B2R, t)

]1/q′
Rn/q−n+ρ

( |y|
R

+
∫ |y|/R

|y|/2R

ωq(δ )
δ

dδ
)

�
[
ϕq′(B2R, t)

]1/q′
Rn/q−n+ρ

[ |y|
R

+
( |y|

R

)α ∫ |y|/R

|y|/2R

ωq(δ )
δ 1+α dδ

]
.

Substituting the above inequality into I2 and using the assumptions that Ω satisfies
the Lq -Dini type condition of order α , and β = min{α, 1/2} , we know that, for any
R ∈ [2r, ∞) and t ∈ [0, ∞) ,

I2 � ‖b‖L∞

[
ϕq′(B2R, t)

]1/q′
Rn/q−n

∫
Br

[
r
R

+
( r

R

)α ∫ 1

0

ωq(δ )
δ 1+α dδ

]
dy

� ‖b‖L∞

[
ϕq′(B2R, t)

]1/q′
Rn/q
( r

R

)n [ r
R

+
( r

R

)α]
� ‖b‖L∞

[
ϕq′(B2R, t)

]1/q′
Rn/q
( r

R

)n+β
.

Combining the estimates of I1 and I2 , we obtain the desired inequality. This
finishes the proof of Lemma 4.12. �

The following Lemma 4.13 shows that μΩ maps all multiple of an atoms into
uniformly bounded elements of Lϕ .

LEMMA 4.13. Let ρ ∈ (0,∞) , α ∈ (0,1] , β := min{α,1/2} and p∈ (n/(n+β ),1) .
Suppose that Ω ∈ Lq(Sn−1)∩Din1

α(Sn−1) with q ∈ (1, ∞] . If q and ϕ satisfy one of
the following conditions:

(i) q ∈ (1, 1/p] and ϕq′ ∈ A pβ
n(1−p)

;

(ii) q ∈ (1/p, ∞] and ϕ1/(1−p) ∈ A pβ
n(1−p)

,

then there exists a positive constant C such that, for any λ ∈ (0, ∞) and multiple of a
(ϕ , ∞, s)-atom b associated with some ball B ⊂ Rn ,

∫
Rn

ϕ

(
x,

μρ
Ω(b)(x)

λ

)
dx � Cϕ

(
B,

‖b‖L∞

λ

)
.
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Proof. We need only consider the case q ∈ (1, ∞) , since the case q = ∞ can be
derived from the case q = 2. Indeed, when q = ∞ , a routine computation gives rise to
2 > 1/p . If Lemma 4.13 holds true for q = 2, by Ω ∈ L∞(Sn−1) ⊂ L2(Sn−1) , 2 > 1/p
and ϕ1/(1−p) ∈ A pβ

n(1−p)
, we know that Lemma 4.13 holds true for q = ∞ . We are now

turning to the proof of Lemma 4.13 under case q ∈ (1, ∞) . Without loss of generality,
we may assume b is a multiple of a (ϕ , ∞, s)-atom associated with a ball Br for some
r ∈ (0, ∞) . For the general case, we refer the readers to the method of proof in [23,
Theorem 1.4].

First, we claim that, in either case (i) or (ii) of Lemma 4.13, there exists some
d ∈ (1, pβ/[n(1− p)]) such that

ϕq′ ∈ Ad and ϕ1/(1−p) ∈ Ad . (4.4)

We only prove (4.4) under case (ii) since the proof under case (i) is similar. By Lemma
4.7(iii) with ϕ1/(1−p) ∈ A pβ

n(1−p)
, we see that there exists some d ∈ (1, pβ/[n(1− p)])

such that ϕ1/(1−p) ∈ Ad . On the other hand, notice that q′ < 1/(1− p), then, by
Lemma 4.7(i), we know ϕq′ ∈ Ad , which is wished.

The next thing to do in the proof is to find a subtle segmentation. For any j ∈ Z+ ,
let Ej := B2 j+1r \B2 jr . By Lemma 4.8, we know that, for any x ∈ Ej ,

μρ
Ω(b)(x) � ‖b‖L∞

{
ln

2 j+1 +1
2 j −1

+
[(2 j+1 +1)ρ − (2 j −1)ρ ]2

2ρ(2 j+1 +1)2ρ

}1/2

. (4.5)

Notice that{
ln

2 j+1 +1
2 j −1

+
[(2 j+1 +1)ρ − (2 j −1)ρ ]2

2ρ(2 j+1 +1)2ρ

}1/2

→
[
ln2+

1
2ρ

(
1− 1

2ρ

)2
]1/2

as j→∞,

which, together with

sup
ρ∈(0,∞)

[
ln2+

1
2ρ

(
1− 1

2ρ

)2
]1/2

< 1,

implies that there exists some J ∈ Z+ independent of b such that, for any j ∈ [J +
1, ∞)∩Z+ , {

ln
2 j+1 +1
2 j −1

+
[(2 j+1 +1)ρ − (2 j −1)ρ ]2

2ρ(2 j+1 +1)2ρ

}1/2

< 1. (4.6)

Therefore, for any λ ∈ (0, ∞) , write

∫
Rn

ϕ

(
x,

μρ
Ω(b)(x)

λ

)
dx =

∫
2JBr

ϕ

(
x,

μρ
Ω(b)(x)

λ

)
dx+

∫
(2JBr)� · · ·=: I1 + I2.
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Another step in the proof is to estimate I1 and I2 , respectively.
For I1 , by the uniformly upper type 1 property of ϕ , Theorem A with Ω ∈

Lq(Sn−1) and ϕq′ ∈ Ad , and Lemma 4.9 with ϕ ∈ Ad (which is guaranteed by Lemma
4.7(i) with (4.4)), we know that, for any λ ∈ (0, ∞) ,

I1 �
∫

2JBr

(
1+

μρ
Ω(b)(x)
‖b‖L∞

)d

ϕ
(

x,
‖b‖L∞

λ

)
dx

�
∫

2JBr

(
1+

[
μρ

Ω(b)(x)
]d

‖b‖d
L∞

)
ϕ
(

x,
‖b‖L∞

λ

)
dx

� ϕ
(
2JBr, ‖b‖L∞

)
+

1

‖b‖d
L∞

∫
Rn

[
μρ

Ω(b)(x)
]d ϕ
(

x,
‖b‖L∞

λ

)
dx

� ϕ
(
2JBr, ‖b‖L∞

)
+

1

‖b‖d
L∞

∫
Br

|b(x)|dϕ
(

x,
‖b‖L∞

λ

)
dx

� ϕ
(

Br,
‖b‖L∞

λ

)
,

which is wished.
For I2 , from the uniformly lower type p properties of ϕ with

μρ
Ω(b)(x)
‖b‖L∞ � 1 (see

(4.5) and (4.6)) and Hölder’s inequality, we deduce that, for any λ ∈ (0, ∞) ,

I2 =
∞

∑
j=J+1

∫
Ej

ϕ

(
x,

μρ
Ω(b)(x)

λ

)
dx

� 1
‖b‖p

L∞

∞

∑
j=J+1

∫
Ej

[
μρ

Ω(b)(x)
]p ϕ
(

x,
‖b‖L∞

λ

)
dx

� 1
‖b‖p

L∞

∞

∑
j=J+1

(∫
Ej

[
ϕ
(

x,
‖b‖L∞

λ

)]1/(1−p)

dx

)1−p(∫
Ej

μρ
Ω(b)(x)dx

)p

.

Notice that ϕ1/(1−p) ∈ Ad ⊂ A∞ (see (4.4)). By Lemma 4.10, we have ϕ ∈ RH1/(1−p) .

Thus, from Lemma 4.9 with ϕ1/(1−p) ∈ Ad , and ϕ ∈ RH1/(1−p) , it follows that, for
any λ ∈ (0, ∞) ,(∫

Ej

[
ϕ
(

x,
‖b‖L∞

λ

)]1/(1−p)

dx

)1−p

�
[

ϕ1/(1−p)
(

2 j+1Br,
‖b‖L∞

λ

)]1−p

� 2 jnd(1−p)
[

ϕ1/(1−p)
(

Br,
‖b‖L∞

λ

)]1−p

� 2 jnd(1−p)r−npϕ
(

Br,
‖b‖L∞

λ

)
.

Since d < pβ/[n(1− p)], we may choose an α̃ ∈ (0, α) such that d < pβ̃/[n(1− p)],
where β̃ := min{α̃, 1/2} . By the assumption Ω∈Din1

α(Sn−1) , Ω satisfies the L1 -Dini
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type condition of order α̃ . Applying Lemma 4.12(i), we obtain

∫
Ej

μρ
Ω(b)(x)dx � ‖b‖L∞

(
2 jr
)n( r

2 jr

)n+β̃
∼ ‖b‖L∞rn2− jβ̃ .

Substituting the above two inequalities into I2 , we know that, for any λ ∈ (0, ∞) ,

I2 � ϕ
(

Br,
‖b‖L∞

λ

)( ∞

∑
j=J+1

2 j(nd−ndp−pβ̃)

)
� ϕ
(

Br,
‖b‖L∞

λ

)
,

where the last inequality is due to d < pβ̃/[n(1− p)].
Finally, combining the estimates of I1 and I2 , we obtain the desired inequality.

This finishes the proof of Lemma 4.13. �
Proof of Theorem 4.1. From TheoremA with ω ≡ 1, it follows that μρ

Ω is bounded
on L2 . By this, Lemma 4.13 and the fact that μρ

Ω is a positive sublinear operator, ap-
plying Theorem 3.11 with q = ∞ , we know that μρ

Ω extends uniquely to a bounded
operator from Hϕ to Lϕ . This finishes the proof of Theorem 4.1. �

Proof of Theorem 4.2. The proof of Theorem 4.2 is similar to that of Theorem 4.1.
We only need to modify the estimate of I2 in the proof of Lemma 4.13. And fortunately,
the estimate of I2 is nearly identity to that of J in the proof of [23, Theorem 1.5], where
[23, Lemma 4.4(a)] is used in that proof, and here Lemma 4.12(ii) is used instead. We
leave the details to the interested readers. �

Proof of Corollary 4.3. By Lemma 4.7(ii) with ϕ ∈ A
p(1+ β

n )
, we see that there

exists some d ∈ (1, ∞) such that ϕd ∈A
p(1+ β

n )
. For any q∈ (1, ∞) , by p > n/(n+ β ),

we have (p + pβ/n− 1/q)q′ > p(1 + β/n) and hence ϕd ∈ A
(p+ pβ

n − 1
q )q′ . Thus, we

may choose q := d/(d−1) such that

ϕq′ = ϕd ∈ A
(p+ β

n − 1
q )q′

and hence Corollary 4.3 follows from Theorem 4.2. �

Proof of Theorem 4.4. Observe that, if ϕ is of uniformly lower type 1 and of
uniformly upper type 1, then, in either s ∈ (0, 1] or s ∈ [1, ∞) , there exists a positive
constant C independent of s such that, for any x ∈ Rn and t ∈ [0, ∞) ,

ϕ(x, st) � Csϕ(x, t). (4.7)

On the other hand, we claim that, in either s∈ (0, 1] or s∈ [1, ∞) , there exists a positive
constant C independent of s such that, for any x ∈ Rn and t ∈ [0, ∞) ,

ϕ(x, st) � Csϕ(x, t). (4.8)
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In fact, by (4.7), we have

sϕ(x, t) = sϕ(x, st/s) � ϕ(x, st),

which is wished. Combining (4.7) and (4.8), we obtain ϕ(x, st) ∼ sϕ(x, t) , which
implies that ∫

Rn
ϕ (x, f ∗(x)) dx ∼

∫
Rn

f ∗(x)ϕ (x, 1) dx

and hence, Hϕ = H1
ϕ(· ,1) . Similarly, Lϕ = L1

ϕ(· ,1) . Then, by repeating the proof of [23,

Theorem 1.8], we know that
∥∥μρ

Ω( f )
∥∥

Lϕ � ‖ f‖Hϕ . This finishes the proof of Theorem
4.5. �

LEMMA 4.14. Let ρ ∈ (0, ∞) , α ∈ (0, 1] , β := min{α, 1/2} and ϕ be a growth
function as in Definition 2.2 with p := n/(n+ β ) therein. Suppose that Ω∈Lipα(Sn−1) .
If ϕ ∈ A1 , then there exists a positive constant C such that, for any λ ∈ (0, ∞) and
multiple of a (ϕ , ∞, s)-atom b associated with some ball B ⊂ Rn ,

sup
α∈(0,∞)

ϕ
({

μρ
Ω(b) > α

}
,

α
λ

)
� Cϕ

(
B,

‖b‖L∞

λ

)
.

Proof. We show this lemma by borrowing some ideas from the proof of [22, Theo-
rem 5.2]. Without loss of generality, we may assume b is a multiple of a (ϕ , ∞, s)-atom
associated with a ball Br for some r ∈ (0, ∞) . For the general case, we refer the read-
ers to the method of proof in [23, Theorem 1.4]. Proceeding as in the proof of [31,

Theorem 1.1], we know that, for any x ∈ (B2r)
� ,

μρ
Ω(b)(x) � ‖b‖L∞

(
rn+1/2

|x|n+1/2
+

rn+1

|x|n+1 +
rn+α

|x|n+α

)
,

which, together with β := min{α, 1/2} , implies that, for any x ∈ (B2r)
� ,

μρ
Ω(b)(x) � ‖b‖L∞

rn+β

|x|n+β . (4.9)

Therefore, for any λ ∈ (0, ∞) , write

sup
α∈(0,∞)

ϕ
({

μρ
Ω(b) > α

}
,

α
λ

)
� sup

α∈(0,∞)
ϕ
({

x ∈ B2r : μρ
Ω(b)(x) > α

}
,

α
λ

)
+ sup

α∈(0,∞)
ϕ
({

x ∈ (B2r)� : μρ
Ω(b)(x) > α

}
,

α
λ

)
=: I1 + I2.
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For I1 , from Lemma 4.7(ii) with ϕ ∈ A2 (since ϕ ∈ A1 ), it follows that ϕq′ ∈ A2

for some q′ ∈ (1, ∞) . By the uniformly upper type 1 property of ϕ , Theorem A with
Ω ∈ Lq(Sn−1) (since Ω ∈ Lipα(Sn−1)) and ϕq′ ∈ A2 , and Lemma 4.9 with ϕ ∈ A2 , we
know that, for any λ ∈ (0, ∞) ,

I1 = sup
α∈(0,∞)

∫
{x∈B2r:μ

ρ
Ω(b)(x)>α}ϕ

(
x,

α
λ

)
dx

�
∫

B2r

ϕ

(
x,

μρ
Ω(b)(x)

λ

)
dx

�
∫

B2r

(
1+

μρ
Ω(b)(x)
‖b‖L∞

)2

ϕ
(

x,
‖b‖L∞

λ

)
dx

�
∫

B2r

(
1+

[
μρ

Ω(b)(x)
]2

‖b‖2
L∞

)
ϕ
(

x,
‖b‖L∞

λ

)
dx

� ϕ
(

B2r,
‖b‖L∞

λ

)
+

1

‖b‖2
L∞

∫
Rn

[
μρ

Ω(b)(x)
]2 ϕ
(

x,
‖b‖L∞

λ

)
dx

� ϕ
(

B2r,
‖b‖L∞

λ

)
+

1

‖b‖2
L∞

∫
Br

|b(x)|2ϕ
(

x,
‖b‖L∞

λ

)
dx

� ϕ
(

Br,
‖b‖L∞

λ

)
,

which is wished.

For I2 , from (4.9), Lemma 4.9 with ϕ ∈ A1 , and the uniformly lower type n
n+β

property of ϕ , we deduce that, for any λ ∈ (0, ∞) ,

I2 � sup
α∈(0,∞)

ϕ

({
x ∈ (B2r)� : ‖b‖L∞

rn+β

|x|n+β > α

}
,

α
λ

)

∼ sup
α∈(0,∞)

ϕ
({

x ∈ (B2r)� : |x|n+β <
‖b‖L∞

α
rn+β
}

,
α
λ

)

∼ sup
α∈(0,∞)

ϕ

({
x ∈ R

n : 2r � |x| <
(‖b‖L∞

α

) 1
n+β

r

}
,

α
λ

)

� sup
α∈(0,‖b‖L∞)

ϕ

({
x ∈ R

n : |x| <
(‖b‖L∞

α

) 1
n+β

r

}
,

α
λ

)

∼ sup
α∈(0,‖b‖L∞)

ϕ

([‖b‖L∞

α

] 1
n+β

Br,
α
λ

)
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� sup
α∈(0,‖b‖L∞)

(‖b‖L∞

α

) n
n+β

ϕ
(
Br,

α
λ

)
� sup

α∈(0,‖b‖L∞)

(‖b‖L∞

α

) n
n+β
(

α
‖b‖L∞

) n
n+β

ϕ
(

Br,
‖b‖L∞

λ

)
∼ ϕ
(

Br,
‖b‖L∞

λ

)
.

Combining the estimates of I1 and I2 , we obtain the desired inequality. This
finishes the proof of Lemma 4.14. �

Proof of Theorem 4.5. From TheoremA with ω ≡ 1, it follows that μρ
Ω is bounded

on L2 . By this, Lemma 4.13 and the fact that μρ
Ω is a positive sublinear operator, ap-

plying Theorem 3.14 with q = ∞ , we know that μρ
Ω extends uniquely to a bounded

operator from Hϕ to WLϕ . This finishes the proof of Theorem 4.5. �
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[5] LARS DIENING, PETER A. HÄSTÖ, SVETLANA ROUDENKO, Function spaces of variable smooth-
ness and integrability, J. Funct. Anal. 256 (2009), no. 6, 1731–1768.

[6] XINGYA FAN, JIANXUN HE, BAODE LI, DACHUN YANG, Real-variable characterizations of
anisotropic product Musielak-Orlicz Hardy spaces, Sci. China Math. 60, 11 (2017), 2093–2154.

[7] VAGIF S. GULIYEV, ALI AKBULUT, VUGAR H. HAMZAYEV, OKAN KUZU, Commutators of
Marcinkiewicz integrals associated with Schrödinger operator on generalized weighted Morrey
spaces, J. Math. Inequal. 10 (2016), no. 4, 947–970.



1146 XIONG LIU, BAODE LI, XIAOLI QIU AND BO LI

[8] LOUKAS GRAFAKOS,Classical Fourier Analysis, Second edition, Graduate Texts in Mathematics Vol.
249 (Springer, New York, 2008).

[9] LOUKAS GRAFAKOS, Modern Fourier Analysis, Second edition, Graduate Texts in Mathematics Vol.
250 (Springer, New York, 2009).
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