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Abstract. Using properties of norm and inner product, we prove a new inequality for distances
between five points arbitrarily given in an inner product space. Moreover, we investigate the
Aleksandrov-Rassias problem by proving that if the distance 1 is contractive and the golden
ratio is extensive by a mapping f , then f is a linear isometry up to translation.

1. Introduction

In this paper, assume that V is a real (or complex) inner product space with the
inner product 〈·, ·〉 and ‖ · ‖ is the norm on V defined as ‖x‖ =

√〈x,x〉 for all x ∈ V .
When E

2 is the two dimensional Euclidean space and if three points (vectors) x,y,z are
the vertices of an acute triangle or a right triangle in E

2 , then the inequality

‖x− z‖2 � ‖x− y‖2 +‖y− z‖2

is true. Especially, the equality sign in the last inequality holds if and only if x,y,z are
the vertices of a right triangle and the vectors x− y and y− z are orthogonal to each
other. This is called the Pythagorean theorem which is one of the most famous theorems
in mathematics.

In regard to this subject, Jung [5] and Jung and Lee [6] proved the following the-
orems dealing with inequalities for the distances between every two points among the
given 2n points.

THEOREM 1.1. (Jung [5]) For any real (or complex) inner product space V , the
following inequality is true for all six points x1 , x2 , x3 , x4 , x5 , x6 in V :

2
(‖x6− x1‖2 +‖x4− x2‖2 +‖x5− x3‖2)
� ‖x2− x1‖2 +‖x6− x2‖2 +‖x4− x6‖2 +‖x1− x4‖2

+‖x3− x2‖2 +‖x4− x3‖2 +‖x5− x4‖2 +‖x2− x5‖2

+‖x3− x1‖2 +‖x6− x3‖2 +‖x5− x6‖2 +‖x1− x5‖2
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In addition, the equality sign is true if and only if each {x2 − x1,x6 − x2,x4 − x6,x1 −
x4} , {x3 − x1,x6 − x3,x5 − x6,x1 − x5} , {x3 − x2,x4 − x3,x5 − x4,x2 − x5} comprises
the sides of an appropriate (possibly degenerate) parallelogram such that x6−x1 and
x4− x2 , resp., x6− x1 and x5 − x3 , resp., x4 − x2 and x5 − x3 are the diagonals of the
corresponding parallelogram.

THEOREM 1.2. (Jung and Lee [6]) Assume that n � 2 is an integer and V is a
real (or complex) inner product space. The following inequality is true for any distinct
2n points x11,x21, . . . ,xn1,x12,x22, . . . ,xn2 in V :

∑
i, j ∈ {1, . . . ,n}

k,� ∈ {1,2}
i < j

‖xik − x j�‖2 � (n−1) ∑
i∈{1,...,n}

‖xi1− xi2‖2

In addition, the equality sign holds if and only if for all i, j ∈ {1, . . . ,n} with i < j , the
pair of four points {xi1,xi2,x j1,x j2} comprises the vertices of an appropriate (possibly
degenerate) parallelogram such that xi1 and x j1 are the opposite vertices to xi2 and
x j2 , respectively.

Moreover, Jung and Lee [6] made use of these inequalities to solve the Aleksandrov-
Rassias problem. (We refer the reader to Section 3 of this paper for the exact definition
of the Aleksandrov-Rassias problem.)

In Section 2 of this paper, using basic properties of norm and inner product, we
prove a new inequality for distances between five points which are arbitrarily given in
an inner product space. We devote Section 3 to a study of the Aleksandrov-Rassias
problem. Indeed, we prove that if the distance 1 is contractive and the golden ratio

( 1+
√

5
2 ) is extensive by a mapping f , then f is a linear isometry up to translation,

while Xiang proved in his paper [11] that if either distances 1 and
√

2 are preserved
by a mapping f or 1 and

√
3 are preserved by f , then f is a linear isometry up to

translation.

2. Inequality for distances among five points

From now on, we denote by φ the golden ratio, i.e., φ = 1+
√

5
2 . Then φ2−φ −1 =

0, and φ is the ratio of a diagonal to a side in a regular pentagon. It is somewhat
surprising that the golden ratio appears in an inequality for the distances between every
two points among five points.

THEOREM 2.1. For a real (or complex) inner product space (V,〈·, ·〉) , the in-
equality

φ2{‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x1‖2}
� ‖x1− x3‖2 +‖x2− x4‖2 +‖x3− x5‖2 +‖x4− x1‖2 +‖x5− x2‖2

(2.1)
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is true for any five points x1 , x2 , x3 , x4 , x5 in V . Moreover, the equality sign holds if
and only if

x4 = x1−φx2 + φx3 and x5 = φx1−φx2 + x3 (2.2)

for any x1,x2,x3 ∈V .

Proof. We will prove this theorem when V is a complex inner product space. For

notational convenience, we set x6 = x1 , x7 = x2 and x8 = x3 . Let S j =
5
∑
i=1

〈xi,xi+ j〉 for

each j ∈ {0,1,2} . Then for any j ∈ {0,1,2} , we get

5

∑
i=1

‖xi − xi+ j‖2 =
5

∑
i=1

〈xi − xi+ j, xi− xi+ j〉

=
5

∑
i=1

{〈xi,xi〉− 〈xi,xi+ j〉− 〈xi,xi+ j〉+ 〈xi+ j,xi+ j〉
}

=
5

∑
i=1

{
2〈xi,xi〉− 〈xi,xi+ j〉− 〈xi,xi+ j〉

}

= 2S0−S j −S j,

(2.3)

where c denotes the complex conjugation of a complex number c .
On account of (2.3), φ2 = φ +1 and 2φ = 1+

√
5, inequality (2.1) becomes

0 � φ2
5

∑
i=1

‖xi − xi+1‖2−
5

∑
i=1

‖xi− xi+2‖2

= φ2(2S0−S1−S1)− (2S0−S2−S2)

= (2φ2 −2)S0−φ2(S1 +S1)+ (S2 +S2)

= 2φS0− (φ +1)(S1 +S1)+ (S2 +S2),

i.e., it is to prove that

(1+
√

5)S0− 3+
√

5
2

(S1 +S1)+ (S2 +S2) � 0. (2.4)

Since

5

∑
i=1

〈xi − xi+3, xi+1− xi+2〉

=
5

∑
i=1

{〈xi,xi+1〉+ 〈xi+2,xi+3〉− 〈xi+1,xi+3〉− 〈xi,xi+2〉
}

=
5

∑
i=1

〈xi,xi+1〉+
5

∑
i=1

〈xi,xi+1〉−
5

∑
i=1

〈xi,xi+2〉−
5

∑
i=1

〈xi,xi+2〉

= (S1 +S1)− (S2 +S2),
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the following inequality is obviously true:

0 �
5

∑
i=1

‖xi− xi+3−φ(xi+1− xi+2)‖2

=
5

∑
i=1

〈
(xi − xi+3)−φ(xi+1− xi+2), (xi − xi+3)−φ(xi+1− xi+2)

〉

=
5

∑
i=1

‖xi+3− xi‖2−φ
5

∑
i=1

〈xi − xi+3, xi+1− xi+2〉

− φ
5

∑
i=1

〈xi − xi+3, xi+1− xi+2〉+ φ2
5

∑
i=1

‖xi+1− xi+2‖2

=
5

∑
i=1

‖xi− xi+2‖2−2φ(S1 +S1−S2−S2)+ φ2
5

∑
i=1

‖xi − xi+1‖2

= (2φ2 +2)S0− (φ2 +2φ)S1− (φ2 +2φ)S1 +(2φ −1)S2 +(2φ −1)S2

= (5+
√

5)S0− 5+3
√

5
2

S1− 5+3
√

5
2

S1 +
√

5S2 +
√

5S2

(2.5)

When we divide inequality (2.5) by
√

5, the resulting inequality is just the inequality
(2.4), which is equivalent to our main inequality (2.1).

Equality condition. The right-hand side of (2.5) is 0 if and only if xi − xi+3 −
φ(xi+1 − xi+2) = 0 for all i ∈ {1,2, . . . ,5} , which is again equivalent to

xi+3 = xi −φxi+1 + φxi+2 (2.6)

for all i ∈ {1,2, . . . ,5} . Assume that the right-hand side of (2.5) is 0 and x1,x2,x3 are
given points in V . Then by (2.6), we have

x4 = x1−φx2 + φx3

and

x5 = x2−φx3 + φx4 = x2−φx3 + φ(x1−φx2 + φx3)

= φx1 +(−φ2 +1)x2 +(φ2−φ)x3

= φx1 −φx2 + x3.

Thus, the conditions in (2.2) are true.
On the other hand, we should check under the assumptions in (2.2) that the equa-

tion (2.6) is also true when i ∈ {1,2, . . . ,5} . Indeed, our assumption (2.2) implies that
the equation (2.6) is true for i ∈ {1,2} as we see in the last paragraph. If i = 3, then

x3−φx4 + φx5 = x3−φ(x1−φx2 + φx3)+ φ(φx1 −φx2 + x3)

= (φ2 −φ)x1 +(φ2−φ2)x2 +(−φ2 + φ +1)x3

= x1,
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which is just the case of (2.6) for i = 3 (notice that x6 = x1 , x7 = x2 and x8 = x3 ). For
i = 4, we have

x4 −φx5 + φx1 = (x1 −φx2 + φx3)−φ(φx1−φx2 + x3)+ φx1

= (−φ2 + φ +1)x1 +(φ2−φ)x2 +(φ −φ)x3

= x2,

which is just the case of (2.6) for i = 4. When i = 5, then we get

x5−φx1 + φx2 = (φx1 −φx2 + x3)−φx1 + φx2 = x3,

which is the case of (2.6) for i = 5.
Hence, equation (2.6) is true for every i∈ {1,2, . . . ,5} . Since x1,x2,x3 can be any

element of V , the equality sign in (2.1) holds if and only if the conditions in (2.2) are
true for any x1,x2,x3 ∈V . �

3. Applications to Aleksandrov-Rassias problem

Assume that both V1 and V2 are either real normed spaces or complex normed
spaces. A distance ρ is said to be contractive (or non-expanding) by a mapping f :
V1 → V2 if and only if ‖ f (x)− f (y)‖ � ρ for all x,y ∈ V1 with ‖x− y‖ = ρ . In a
similar way, we call a distance ρ extensive (or non-shrinking) by f if and only if
‖ f (x)− f (y)‖ � ρ for all x,y ∈ V1 with ‖x− y‖ = ρ . Especially, ρ is said to be
conservative (or preserved) provided ρ is contractive and extensive simultaneously.

Based on the fact that every distance ρ is conservative by an isometry, we may
raise a question: Is a mapping an isometry if the mapping preserves certain distances?
Indeed, Aleksandrov [1] raised a question whether a mapping f : V1 → V1 is an isom-
etry provided f preserves a distance ρ , which is known as the Aleksandrov problem.
Without loss of generality, we may assume ρ = 1 when V1 is a normed space (see
[10]).

About twenty years earlier than Aleksandrov, Beckman and Quarles [2] investi-
gated the Aleksandrov problem for the n -dimensional real Euclidean space E

n .

THEOREM 3.1. (Beckman and Quarles [2]) Assume that n � 2 is an integer and
ρ > 0 is an arbitrary constant. Every mapping f : E

n → E
n preserving the distance ρ

is a linear isometry up to translation.

They could construct non-isometric mappings preserving unit distance for one-
dimensional or for infinite-dimensional real Euclidean spaces (cf. [8]). Thereafter,
Rassias [9] raised the question: Is a mapping between normed spaces an isometry if it
preserves two (or more) distances? Such a problem is called the Aleksandrov-Rassias
problem. For a strictly convex vector space, Benz gave an affirmative answer to this
problem (see [3] and also [4]):
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THEOREM 3.2. (Benz [3]) Assume that V1 is a real normed space with dimV1 �
2 and V2 is a real normed space which is strictly convex. Suppose N � 2 is a fixed
integer. If a distance ρ is contractive and Nρ is extensive by a mapping f : V1 → V2 ,
then f is a linear isometry up to translation.

Now, assume that V1 is a real (or complex) inner product space and c1 , c2 , c3 ,
c4 , c5 , e1 , e2 , e3 , e4 , e5 are positive numbers such that there exist points (vectors)
x1 , x2 , x3 , x4 , x5 of V1 such that they satisfy the conditions in (2.2) as well as

‖x1− x2‖ = c1, ‖x2− x3‖ = c2, ‖x3− x4‖ = c3, ‖x4− x5‖ = c4, ‖x5− x1‖ = c5,

‖x1− x3‖ = e1, ‖x2− x4‖ = e2, ‖x3− x5‖ = e3, ‖x4− x1‖ = e4, ‖x5− x2‖ = e5,
(3.1)

as we see in the following figure. (Obviously, due to (2.2), the five points x1 , x2 , x3 ,
x4 , x5 lie on a two dimensional subspace of V1 .)

THEOREM 3.3. Let V1 and V2 be either real inner product spaces or complex
inner product spaces. Assume that the distances c1 , c2 , c3 , c4 , c5 are contractive and
the distances e1 , e2 , e3 , e4 , e5 are extensive by a mapping f : V1 → V2 , where ci ’s
and ei ’s are given by (3.1) and the corresponding xi ’s satisfy the conditions in (2.2)
(see Figure 3.1) . Then f preserves all the distances ci ’s and ei ’s.

Figure 3.1: x4 = x1 −φx2 +φx3 and x5 = φx1 −φx2 +x3

Proof. First, we set x′i = f (xi) for all i ∈ {1,2, . . . ,5} . Because the distances c1 ,
c2 , c3 , c4 , c5 are contractive by f , we can use Theorem 2.1 to get

φ2{‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x1‖2}
� φ2{‖x′1− x′2‖2 +‖x′2− x′3‖2 +‖x′3− x′4‖2 +‖x′4− x′5‖2 +‖x′5− x′1‖2}
� ‖x′1− x′3‖2 +‖x′2− x′4‖2 +‖x′3− x′5‖2 +‖x′4− x′1‖2 +‖x′5− x′2‖2.

Moreover, since the distances e1 , e2 , e3 , e4 , e5 are extensive, we consider (3.1) to
obtain
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φ2{‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x1‖2}
� φ2{‖x′1− x′2‖2 +‖x′2− x′3‖2 +‖x′3− x′4‖2 +‖x′4− x′5‖2 +‖x′5− x′1‖2}
� ‖x′1− x′3‖2 +‖x′2− x′4‖2 +‖x′3− x′5‖2 +‖x′4− x′1‖2 +‖x′5− x′2‖2

� ‖x1− x3‖2 +‖x2− x4‖2 +‖x3− x5‖2 +‖x4− x1‖2 +‖x5− x2‖2.

Since x4 and x5 were given by (2.2) (see Figure 3.1), by the last two inequalities
and Theorem 2.1, we conclude that

φ2{‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x1‖2}
� φ2{‖x′1− x′2‖2 +‖x′2− x′3‖2 +‖x′3− x′4‖2 +‖x′4− x′5‖2 +‖x′5− x′1‖2}
� ‖x′1− x′3‖2 +‖x′2− x′4‖2 +‖x′3− x′5‖2 +‖x′4− x′1‖2 +‖x′5− x′2‖2

� ‖x1− x3‖2 +‖x2− x4‖2 +‖x3− x5‖2 +‖x4− x1‖2 +‖x5− x2‖2

= φ2{‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x1‖2}.

(3.2)

On the other hand, our hypotheses imply that

c1 = ‖x1− x2‖ � ‖x′1− x′2‖, c2 = ‖x2− x3‖ � ‖x′2− x′3‖,
c3 = ‖x3− x4‖ � ‖x′3− x′4‖, c4 = ‖x4− x5‖ � ‖x′4− x′5‖,
c5 = ‖x5− x1‖ � ‖x′5− x′1‖, e1 = ‖x1− x3‖ � ‖x′1− x′3‖,
e2 = ‖x2− x4‖ � ‖x′2− x′4‖, e3 = ‖x3− x5‖ � ‖x′3− x′5‖,
e4 = ‖x4− x1‖ � ‖x′4− x′1‖, e5 = ‖x5− x2‖ � ‖x′5− x′2‖.

(3.3)

By combining (3.2) and (3.3), we conclude that

‖x1− x2‖ = c1 = ‖x′1− x′2‖, ‖x2− x3‖ = c2 = ‖x′2− x′3‖,
‖x3− x4‖ = c3 = ‖x′3− x′4‖, ‖x4− x5‖ = c4 = ‖x′4− x′5‖,
‖x5− x1‖ = c5 = ‖x′5− x′1‖, ‖x1− x3‖ = e1 = ‖x′1− x′3‖,
‖x2− x4‖ = e2 = ‖x′2− x′4‖, ‖x3− x5‖ = e3 = ‖x′3− x′5‖,
‖x4− x1‖ = e4 = ‖x′4− x′1‖, ‖x5− x2‖ = e5 = ‖x′5− x′2‖.

For arbitrarily given x1,x2 ∈ V1 with ‖x1 − x2‖ = c1 , we can select three points
(vectors) x3,x4,x5 in V1 such that x1,x2,x3,x4,x5 determine a geometrical figure con-
gruent to the one in Figure 3.1. In view of the above argument, we may conclude that
‖x′1− x′2‖ = c1 . For other distances such as c2 , c3 , c4 , c5 , e1 , e2 , e3 , e4 and e5 , we
can apply a similar argument. Therefore, f preserves the distances c1 , c2 , c3 , c4 , c5 ,
e1 , e2 , e3 , e4 and e5 . �

REMARK 3.1. Assume that x1 , x2 , x3 , x4 , x5 are the vertices of a regular pen-
tagon with a unit side length as we see in Figure 3.2 below. If we let c1 = c2 = c3 =
c4 = c5 = 1 and e1 = e2 = e3 = e4 = e5 = φ in Theorem 3.3, then we see that f
preserves the distances 1 and φ .
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Figure 3.2: regular pentagon

THEOREM 3.4. Assume that V1 and V2 are real Hilbert spaces with dimV1 � 3 .
If the distance 1 is contractive and the distance φ is extensive by a mapping f : V1 →
V2 , then f is a linear isometry up to translation.

Proof. By regarding Theorem 3.3 and Remark 3.1, f preserves both the distances
1 and φ . We will show that f preserves the distance

√
2φ . Then because f preserves

the distances φ and
√

2φ , we can conclude that f is an isometry up to translation by
[11, Theorem 2.8].

Assume that the distance between v1 and v3 of V1 is
√

2φ , i.e., ‖v1−v3‖=
√

2φ .
Because dimV1 � 3, there exists a subspace U of V1 containing v1 and v3 that is (inner
product) isomorphic to 3-dimensional Euclidean space E

3 .

Figure 3.3.

In the first (roof-shaped) figure of Figure 3.3, {v1,v5,v6,v2} is a part of vertices of
a regular pentagon of unit side length in U and also {v4,v5,v6,v3} is a part of vertices
of another regular pentagon of unit side length in U such that ‖v1− v4‖ = ‖v2− v3‖ =
φ . In full detail, we have

‖v1− v5‖ = 1, ‖v4− v5‖ = 1, ‖v5− v6‖ = 1, ‖v2− v6‖ = 1, ‖v3− v6‖ = 1,

‖v1− v2‖ = φ , ‖v2− v3‖ = φ , ‖v3− v4‖ = φ , ‖v4− v1‖ = φ ,

‖v1− v6‖ = φ , ‖v2− v5‖ = φ , ‖v3− v5‖ = φ , ‖v4− v6‖ = φ .

Denote wi = f (vi) for i ∈ {1,2, . . . ,6} . Because f preserves the distances 1 and φ ,
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‖w1−w5‖ = 1, ‖w4 −w5‖ = 1, ‖w5−w6‖ = 1, ‖w2 −w6‖ = 1, ‖w3−w6‖ = 1,

‖w1−w2‖ = φ , ‖w2 −w3‖ = φ , ‖w3−w4‖ = φ , ‖w4 −w1‖ = φ ,

‖w1−w6‖ = φ , ‖w2 −w5‖ = φ , ‖w3−w5‖ = φ , ‖w4 −w6‖ = φ .

(3.4)

Let xi = wi −w1 for i ∈ {2,3, . . . ,6} . Then

x j − xk = (wj −w1)− (wk −w1) = wj −wk (3.5)

for any j,k ∈ {2,3, . . . ,6} . The distances between 4 points w1 , w2 , w5 , and w6 are
given:

‖x2‖ = ‖w2−w1‖ = φ , ‖x5− x2‖ = ‖w5 −w2‖ = φ ,

‖x5‖ = ‖w5 −w1‖ = 1, ‖x6− x2‖ = ‖w6−w2‖ = 1,

‖x6‖ = ‖w6−w1‖ = φ , ‖x6− x5‖ = ‖w6−w5‖ = 1.

(3.6)

Since

‖x j − xk‖2 = ‖x j‖2−2〈x j,xk〉+‖xk‖2

for any j,k ∈ {2,3, . . . ,6} , by using (3.6), we have

〈x2,x5〉 =
1
2

(‖x2‖2 +‖x5‖2−‖x2− x5‖2) =
1
2

(
φ2 +1−φ2) =

1
2
. (3.7)

Similarly, we have 〈x2,x6〉 = 1
2 (2φ2−1) and 〈x5,x6〉 = 1

2 φ2 .
Hence, we can calculate ‖x6− x5− 1

φ x2‖2 :

∥∥∥∥x6− x5− 1
φ

x2

∥∥∥∥
2

=
〈

x6− x5− 1
φ

x2, x6 − x5− 1
φ

x2

〉

= ‖x6‖2 +‖x5‖2 +
1

φ2 ‖x2‖2−2〈x5,x6〉− 2
φ
〈x2,x6〉+ 2

φ
〈x2,x5〉

= φ2 +1+
1

φ2 φ2 −φ2− 1
φ

(
2φ2−1

)
+

1
φ

= 0.

Therefore,

x6 =
1
φ

x2 + x5. (3.8)

Hence, we get

0 = x6− 1
φ

x2 − x5 = w6 −w1− 1
φ

(w2 −w1)− (w5−w1). (3.9)
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As we see in Figure 3.3, the structures of {w1,w2,w5,w6} and {w4,w3,w5,w6}
are congruent. Thus, we can replace w1,w2,w5,w6 in (3.9) with w4,w3,w5,w6 , respec-
tively, and use (3.5) to get

0 = w6 −w4− 1
φ

(w3 −w4)− (w5−w4) = x6− x4− 1
φ

(x3 − x4)− (x5− x4).

Therefore, x6 − x4 = 1
φ (x3 − x4) + (x5 − x4) . And it follows from (3.8) and the last

equality that

x3 = x2 + x4. (3.10)

In view of (3.4) and (3.6), the distances between 3 points w1,w4,w5 are given
below.

‖x4‖= ‖w4−w1‖ = φ , ‖x5‖= ‖w5−w1‖= 1, ‖x5−x4‖= ‖w5−w4‖ = 1. (3.11)

Hence

〈x4,x5〉 =
1
2

(‖x4‖2 +‖x5‖2−‖x4− x5‖2) =
1
2

(
φ2 +1−1

)
=

1
2

φ2. (3.12)

By (3.4), (3.6), (3.7), (3.8), (3.9), (3.11), and by (3.12), we have

φ2 = ‖w6−w4‖2 = ‖x6− x4‖2 =
∥∥∥∥ 1

φ
x2 + x5− x4

∥∥∥∥
2

=
1

φ2 ‖x2‖2 +‖x4‖2 +‖x5‖2 +
2
φ
〈x2,x5〉− 2

φ
〈x2,x4〉−2〈x4,x5〉

=
1

φ2 φ2 + φ2 +1+
1
φ
− 2

φ
〈x2,x4〉−φ2

= 2+
1
φ
− 2

φ
〈x2,x4〉

and hence

〈x2,x4〉 =
φ
2

(
2+

1
φ
−φ2

)
=

φ
2

(
2+

1
φ
−φ −1

)
=

1
2

(
φ +1−φ2) = 0.

Hence, by (3.4), (3.6), (3.10) and the last equality, we get

‖x3‖2 = ‖x2 + x4‖2 = ‖x2‖2 +‖x4‖2 = ‖x2‖2 +‖w4−w1‖2 = 2φ2,

i.e.,

‖x3‖ = ‖w3−w1‖ =
√

2φ .

Since f preserves distances φ and
√

2φ , we conclude that f is an isometry up to
translation by using [11, Theorem 2.8]. �
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