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COMPLETE MONOTONICITY PROPERTY FOR TWO

FUNCTIONS RELATED TO THE q–DIGAMMA FUNCTION

AHMED SALEM AND FARIS ALZAHRANI

(Communicated by N. Elezović)

Abstract. In this paper, the complete monotonicity property for two functions involving the q -
digamma function are proven for all positive real q and exploited to establish some sharp in-
equalities for the q -gamma, q -digamma and q -polygamma functions. Comparisons between
our results with previous results are provided.

1. Introduction

The q -gamma function is defined for all positive real numbers x as

Γq(x) = (1−q)1−x
∞

∏
n=0

1−qn+1

1−qn+x , 0 < q < 1, (1.1)

and

Γq(x) = (q−1)1−xq
x(x−1)

2

∞

∏
n=0

1−q−(n+1)

1−q−(n+x) , q > 1. (1.2)

From the previous definitions, for a positive real x and q � 1, we get

Γq(x) = q
(x−1)(x−2)

2 Γq−1(x). (1.3)

The logarithmic derivative of the q -gamma function is the so-called q -digamma
or q -psi function ψq(x) which appeared in the work of Krattenthaler and Srivastava [1]
(see also [2]). The n th derivatives of the q -digamma function are the so-called the q -

polygamma functions denoted by ψ(n)
q (x); n ∈ N . Therefore, the q -digamma function

can be represented for all positive real x and 0 < q < 1 as

ψq(x) = − log(1−q)+ logq
∞

∑
k=1

qxk

1−qk , (1.4)
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Ismail and Muldoon [3] provided an equivalent Stieltjes integral representation for the
q -digamma function (1.4) as

ψq(x) = − log(1−q)−
∫ ∞

0

e−xt

1− e−t dγq(t), x > 0 (1.5)

where γq(t) is a discrete measure with positive masses − logq at the positive points
−k logq , k ∈ N . For completeness, and economy of later statements, they include the
value q = 1 in the definition of γq(t) :

γq(t) =

⎧⎪⎨
⎪⎩

− logq
∞

∑
k=1

δ (t + k logq), 0 < q < 1,

t, q = 1.

They used the identities

qx logq
1−qx = −

∫ ∞

0
e−xtdγq(t) and log(1−qx) = −

∫ ∞

0

e−xt

t
dγq(t) (1.6)

which follow easily from the definition of dγq(t) for all x > 0 and 0 < q < 1.
With the Euler-Maclaurin formula, Moak [4] obtained the following asymptotic

expansion for the q -digamma function

ψq(x) ∼ log[x]q +
1
2

qx logq
1−qx −

∞

∑
k=1

B2k

(2k)!

(
log q̂
1− q̂x

)2k

q̂xP2k−2(q̂x), x → ∞ (1.7)

where Bk are the Bernoulli numbers, [x]q = (1−qx)/(1−q) ,

q̂ =

{
q if 0 < q � 1

q−1 if q � 1,
,

and Pk is a polynomial of degree k satisfying

Pk(z) = (z− z2)P′
k−1(z)+ (kz+1)Pk−1(z), P0 = P−1 = 1, k ∈ N.

Recently, the q -digamma function plays an important role in the framework of
quantum statistical mechanics [5, 6, 7, 8, 9]. Also, numerous papers were published
presenting remarkable inequalities involving the q -gamma and the q -digamma func-
tions (see [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and
the extensive list of references given therein).

Motivated by these importance and applications, this paper is devoted to study and
introduce some properties of the q -digamma function. Based on the approximation
(1.7), the complete monotonicity property of the following two functions involving the
q -digamma functionwill be investigated and exploited to provide sharp lower and upper
bounds for the q -gamma, q -digamma and q -polygamma functions for all q > 0:

Fa(x;q) = ψq(x+1)− log[x+a]q +
(

a− 1
2

)
H(q−1) logq (1.8)

Gc(x;q) = log[x]q −ψq(x+1)− 1
2

qx+1/2 logq

1−qx+1/2
+

1
6

qx+c log2 q
(1−qx+c)2 (1.9)
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where H(·) denotes the Heaviside step function.
It is worth mentioning that a real-valued function f , defined on an interval I , is

called completely monotonic, if f has derivatives of all orders which alternate succes-
sively in sign, that is

(−1)n f (n)(x) � 0, n ∈ N0; x ∈ I. (1.10)

If inequality (1.10) is strict for all x ∈ I and for all integers n � 0, then f is said to be
strictly completely monotonic. These functions have numerous applications in various
branches of mathematics, such as probability theory, numerical analysis, and potential
theory. Completely monotonic functions have attracted the attention of many authors
who proved several results on these functions and gave many interesting examples. The
study of monotonicity properties and complete monotonicity property are very useful
to establish inequalities and sharp inequalities in various field and thus we study in
the following sections the complete monotonicity property of the functions (1.8) and
(1.9) to present best lower and upper bounds for the q -gamma, q -digamma and q -
polygamma functions for all q > 0.

2. The first function (1.8)

This section is devoted to investigate the complete monotonicity property of the
function Fa(x;q) defined in (1.8) and how these results can be exploited to provide best
lower and upper bounds for the q -gamma, q -digamma and q -polygamma functions
for all q > 0. Before proving the main theorem in this section, we need the following
lemma:

LEMMA 2.1. Let the function

a(t) =
log(et −1)− logt

t
(2.1)

be defined for all t > 0 . Then, the function a(t) is increasing on (0,∞) onto (1/2,1) .

Proof. Differentiation gives t2a′(t) = λ (t) where

λ (t) = logt− log(et −1)−1+
tet

et −1

Again, differentiating λ (t) gives t(et −1)2λ ′(t) = δ (t) where

δ (t) = e2t +1− (t2 +2)et

which has the derivative

δ ′(t) = et(2et −2−2t− t2) > 0, t > 0.

Since δ (0)= 0 and limt→0 λ (t)= 0, then λ (t) > 0 for all t > 0 which yields a(t) is in-
creasing on (0,∞) . L’Hospital rule gives the limits limt→0 a(t)= 1/2 and limt→∞ a(t)=
1. �
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THEOREM 2.2. Let x and q be reals with q > 0 , then the function Fa(x;q) de-
fined in (1.8) is strictly completely monotonic on (−a,∞) if and only if a � a(− log q̂)�
g(q̂) where a(·) defined in (2.1) and the function −Fb(x;q) is strictly completely mono-
tonic on (−1,∞) if b � 1 .

Proof. When 0 < q < 1, (1.5) and (1.6) give

Fa(x;q) = ψq(x+1)− log[x+a]q =
∫ ∞

0

e−(x+a)t

t(et −1)
f (a,t)dγq(t).

Hence,

(−1)nF(n)
a (x;q) =

∫ ∞

0

tn−1e−(x+a)t

et −1
f (a,t)dγq(t), (2.2)

where

f (a,t) = et −1− teat (2.3)

According to formula (2.2) and the definition of the discrete measure dγq(t) , the func-
tion Fa(x;q) is strictly completely monotonic on (−a,∞) if f (a,t)dγq(t) > 0 for all
t > 0. That is, if f (a,t) > 0 at the points t = −k logq , k ∈ N . Also, the function
−Fa(x;q) is strictly completely monotonic on (−1,∞) if f (a,t) < 0 at the points
t = −k logq , k ∈ N .

Clearly, the function a �→ f (a,t) is decreasing on R and f (0,t) > 0 and f (1,t) <
0 for all t > 0 which mean that f (a,t) has a unique root function at a = a(t) where
a(t) defined in (2.1). Thus the function a �→ f (a,−k logq) is decreasing on R and has
only one root at a = a(−k logq) , k ∈ N and 0 < q < 1. From Lemma 2.1, the function
a(t) is increasing on (0,∞) and so the function k �→ a(−k logq) is increasing for all
k ∈ N . This reveals that

g(q) = a(− logq) < a(−k logq) < lim
t→∞

a(t) = 1.

Therefore, f (a, t) > 0 if a � g(q) and f (a,t) < 0 if a � 1 at t = −k logq , k ∈ N

which conclude that Fa(x;q) is strictly completely monotonic on (−a,∞) if a � g(q)
and −Fa(x;q) is strictly completely monotonic on (−1,∞) if a � 1.

It is easy from logarithmic derivative of (1.3) to see that Fa(x;q) = Fa(x;q−1) for
all q � 1 which concludes that Fa(x;q) is strictly completely monotonic on (−a,∞) if
a � g(q̂) and −Fa(x;q) is strictly completely monotonic on (−1,∞) if a � 1 for all
q > 0.

Conversely, let Fa(x;q) is strictly completely monotonic on (−a,∞) for all real
q > 0 which means that q̂−xFa(x;q) > 0. Based on approximation (1.7), we get

lim
x→∞

q̂−xFa(x;q) = lim
x→∞

[
q̂−x log

1− q̂x

1− q̂x+a −
1
2

log q̂
1− q̂x −

∞

∑
k=1

B2k

(2k)!

(
log q̂
1− q̂x

)2k

P2k−2(q̂x)

]

= q̂a +
q̂ log q̂
1− q̂

� 0
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which yields that a � g(q̂) . Here, we used L’Hospital rule, Pk(0) = 1, k ∈ N0 , the
well-known identity for the q -digamma function

ψq(x+1) = ψq(x)− qx logq
1−qx

and the generating function of Bernoulli number

x
ex −1

=
∞

∑
k=0

Bk

k!
xk =

∞

∑
k=1

B2k

(2k)!
x2k +B0 +B1x.

Now, suppose that −Fa(x;q) , a < 1 is strictly completely monotonic on (−1,∞)
for all real q > 0. This means that Fa(x;q) is negative on (−1,∞) . But, this contradicts

Fa(−a;q) = ψq(1−a)− lim
x→−a

log[x+a]q +
(

a− 1
2

)
H(q−1) logq = ∞, a < 1.

This ends the proof. �

COROLLARY 2.3. Let x and q be reals with q > 0 . Then, the inequalities

log[x+a]q+
(

1
2
−a

)
H(q−1) logq < ψq(x+1) < log[x+b]q+

(
1
2
−b

)
H(q−1) logq

(2.4)
hold true for all real x > −a, a � g(q̂) and b � 1 with the best possible constants
a = g(q̂) and b = 1 .

Also, for all positive integer n, the class of inequalities

(−1)n+1
(

logq
1−qx+a

)n

qx+aPn−2(qx+a) < (−1)nψ(n)
q (x+1)

< (−1)n+1
(

logq
1−qx+b

)n

qx+bPn−2(qx+b) (2.5)

holds for all x > −a, a � g(q̂) and b � 1 with best possible constants a = g(q̂) and
b = 1 .

Proof. Theorem 2.2 tells that Fb(x;q) < 0 < Fa(x;q) which is equivalent (2.4),
and

(−1)nF (n)
b (x;q) < 0 < (−1)nF (n)

a (x;q), n ∈ N

which is equivalent (2.5) with using the identity

dn

dxn

[
qx logq
1−qx

]
=
(

logq
1−qx

)n+1

qxPn−1(qx), n ∈ N0

which was proved by Moak [4]. �
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THEOREM 2.4. Let x be non-negative real and q be positive real. Then, the
inequalities

[a]−a
q [x+a]x+a

q q( 1
2−a)xH(q−1) exp

(
Li2(1−qx+a)−Li2(1−qa)

logq

)
� Γq(x+1)

� [b]−b
q [x+b]x+b

q q( 1
2−b)xH(q−1) exp

(
Li2(1−qx+b)−Li2(1−qb)

logq

)
(2.6)

hold true for all 0 < a � g(q̂) and b � 1 with best possible constants a = g(q̂) and
b = 1 .

Proof. Let the function

fa(x;q) = logΓq(x+1)− (x+a) log[x+a]q− Li2(1−qx+a)
logq

+
(

a− 1
2

)
xH(q−1) logq (2.7)

be defined for all x > −a and q > 0. Differentiation gives f ′a(x;q) = Fa(x;q) where
Fa(x;q) defined as in (1.8). By virtue of Theorem 2.2, we get the function fa(x;q) is
strictly increasing on (−a,∞) if a � g(q̂) and the function fb(x;q) strictly decreasing
on (−1,∞) if b � 1. Therefore, for x � 0, we have

fa(x;q) � fa(0;q) = −a log[a]q− Li2(1−qa)
logq

, 0 < a � g(q̂)

and

Gb(x;q) � Gb(0;q) = −b log[b]q− Li2(1−qb)
logq

, b � 1

which are equivalent (2.6). This ends the proof. �

THEOREM 2.5. Let x be non-negative real and q be positive real. Then, the
double inequality

[a]−a
q [x+a]x+a

q q( 1
2−a)H(q−1) exp

(
Li2(1−qx+a)−Li2(1−qa)

logq

)
� Γq(x+1)

<
√

2π|1−q|a− 1
2 q( 1

2 (1−a2)+( 1
2−a)x)H(q−1)Sq̂[x+a]x+a

q exp

(
Li2(1−qx+a)

logq

)
(2.8)

holds true for a = g(q̂) . In particular, if a = 1/2

√
1+

√
q[x+1/2]x+1/2

q exp

(
Li2(1−qx+1/2)−Li2(1−q1/2)

logq

)
� Γq(x+1)

<
√

2πq
3
8 H(q−1)Sq̂[x+1/2]x+1/2

q exp

(
Li2(1−qx+1/2)

logq

)
(2.9)
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holds for all x � 0 and q > 0 . Also, the inequality

√
2π |1−q|q− 1

2 xH(q−1)Sq̂[x+1]x+1
q exp

(
Li2(1−qx+1)

logq

)
� Γq(x+1)

< q−
1
2 xH(q−1)[x+1]x+1

q exp

(
Li2(1−qx+1)−Li2(1−q)

logq

)
(2.10)

holds for all x � 0 and q > 0 , where Sq is defined as

Sq = q
−1
24

√
q−1
logq

∞

∑
m=−∞

(
rm(6m+1) − r(2m+1)(3m+1)

)
, r = e

4π2
lnq . (2.11)

Proof. Since the function fa(x;q) defined in (2.4) is strictly increasing on (−a,∞)
if a � g(q̂) , then the function fa(x;q) , a = g(q̂) is increasing on (−a,∞) and can be
rewritten in the form fa(x;q) = μq(x)+ νq(x) where

μq(x) = logΓq(x)−
(

x− 1
2

)
log[x]q− Li2(1−qx)

logq
(2.12)

νq(x) = x
(
log(1−qx)− log(1−qx+a)

)
+

Li2(1−qx)−Li2(1−qx+a)
logq

+
1
2

log[x]q−a log[x+a]q +
(

a− 1
2

)
xH(q−1) logq

The relation (2.5) in [23] shows that

lim
x→∞

μq(x) = log
√

2π + logSq̂ +
1
2
H(q−1) logq, q > 0. (2.13)

Using the well known identity for dilogarithm function [29]

Li2

(
z−1

z

)
= −Li2(1− z)− 1

2
log2 z

to rewrite νq(x) for all q > 0 as

νq(x) = x
(
log(1− q̂x)− log(1− q̂(x+a))

)
+

Li2(1− q̂x)−Li2(1− q̂x+a)
log q̂

+
1
2

log[x]q̂ −a log[x+a]q̂− 1
2
(1−a)2 logq

Using L’Hospital’s rule would yield

lim
x→∞

x log(1−qx+a) = 0, for all a ∈ R, 0 < q < 1

Hence, it is easy to see that

lim
x→∞

νq(x) =
(

a− 1
2

)
log |1−q|− 1

2
a2H(q−1) logq, q > 0.
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In view of the previous, we conclude that

lim
x→∞

fa(x;q) = log(
√

2πSq̂)+
(

a− 1
2

)
log |1−q|+ 1

2
(1−a2)H(q−1) logq, q > 0.

The increasing of the function fa(x;q); a = g(q̂) on (−a,∞) yields

fa(0;q) � fa(x;q) < lim
x→∞

fa(x;q)

which is equivalent (2.8). Also, the decreasing of the function f1(x;q) on (−1,∞)
yields

lim
x→∞

f1(x;q) < f1(x;q) � f1(0;q)

which is equivalent (2.10) This completes the proof. �

REMARK 2.6. In Theorem 2.1 of Batir [11], it was proved, for all positive reals x
and q , that

log[x+ α]q < ψq(x+1) < log[x+ β ]q (2.14)

with the best possible constant α =

⎧⎨
⎩

g(q), 0 < q < 1

1
2
, q > 1

and

β =
log(1− (1−q)eψq(1))

logq
.

Since ψq(1) < 0 for all q > 0, then β < 1 for all q > 0.
When 0 < q < 1, it is clear that:

1. The lower bound of (2.14) is the same lower bound of (2.4),

2. The upper bound of (2.14) is better than the upper bound of (2.4).

When q > 1, we have two cases:

1. To compare the lower bounds of (2.4) and (2.14), we have

log[x+a]q +
(

1
2
−a

)
logq− log[x+1/2]q = log

(
1+

1−q
1
2−a

qx+ 1
2 −1

)
> 0

where 1/2 � a = g(q−1) � 1, which emphasizes that the lower bound of (2.4) is
bigger (better) than the lower bound of (2.14).

2. To compare the upper bounds of (2.4) and (2.14), let the function

t(x) = log[x+1]q− 1
2

logq− log[x+ β ]q
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be defined for all x > 0. Differentiation gives

t ′(x) =
qβ −q

(qx+1−1)(qx+β −1)
qx logq � 0, β � 1

which yields that there exists a unique root depending on q at x = x(q) where

x(q) =
log(

√
q−1)− log(qβ+ 1

2 −q)
logq

.

Therefore, the function t(x) > 0 if x < x(q) and t(x) < 0 if x > x(q) which
conclude that the upper bound of (2.14) is better than the upper bound of (2.4) if
x < x(q) and the reverse is true if x > x(q) . Our numerical experiments carried
out with the packet program Mathematica show that x(2) = 2.54626, x(3) =
1.44311, x(10) = 0.485145, x(100) = 0.110505, x(1000) = 0.0309689. It is
noting that x(q) is decreasing and approaches zero for large q .

3. The second function (1.9)

In this section, we investigate the complete monotonicity property of the function
Gc(x;q) defined in (1.9) and how these results can be exploited to provide best lower
and upper bounds for the q -gamma, q -digamma and q -polygamma functions for all
q > 0. Before proving the main theorem in this section, we need the following lemmas:

LEMMA 3.1. Let the function

c(t) =
log(t2(et −1))− log

(
6(et − t−1)−3te−

1
2 t(et −1)

)
t

(3.1)

be defined for all t > 0 . Then, the function c(t) is decreasing on (0,∞) onto (0,3/8) .

Proof. Differentiation gives t2c′(t) = d(t) where

d(t) = log
(
6(et − t−1)−3te−

1
2 t(et −1)

)
− log(t2(et −1))

− t(t +2)(et −1)2−4e
1
2 t(2e2t − (t2 + t +4)et + t +2)

2(et −1)(2e
1
2 t(et − t−1)− t(et −1))

.

Hence,

d′(t) =
E(t)

2t(et −1)2(2e
1
2 t(et − t−1)− t(et −1))2

where

E(t) =−16e5t +2(4t3−9t2 +16t +32)e4t +32(t2−3t−3)e3t

−4(2t4 +2t3 +3t2−24t−16)e2t −16(2t +1)et −2t2

+ t(t2−4t +16)e
9
2 t − t(t3 +4t2−8t +64)e

7
2 t − t(5t3−6t2−96)e

5
2 t

+ t(5t3−4t2−8t−64)e
3
2 t + t(t3 + t2 +4t +16)e

1
2 t
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which can be represented in series form as

E(t) =
∞

∑
n=10

tn

n!
Θ(n)

where

Θ(n) =−16×5n+(n3−12n2 +75n+512)22n−3+32(n2−10n−27)3n−2

− (n4−4n3 +11n2−104n−128)2n−1−16(2n+1)

+n(n2−21n+344)
(

9
2

)n−3

−n(n3 +8n2−129n+2864)
(

7
2

)n−4

−2n(n3−9n2 +20n−312)
(

5
2

)n−3

+n(5n3−36n2 +55n−240)
(

3
2

)n−4

+n(2n3−11n2 +21n−8)
(

1
2

)n−3

�θ1(n)+ θ2(n)+ θ3(n)+ θ4(n)+ θ5(n)

where

θ1(n) = −7×5n +(n3−12n2 +75n+512)22n−3− (n4−4n3 +11n2−104n−128)2n−1

θ2(n) = −0.2×5n +32(n2−10n−27)3n−2

θ3(n) = −8.8×5n +n(n2−21n+344)
(

9
2

)n−3

+n(5n3−36n2 +55n−240)
(

3
2

)n−4

θ4(n) = n(2n3−11n2 +21n−8)
(

1
2

)n−3

−n(n3 +8n2−129n+2864)
(

7
2

)n−4

θ5(n) = −16(2n+1)−2n(n3−9n2 +20n−312)
(

5
2

)n−3

In order to prove the negativity of θ1(n) , rewrite it as 8θ1(n)) = 5nφ(n) where

φ(n) =−56+(n3−12n2+75n+512)
(

4
5

)n

−(n4−4n3+11n2−104n−128)
(

2
5

)n

.

Forward shift operator gives

5Δφ(n)=−
(

2
5

)n [
(n3−24n2 +159n+256)2n−4(3n4−20n3 +45n2−30n−192)

]
.

Mathematical induction yields 2n > n3 for all n � 10 which can be used to show that

5Δφ(n) < −
(

2
5

)n [
n6−24n5 +147n4 +336n3−180n2 +136n+768)

]
< 0, n � 10
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which means that φ(n) is decreasing for all integer n � 10. Since φ(21)∼−0.146073,
then the function φ(n) < 0 for all integer n � 21 and so does the function θ1(n) .
Similarly, we can deduce that θ2(n) < 0 for all n � 10, θ3(n) < 0 for all n � 12
and θ4(n) < 0 for all n � 10. By substituting n = 10,11, · · · ,20 into Θ(n) , we find
that Θ(n) < 0 for all n ∈ {10,11, · · · ,20} . In view of these, we can declare that the
function Θ(n) < 0 for all n � 10 which reveals that E(t) < 0 for all t > 0. Thus, the
function d(t) is decreasing on (0,∞) . L’Hospital rule leads to limt→0 d(t) = 0 which
yields the function d(t) < 0 for all t > 0 and so does the function c′(t) . Therefore, the
function c(t) is decreasing on (0,∞) . Again, L’Hospital rule gives limt→0 c(t) = 3/8
and limt→∞ c(t) = 0. �

LEMMA 3.2. Let the function

g(t,c) = t2(et −1)e−ct +3te−
1
2 t(et −1)−6(et − t−1) (3.2)

be defined for all t > 0 and c � 0 . Then, the function g(t,c) has a unique root function
depending on t at c = c(t) where c(t) defined in (3.1).

Proof. The exponential expansion can be used to rewrite g(t,c) as

g(t,c) =
∞

∑
n=4

tn

n!
Λ(n,c)

where

Λ(n,c) = n(n−1)
[
(1− c)n−2− (−1)ncn−2]+3n

(
1
2

)n−1

(1+(−1)n)−6

When c = 0, we have

Λ(2n,0) = 2n(2n−1)−6+12n

(
1
2

)n

> 0, n � 2,

Λ(2n+1,0) = 2n(2n+1)−6> 0, n � 2.

which conclude that Λ(n,0) > 0 for all n � 4 and thus the function g(t,0) > 0 for all
t > 0.

When c = 1/2 with using 2n � 2n for all n � 2, we have

Λ(2n,1/2) = 12n

(
1
2

)2n

−6 <
3
n
−6 < 0, n � 2,

Λ(2n+1,1/2) = 8n(2n+1)
(

1
2

)2n

−6 <
4n+2

n
−6 < 0, n � 2.

which conclude that Λ(n,1/2) < 0 for all n � 4 and thus the function g(t,1/2) < 0 for
all t > 0.

In view of the previous and the fact that the function c �→ g(t,c) is decreasing on
[0,∞) for all t > 0, we arrive at the desired result. �
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THEOREM 3.3. Let x and q be positive reals and c � 0 . Then, the function
Gc(x;q) defined in (1.9) is strictly completely monotonic function if and only if c = 0
and the function −Gc(x;q) is strictly completely monotonic function if and only if c >
c(− log q̂) � h(q̂) where c(·) defined in (3.1).

Proof. When 0 < q < 1, the relations (1.5) and (1.6) give

Gc(x;q) =
1
6

∫ ∞

0

e−xt

t(et −1)
g(t,c)dγq(t)

where g(t,c) defined in (3.2). Hence

(−1)nG(n)
c (x;q) =

1
6

∫ ∞

0

tn−1e−xt

et −1
g(t,c)dγq(t)

According to the former formula and the definition of the discrete measure dγq(t) ,
the function Gc(x;q) is strictly completely monotonic on (0,∞) if g(c, t)dγq(t) > 0
for all t > 0. That is, if g(c,t) > 0 at the points t = −k logq , k ∈ N . Also, the
function −Gc(x;q) is strictly completely monotonic on (0,∞) if g(c, t) < 0 at the
points t = −k logq , k ∈ N .

From Lemma 3.1, the function c(t) is decreasing on (0,∞) and so the function
k �→ c(−k logq) is also decreasing for all k ∈ N . This reveals that

0 = lim
t→∞

c(t) < c(−k logq) < c(− logq) = h(q).

Therefore, g(t,c) < 0 if c � h(q) and g(t,c) > 0 if c = 0 at t =−k logq , k ∈ N which
conclude that −Gc(x;q) is strictly completely monotonic on (0,∞) if c � h(q) and
Gc(x;q) is strictly completely monotonic on (0,∞) if c = 0.

It is not difficult from logarithmic derivative of (1.3) to show that Gc(x;q) =
Gc(x;q−1) for all q � 1 which concludes that −Gc(x;q) is strictly completely mono-
tonic on (0,∞) if c � h(q̂) and Gc(x;q) is strictly completely monotonic on (0,∞) if
c = 0 for all q > 0.

Conversely, let −Gc(x;q) is strictly completely monotonic on (0,∞) for all real
q > 0 which means that q̂−xGc(x;q) � 0. Based on the well-known identity for the
q -digamma function and the generating function of Bernoulli number mentioned in the
proof of Theorem 2.2 and the approximation (1.7), we get

lim
x→∞

q̂−xGc(x;q) = lim
x→∞

[
1
2

log q̂
1− q̂x −

1
2

q̂
1
2 log q̂

1− q̂x+ 1
2

+
1
6

q̂c log2 q̂
(1− q̂x+c)2

+
∞

∑
k=1

B2k

(2k)!

(
log q̂
1− q̂x

)2k

P2k−2(q̂x)

]

=
1
6

[
q̂c log2 q̂− 3q̂

1
2 (1− q̂) log q̂+6(1− q̂+ q̂ log q̂)

1− q̂

]
� 0

which yields that c � h(q̂) .
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Now, suppose that Gc(x;q) , c > 0 is strictly completely monotonic on (0,∞)
for all real q > 0. This means that Gc(x;q) , c > 0 is positive on (0,∞) . But, this
contradicts

lim
x→0

Gc(x;q) = −∞, c > 0.

This ends the proof. �

COROLLARY 3.4. Let x and q be positive reals. Then, the inequalities

1
6

qx+α log2 q
(1−qx+α)2 < ψq(x+1)− log[x]q +

1
2

q
x+1
2 logq

1−qx+ 1
2

<
1
6

qx+β log2 q

(1−qx+β)2
(3.3)

hold true for all α � h(q̂) and β = 0 with the best possible constants α = h(q̂) and
β = 0 .

Also, for all positive integer n, the class of inequalities

(−1)n 1
6

(
logq

1−qx+α

)n+2

qx+αPn(qx+α) < (−1)nψ(n)
q (x+1)

+ (−1)n
(

logq
1−qx

)n

qxPn−2(qx)+ (−1)n 1
2

(
logq

1−qx+ 1
2

)n+1

qx+ 1
2 Pn(qx+ 1

2 )

< (−1)n 1
6

(
logq

1−qx+β

)n+2

qx+β Pn(qx+β ) (3.4)

holds true for all α � h(q̂) and β = 0 with best possible constants α = h(q̂) and
β = 0 .

Proof. Theorem 3.3 tells that Gα(x;q) < 0 < Gβ (x;q) which is equivalent (3.3),
and

(−1)nG(n)
α (x;q) < 0 < (−1)nG(n)

β (x;q), n ∈ N

which is equivalent (3.4) with using the identity mentioned in the proof of Corollary
2.3. �

THEOREM 3.5. Let x and q be positive real numbers. Then, the inequalities

√
2πSq̂q

5
12 H(q−1)[x]xq

√
[x+1/2]qexp

(
Li2(1−qx)

logq
+

1
6

qx+d logq
1−qx+d

)
< Γq(x+1)

<
√

2πSq̂q
5
12 H(q−1)[x]xq

√
[x+1/2]qexp

(
Li2(1−qx)

logq
+

1
6

qx+c logq
1−qx+c

)
(3.5)

hold true for all c � h(q̂) and d = 0 with best possible constants c = h(q̂) and d = 0 .

Proof. Let c � 0 and the function

Tc(x;q) = x log[x]q − logΓq(x+1)+
Li2(1−qx)

logq
+

1
2

log[x+1/2]q

+
1
6

qx+c logq
1−qx+c + log

√
2π + logSq̂ +

5
12

H(q−1) logq (3.6)
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be defined for all positive reals x and q . Differentiation gives T ′
c (x;q) = Gc(x;q) where

Gc(x;q) defined in (1.9) which means −T ′
c (x;q) is strictly completely monotonic on

(0,∞) if c � h(q̂) and T ′
c (x;q) is strictly completely monotonic on (0,∞) if c = 0. The

function Tc(x;q) can be represented as Tc(x;q) = uq(x)− μq(x) where μq(x) defined
in (2.12) and

uq(x) =
1
2

log[x+1/2]q− 1
2

log[x]q +
1
6

qx+c logq
1−qx+c + log(

√
2πSq̂)+

5
12

H(q−1) logq.

Using L’Hospital rule gives

lim
x→∞

uq(x) = log
√

2π + logSq̂ +
1
2
H(q−1) logq

which means with using (2.13) that limx→∞ Tc(x;q) = 0. Therefore, for all positive
reals x and q , we have Tc(x;q) > 0 for all c � h(q̂) and Tc(x;q) < 0 if c = 0. That is

T0(x;q) < 0 < Tc(x;q), c � h(q̂)

which is equivalent (3.5). �

COROLLARY 3.6. Let x and q be positive real numbers. Then, the inequality

αq[x]xq
√

[x+1/2]qexp

(
Li2(1−qx)

logq
+

1
6

qx+c logq
1−qx+c

)
� Γq(x+1)

< βq[x]xq
√

[x+1/2]qexp

(
Li2(1−qx)

logq
+

1
6

qx+c logq
1−qx+c

)
(3.7)

holds true, where c = h(q̂) and

αq =
1√

[1/2]q
exp

(
−1

6
qc logq
1−qc

)
,

βq =
√

2πSq̂q
5
12 H(q−1)

are the best possible constants.

Proof. The proof of this corollary comes immediately from the decreasing mono-
tone of the function Tc(x;q) , that is

0 = lim
x→∞

Tc(x;q) < Tc(x;q) � Tc(0;q)

= log(
√

2π [1/2]qSq̂)+
1
6

qc logq
1−qc +

5
12

H(q−1) logq

which is equivalent (3.7). �

REMARK 3.7. Batir [30] proved the complete monotonicity property of the func-
tion Tc(x;q) defined in (3.6) when q → 1 and c = 3/8 and exploited this result to
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provide lower and upper bounds for the gamma function and so some results in this
section generalize and refine some results of Batir [30] for all q > 0.
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