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AN INEQUALITY FOR DISTANCES AMONG FIVE
POINTS AND DISTANCE PRESERVING MAPPINGS

SOON-MO JUNG AND DOYUN NAM

(Communicated by J. Pecari¢)

Abstract. Using properties of norm and inner product, we prove a new inequality for distances
between five points arbitrarily given in an inner product space. Moreover, we investigate the
Aleksandrov-Rassias problem by proving that if the distance 1 is contractive and the golden
ratio is extensive by a mapping f, then f is a linear isometry up to translation.

1. Introduction

In this paper, assume that V is a real (or complex) inner product space with the
inner product (-,-) and || - is the norm on V defined as ||x|| = /(x,x) forall x € V.
When E? is the two dimensional Euclidean space and if three points (vectors) x,y,z are
the vertices of an acute triangle or a right triangle in E?, then the inequality

2 2 2
[l =z < fle=ylI" + [ly — 2

is true. Especially, the equality sign in the last inequality holds if and only if x,y,z are
the vertices of a right triangle and the vectors x —y and y — z are orthogonal to each
other. This is called the Pythagorean theorem which is one of the most famous theorems
in mathematics.

In regard to this subject, Jung [5] and Jung and Lee [6] proved the following the-
orems dealing with inequalities for the distances between every two points among the
given 2n points.

THEOREM 1.1. (Jung [5]) Forany real (or complex) inner product space V , the
following inequality is true for all six points x1, xp, X3, X4, X5, X6 in V:

2(|lx6 —x1[|* + [lxa —x2]|* + ||xs — x3%)

< lea — x| + |26 — x2||* =+ [|xa — x6 1> + [|x1 — x|
+ [l = xa | + [lxa — x5 1> + 15 — xal|* + ||y — x5
+ [|xs = xy[|* + [lxs — x5 1> + 15 — x6]|* + ||y — x5
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In addition, the equality sign is true if and only if each {x; — x1,x6 — X2,X4 — Xg,X| —
X4}, {x3—x1,X6 —X3,X5 — X6,X] — X5}, {X3—X2,X4 —X3,X5 —X4,X3 — X5} comprises
the sides of an appropriate (possibly degenerate) parallelogram such that x¢ —x; and
X4 — X3, ¥esp., X —X| and X5 — x3, resp., X4 — xp and x5 — x3 are the diagonals of the
corresponding parallelogram.

THEOREM 1.2. (Jung and Lee [6]) Assume that n > 2 is an integer and V is a
real (or complex) inner product space. The following inequality is true for any distinct

21 POINES X11,X21 5+« s Xn15X12,X20, - Xp2 IRV ¢
Y —xldP= -1 Y [xa —xal?
i,je{l,..., n} ie{l,...n}
k.0e{1,2}
i<j

In addition, the equality sign holds if and only if for all i,j € {1,...,n} with i < j, the
pair of four points {x;1,Xp,Xj1,Xj2} comprises the vertices of an appropriate (possibly
degenerate) parallelogram such that x;; and xj; are the opposite vertices to xp and
Xjo, respectively.

Moreover, Jung and Lee [6] made use of these inequalities to solve the Aleksandrov-
Rassias problem. (We refer the reader to Section 3 of this paper for the exact definition
of the Aleksandrov-Rassias problem.)

In Section 2 of this paper, using basic properties of norm and inner product, we
prove a new inequality for distances between five points which are arbitrarily given in
an inner product space. We devote Section 3 to a study of the Aleksandrov-Rassias
problem. Indeed, we prove that if the distance 1 is contractive and the golden ratio
(#) is extensive by a mapping f, then f is a linear isometry up to translation,
while Xiang proved in his paper [11] that if either distances 1 and /2 are preserved
by a mapping f or 1 and /3 are preserved by f, then f is a linear isometry up to
translation.

2. Inequality for distances among five points

From now on, we denote by ¢ the goldenratio, i.e., ¢ = # .Then ¢>—¢p — 1=
0, and ¢ is the ratio of a diagonal to a side in a regular pentagon. It is somewhat
surprising that the golden ratio appears in an inequality for the distances between every
two points among five points.

THEOREM 2.1. For a real (or complex) inner product space (V,{-,-)), the in-
equality
0> { et =21 + [lv2 = x> + [loes — x|+ [lxa = x5 1* + (s — x|}

> [|xp — 3|2 4 [l —xal|? + [[x3 — x5 || 2 + [|xa — x1 ]|+ [Jxs — x2 |

2.1
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is true for any five points x1, X2, X3, X4, Xs in V. Moreover, the equality sign holds if
and only if

X4 =x1—Px2+@x3 and x5 = Px; — Px2+x3 (2.2)
forany x1,x,x3 €V.

Proof. We will prove this theorem when V is a complex inner product space. For
notational convenience, we set xg = X1, X7 =X and xg = x3. Let §; = i (xi,xiyj) for
each j € {0,1,2}. Then for any j € {0,1,2}, we get -

5 5
Y |lxi — x> = N (i — Xigj, Xi — Xy j)
-1

{{Griyxi) — (e Xie ) — (6 X ) (i s X ) }

Il
Mo I

—

2.3)

{2<xi7xi> — (X0, Xig ) _m}

|
Mo

I
g
u L

—S;=5;,

where ¢ denotes the complex conjugation of a complex number c.
On account of (2.3), 2 = ¢ + 1 and 2¢ = 14+ +/5, inequality (2.1) becomes

5 5
0< 9> Y [lxi —xit|? = X [l = xia
i=1 i=1

= ¢%(2S9— 81 —8)) — (280 — S2 — 55)
= (2> —2)So— ¢*(S1 +51) + (S2+5>)
=20S0— (9 +1)(S1+S1) + (S2+ 52),

i.e., it is to prove that

(1+V5)So— 3+2\/§(Sl+§1)+(82+§2) >0. (2.4)

Since

5
z (Xi = Xi+3, Xip1 — Xit2)

{Guisxipr) + (i, Xig3) — (i1, Xig3) — (6 xig2) }

I
M(J]

—

5 5 5

<x17x1+1 +Z x17xl+l Z xzaxi+2 Z xz7xl+2
i=1 i=1 i=1

I
an

(51 +51) = (S2452),
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the following inequality is obviously true:

Mm

1% — X3 — O (xi41 — xi42) ||

I
—_

I
Mo

Il
-

(i = xi13) — O (i1 — xi42), (4 —xi43) — O (Xis1 — Xiv2))

5
sz+3 —Xi H -0 2 —Xit3, Xit1 — Xit2)
i=1
5 5 i 2.5)
— ¢ (6 — Xiy3, Xir1 — Xig2) + 07 Y [[Xi1 — Xisa|

i=1 i=1

Il [\HAU\

W

Zsz—xz+2H —20(S1+51 -5 —8,) +¢° Zsz—szH
i=1 i=1

= (207 +2)So— (0> +20)S1 — (0% +20)S;1 + (26 — 1)S2+ (20 — 1)S,

54+3v5 543v5= —
=(5+\/§)So— +2\/_Sl— +2\/_S1+\/§S2+\/§S2

When we divide inequality (2.5) by /3, the resulting inequality is just the inequality
(2.4), which is equivalent to our main inequality (2.1).

Equality condition. The right-hand side of (2.5) is 0 if and only if x; — xj13 —
O (xir1 —xi32) =0 forall i € {1,2,...,5}, which is again equivalent to

Xiy3 = Xi — OXit1 + PXit2 (2.6)
forall i € {1,2,...,5}. Assume that the right-hand side of (2.5) is 0 and x;,x,x3 are
given points in V. Then by (2.6), we have

X4 =x1 — Px2+ Px3

and

X5 = X2 — Ox3 4+ Oxg = X2 — ox3 + P (x1 — dx2 + Px3)
= 0x; + (=97 + Dxa+ (6% — 9)x3
= Qx1 — ¢x2+x3.
Thus, the conditions in (2.2) are true.
On the other hand, we should check under the assumptions in (2.2) that the equa-

tion (2.6) is also true when i € {1,2,...,5}. Indeed, our assumption (2.2) implies that
the equation (2.6) is true for i € {1,2} as we see in the last paragraph. If i = 3, then

— Oxa+ x5 = x3 — @ (x1 — Px2 + Ox3) + O (Px1 — Px2 4 x3)
= (07— 0)x1+ (° — "2+ (0> + ¢+ )3

= X1,
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which is just the case of (2.6) for i = 3 (notice that xg = x1, x7 =x, and xg = x3). For
i =4, we have

X4 — Qx5+ ¢x; = (x1 — dx2 + ¢x3) — O (Px; — dx2 +x3) + Pxy
= (=0 + 0+ Dxi+ (9> — 9)x2+ (¢ — )x3

= X2,
which is just the case of (2.6) for i =4. When i =5, then we get
X5 — Ox1 + Ox2 = (dx1 — dxo +x3) — ox1 + X = x3,

which is the case of (2.6) for i = 5.

Hence, equation (2.6) is true for every i € {1,2,...,5}. Since x;,x2,x3 can be any
element of V, the equality sign in (2.1) holds if and only if the conditions in (2.2) are
true for any x1,x,x3 € V. U

3. Applications to Aleksandrov-Rassias problem

Assume that both V| and V, are either real normed spaces or complex normed
spaces. A distance p is said to be contractive (or non-expanding) by a mapping f :
Vi — Va if and only if | f(x) — f(v)|| < p for all x,y € V| with |[x—y||=p. Ina
similar way, we call a distance p extensive (or non-shrinking) by f if and only if
lf(x) = fO)|| = p for all x,y € V; with |[[x—y|| = p. Especially, p is said to be
conservative (or preserved) provided p is contractive and extensive simultaneously.

Based on the fact that every distance p is conservative by an isometry, we may
raise a question: Is a mapping an isometry if the mapping preserves certain distances?
Indeed, Aleksandrov [1] raised a question whether a mapping f : V| — V) is an isom-
etry provided f preserves a distance p, which is known as the Aleksandrov problem.
Without loss of generality, we may assume p = 1 when V| is a normed space (see
[10]).

About twenty years earlier than Aleksandrov, Beckman and Quarles [2] investi-
gated the Aleksandrov problem for the n-dimensional real Euclidean space E".

THEOREM 3.1. (Beckman and Quarles [2]) Assume that n > 2 is an integer and
p > 0 is an arbitrary constant. Every mapping f : E" — E" preserving the distance p
is a linear isometry up to translation.

They could construct non-isometric mappings preserving unit distance for one-
dimensional or for infinite-dimensional real Euclidean spaces (cf. [8]). Thereafter,
Rassias [9] raised the question: Is a mapping between normed spaces an isometry if it
preserves two (or more) distances? Such a problem is called the Aleksandrov-Rassias
problem. For a strictly convex vector space, Benz gave an affirmative answer to this
problem (see [3] and also [4]):
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THEOREM 3.2. (Benz [3]) Assume that V| is a real normed space with dimV, >
2 and V, is a real normed space which is strictly convex. Suppose N =2 is a fixed
integer. If a distance p is contractive and Np is extensive by a mapping f : V| — V2,
then f is a linear isometry up to translation.

Now, assume that V; is a real (or complex) inner product space and ¢y, ¢2, ¢3,
c4, C5, €1, €2, €3, €4, e5 are positive numbers such that there exist points (vectors)
X1, X2, X3, X4, x5 of V| such that they satisfy the conditions in (2.2) as well as

[x1 —x2ll = c1, 2 —x3]| =c2, x5 —xal| =3, [[xa —xs]| =ca, [[xs —x1]| =ecs,
lx1—x3ll =e1, [x2—xall = ez, [x3—xs5|| =e3, [lxa—x1l| =e4, |lxs—x2f| =es,
3.1
as we see in the following figure. (Obviously, due to (2.2), the five points x;, xp, x3,
X4, x5 lie on a two dimensional subspace of V;.)

THEOREM 3.3. Let V| and V, be either real inner product spaces or complex
inner product spaces. Assume that the distances cy, ¢y, ¢3, ¢4, c5 are contractive and
the distances ey, ey, e3, e4, es are extensive by a mapping f : Vi — Vo, where c¢;’s
and e;’s are given by (3.1) and the corresponding x;’s satisfy the conditions in (2.2)
(see Figure 3.1). Then f preserves all the distances c;’s and e;’s.

Ty

X1 Z2

Figure 3.1: x4 = x| — ¢x2 + dx3 and x5 = Ppx; — ¢pxp +x3

Proof. First, we set x; = f(x;) forall i € {1,2,...,5}. Because the distances ¢,
¢2, €3, C4, c5 are contractive by f, we can use Theorem 2.1 to get

O {[lx1 —x2|* + |]x2 — x3]|2 4 ||xs — xal|* + [Jxa — x5 )% + [|xs — x1 ]2}
> 02 {||x] — X517 + |2 — x5 1+ |15 — x| >+ [lxh — X517 + |5 — x4 (|17}
> [Ix] — X517 + [ — x5 1% + || — x5 |12+ [ — 2] 12+ [lx§ — x5 |

Moreover, since the distances ej, e, e3, e4, es5 are extensive, we consider (3.1) to
obtain
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0% { llxr —xal|* + [lrc2 — x3|> + [[x3 — xa|* + [l xa — x5 > + ||xs — x1 || *}
> O { Iy — 251> + 1|2 — 5117 4 (165 = xy |17 + 1ok — X511+ (x5 — x4 [}
> (|} — 2517+ s — Xy 1+ [l — x5 17 4 [ — x4 [P+ (15 — 2512
> [lacr — x3|* + |2 — x4l + |3 — x5 |12+ [lca — g |2+ [lxs — x2 |

Since x4 and x5 were given by (2.2) (see Figure 3.1), by the last two inequalities
and Theorem 2.1, we conclude that

O {1 — x2]|* + [lx2 — x3]|% + [|xs — xa | > + [loca — x5 + [Jrs — x1||*}
/¢{HX1 x2H2+||x2 x3||2+Hx3 x4||2+Hx4 x5H2+||x5 le}
> (¥ = 5|17 + [l = X1+ s — 251 + ([ — xq 2 + [l5 — x5 17 (3.2)
> lxr = x3]|> 4 [[x2 — xal|* + [[x3 — x5|> + [|xa —x1 > + [|xs — x2 |

= 0 {llxr — x2|| > + [lx2 — x3]|% + [|xs — xa | > + [loca — x5 1>+ [|xs — x1[|*}

On the other hand, our hypotheses imply that

1 =[x —xal| = [|¥) = x5l 2 = [lxa —xal| > [ — X5,
3 = |lx3 —xal| = [|¥5 —xyll, ca = [lxa —xs|| > ||y — 5],
—Hxs—x1||> x5 =Xyl er = [l —x3]] < [l —X5]], (3.3)

= [Jx2 — xal| <[]y =Xyl e = [lxs — x| <[5 — 5]l

eq = [lxg —xi[| <[]y =]l es = [lxs —xal| <[5 — x|
By combining (3.2) and (3.3), we conclude that

21 —xal| = c1 = [|x] =Xl (22 —x3]] = e2 = [Ix5 — A5]],
I3 = xal| = 3 = [|x5 = X4l [Jxa — x5]| = cq = ||} — X5 ],
s —xi[| = 5 = []xs =Xy [|, a1 —x3]] = er = [lx] = X5,
2 —xal| = ex = [|x5 —X4l, [Jx3 —x5]| = e3 = []x§ — x5]],
s —x1]| = eq = [|xj = X\[|, [Jxs —xal| = 5 = [|x5 — x5 |.

For arbitrarily given x;,x, € Vi with ||x; — x3]| = ¢, we can select three points
(vectors) x3,x4,xs in V| such that x1,x2,x3,x4,x5 determine a geometrical figure con-
gruent to the one in Figure 3.1. In view of the above argument, we may conclude that
[y — x5|| = c1. For other distances such as ¢2, c3, c4, ¢s, €1, €2, €3, e4 and es5, we
can apply a similar argument. Therefore, f preserves the distances ¢y, ¢2, ¢3, ¢4, c5,
ey, e, e3,eq and es. [

REMARK 3.1. Assume that x;, x, x3, x4, x5 are the vertices of a regular pen-
tagon with a unit side length as we see in Figure 3.2 below. If we let ¢c; =, =¢3 =
cg=cs=1and e = ey =e3 =e4 = e5 = ¢ in Theorem 3.3, then we see that f
preserves the distances 1 and ¢.
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X1

X2 X5

X3 X4

Figure 3.2: regular pentagon

THEOREM 3.4. Assume that V| and V, are real Hilbert spaces with dimV; > 3.
If the distance 1 is contractive and the distance ¢ is extensive by a mapping [ : V|, —
Vi, then f is a linear isometry up to translation.

Proof. By regarding Theorem 3.3 and Remark 3.1, f preserves both the distances
1 and ¢. We will show that f preserves the distance v/2¢ . Then because f preserves
the distances ¢ and v/2¢, we can conclude that f is an isometry up to translation by
[11, Theorem 2.8].

Assume that the distance between v; and v3 of V| is V20, i.e., |[vi —v3|| = v2¢.
Because dimV; > 3, there exists a subspace U of V| containing v; and v3 thatis (inner
product) isomorphic to 3-dimensional Euclidean space 3.

U1 V4 wy Wy
Us wWs
V6 We
V9 U3 ws w3
RIS
Figure 3.3.

In the first (roof-shaped) figure of Figure 3.3, {v{,vs,ve,v2 } is a part of vertices of
a regular pentagon of unit side length in U and also {v4,vs,vs,v3} is a part of vertices
of another regular pentagon of unit side length in U such that ||v; —vy4|| = ||va —v3]| =
¢ . In full detail, we have

[vi—vsl[=1, |va—vs][=1, |vs—vell=1, [v2—vsll=1, [vs—vsll=1,
[vi—vall=¢, [va—vsl[=0, [[vs—vall=¢, [va—vil=29,
[vi—vell=0, [va—vsll=0, [[va—vsl]l=0, [va—ve| =9¢.

Denote w; = f(v;) for i € {1,2,...,6}. Because f preserves the distances 1 and ¢,
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[wi—ws|[ =1, [[wa—ws||=1, [ws—ws|=1, [wa—ws|=1, [ws—ws|=1,
[wi—wall=¢, [lwa—ws|=0, |ws—wal|=0, [ws—wi| =9,

[wi—ws|l = ¢, [[wa—ws|=0, [ws—wsl]|=0¢, [ws—ws=9¢.
3.4)

Let x; =w; —w) for i€ {2,3,...,6}. Then
)Cj—xk:(Wj—Wl)—(Wk—Wl):Wj—Wk (35)

for any j,k € {2,3,...,6}. The distances between 4 points w;, wp, ws, and wg are
given:

[x2ll = [[wa —will = ¢, |lxs —x2|| = [[ws —wal| = ¢,
[xsl = [lws —will = 1, [lx6 —x2|| = [lwe —wall = 1, (3.6)
[x6ll = l[we —will = @, [|x6 —x5]| = [[we —ws]| = L.

Since
2 2 2
[l = xiell* = {1211 = 26xj x) + x|

forany j,k € {2,3,...,6}, by using (3.6), we have

(2 +1—¢%) = % (3.7)

N =

(b2 ll® + s 1> = [l — x5 ]|%) =

N =

(x2,x5) =

Similarly, we have (x;,x¢) = 3(2¢* — 1) and (x5,x6) = 9.
Hence, we can calculate ||xg — x5 — %xz 12

1 ? 1 1
X6 —X5 — —X2|| = (X6 —X5— —X2,Xg —X5— —X2
o < o o >
2 2 1 2 2 2
= [lx6|” + (x5 17+ — [lx2l|* — 2(x5, x6) — — (x2,X6) + —(x2,x5)
¢ ¢ ¢
S0P 19— ¢7— (27— 1)+ =
2 o o
=0.
Therefore,
1
X = —X2 + Xs5. (3.8)
o
Hence, we get
1 1
0=x6——x2—x5s =wg—w; — —(wp —wj) — (Ws —wy). (3.9)

¢ ¢



1198 S.-M. JUNG AND D. NAM

As we see in Figure 3.3, the structures of {wy,wy,ws,we} and {wg, w3, ws,we}
are congruent. Thus, we can replace wy,w», w5, wg in (3.9) with wa, w3, ws, wg , respec-
tively, and use (3.5) to get

0=W6—W4—%(W3—W4)—(W5—W4) = X6 — X4 — %(X3—X4)—(X5—X4).

Therefore, x¢ — x4 = %(Xg —x4) + (xs — x4). And it follows from (3.8) and the last
equality that
X3 =X+ X4. (3.10)

In view of (3.4) and (3.6), the distances between 3 points wi,ws,ws are given
below.

[xall = lwa—wil[ = ¢, |lxsl| = [lws —wi]| =1, [lxs —xal| = [lws —wa| = 1. (3.11)
Hence
1 2 2 n Lo L%
<X4,x5>=§(||x4H + [lxes ||~ = [lxa — xs| )=§(¢ +1—1)=§¢ . (312)

By (3.4), (3.6), (3.7), (3.8), (3.9), (3.11), and by (3.12), we have

2
62 = I —w > = J1xs — x> = H—x2+x5 “
= EHXZH2+ [xal|* + [|xs]|* + %(&Js) - $<X27x4> —2(x4,xs)
= #¢2+¢2+1+%—5(x27x4>—¢’2
—2+%—5<XQ,X4>
and hence
(x2,%4) = %(%%—d)z) =%(2+%—¢—1) :%(¢+1—¢2) =0.

Hence, by (3.4), (3.6), (3.10) and the last equality, we get
3|7 = [z + xal|* = |2 | >+ [|xal|* = [x2]|* + [wa — wi||* = 2¢%,
ie.,
x3]| = [[ws — wi]| = V2.

Since f preserves distances ¢ and /2¢, we conclude that f is an isometry up to
translation by using [1 1, Theorem 2.8]. [
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