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SOME INEQUALITIES FOR THE Lp –CURVATURE IMAGES

BIN CHEN AND WEIDONG WANG

(Communicated by J. Pečarić)

Abstract. Lutwak introduced the notion of Lp -curvature image and proved an inequality for
volumes of convex body and its Lp -curvature image. In this article, based on the Lp -affine
surface area and Lp -dual affine surface area, we establish the affine isoperimetric inequalities,
cyclic inequalities and a monotonic inequality for Lp -curvature images.

1. Introduction and main results

Let K be a convex body if K is a compact, convex subset in n -dimensional Eu-
clidean space R

n with non-empty interior. The set of all convex bodies in R
n is written

as K n . Let K n
o denote the set of convex bodies containing the origin in their interi-

ors, and K n
c denote the set of convex bodies with centroid at the origin. Besides, S n

o
denotes the set of star bodies (with respect to the origin) and S n

c denotes the set of star
bodies whose centroid lies at the origin in R

n . Let Sn−1 denote the unit sphere in R
n

and V (K) denote the n -dimensional volume of the body K . For the standard unit ball
B in R

n , write V (B) = ωn .
In 1996, Lutwak introduced the notion of Lp -curvature function of convex body

(see [12, 13]). For K ∈ K n
o and real p � 1, the Lp -curvature function, fp(K, ·) :

Sn−1 → R , is defined by
dSp(K, ·)

dS
= fp(K, ·), (1.1)

where the Lp -surface area measure Sp(K, ·) of K is absolutely continuous with respect
to spherical Lebesgue measure S . Here, we write F n

o (F n
c ) as the subset of K n

o
(K n

c ) that has a positive continuous curvature function.
By the Lp -curvature function, Lutwak in [12] gave the notion of Lp -curvature

image as follows: For each K ∈ F n
o and real p � 1, let ΛpK ∈ S n

o denote the Lp -
curvature image of K , and define

ρ(ΛpK, ·)n+p =
V (ΛpK)

ωn
fp(K, ·). (1.2)

Associated with the Lp -curvature images, Lutwak ([12]) obtained the following
result.
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THEOREM 1.A. For K,L ∈ F n
c , p � 1 , then

V (ΛpK)V (K)
p−n
p � ω

2p−n
p

n , (1.3)

with equality for n = p > 1 if and only if K and L are dilates, for n �= p > 1 if and
only if K = L, for n �= p = 1 if and only if K is a translation of L.

Later, Wang etc. ([25]) continuously studied the Lp -curvature images for convex
bodies and established the following polar dual forms of Theorem 1.A:

THEOREM 1.B. For K ∈ F n
o , p � 1 and ΛpK ∈ K n

o , then

V (ΛpK)V (K∗)
n−p

p � ω
n
p

n , (1.4)

with equality if and only if K is an ellipsoid. Here K∗ denotes the polar of K .

THEOREM 1.C. For K ∈ F n
c and p � 1 , then

V (Λ∗
pK)V (K)

n−p
p � ω

n
p

n , (1.5)

with equality for p > 1 if and only if K and Λ∗
pK are dilates, and for p = 1 if and only

if K and Λ∗
pK are homothetic. Here Λ∗

pK denotes the polar of ΛpK .

For more studies of the Lp -curvature images, the interested readers may refer to
the following articles [8, 14, 15, 16].

In this paper, associated with the notions of Lp -affine surface area and Lp -dual
affine surface area, we continuously research the Lp -curvature images. Firstly, we
establish the following Lp -affine surface area forms of Theorems 1.A and 1.C.

THEOREM 1.1. For K ∈ F n
o and p � 1 , if ΛpK ∈ K n

c , then

Ωp(ΛpK)Ωp(K)
p−n

p � (nωn)
2p−n

p , (1.6)

with equality if and only if ΛpK is an ellipsoid.

THEOREM 1.2. If K ∈ F n
c and p � 1 , then

Ωp(Λ∗
pK)Ωp(K)

n−p
p � (nωn)

n
p , (1.7)

with equality if and only if ΛpK is an ellipsoid.

In Theorems 1.1–1.2, Ωp(K) denotes the Lp -affine surface area of K ∈ K n
o .

Further, we establish the cyclic inequalities of Lp -curvature images for the Lp -
affine surface area and Lp -dual affine surface area, respectively.

THEOREM 1.3. If K ∈ F n
o and 1 � p < q < r , then

Ωq(ΛqK)(n+q)(r−p) � Ωp(ΛpK)(n+p)(r−q)Ωr(ΛrK)(n+r)(q−p). (1.8)
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THEOREM 1.4. If K ∈ F n
o and 1 � p < q < r , then

Ω̃q(ΛqK)(n+q)(r−p) � Ω̃p(ΛpK)(n+p)(r−q)Ω̃r(ΛrK)(n+r)(q−p), (1.9)

with equality if and only if ΛpK , ΛqK and ΛrK are dilates. Here, Ω̃p(K) denotes the
Lp -dual affine surface area of K ∈ S n

o .

Finally, combined with another type of Lp -affine surface area, we give a mono-
tonic inequality for Lp -curvature images.

THEOREM 1.5. If K ∈ F n
o and 1 � p < q, then

[
ωn

n Ω̃−p(ΛpK)n−p

nn−pV (ΛpK)nV (K)n−p

] 1
p

�
[

ωn
n Ω̃−q(ΛqK)n−q

nn−qV (ΛqK)nV (K)n−q

] 1
q

, (1.10)

with equality if and only if ΛpK and ΛqK are dilates. Here, Ω̃−p(K) denotes the
Lp -dual affine surface area of K ∈ S n

o .

Please see the next section for the above interrelated background materials. The
proofs of Theorems 1.1–1.5 will be completed in Section 3.

2. Preliminaries

2.1. Polar bodies and Blaschke-Santaló inequality

If E ⊆R
n is a nonempty subset, the polar set of E , E∗ , is defined by (see [5, 17])

E∗ = {x ∈ R
n : x · y � 1, y ∈ E}. (2.1)

From this, it is easy to get that (K∗)∗ = K for all K ∈ K n
o .

From definition (2.1). we know that if K ∈ K n
o , the support and radial functions

of K∗ , the polar body of K , have the following relationship (see [5])

h(K∗, ·) =
1

ρ(K, ·) , ρ(K∗, ·) =
1

h(K, ·) . (2.2)

Besides, the polar bodies of convex bodies satisfy the following properties (see
[5]): If K ∈ K n

o , φ ∈ GL(n) , then

(φK)∗ = φ−τK∗. (2.3)

In particular, for λ > 0,

(λK)∗ =
1
λ

K∗. (2.4)

For a geometric body and its polar body, Lutwak extended the Blaschke-Santaló
inequality as follows (see [5, 17]): If K ∈ S n

c , then

V (K)V (K∗) � ω2
n , (2.5)

with equality if and only if K is an ellipsoid.
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2.2. Lp -mixed volume

Suppose that R is the set of real numbers. If K ∈ K n , the support function of K ,
hK = h(K, ·) : R

n → R , is defined by (see [4])

h(K,x) = max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y in R
n .

If K,L ∈ K n
o , for p � 1, the Lp -mixed volume of K and L is given by (see [11])

Vp(K,L) =
1
n

∫
Sn−1

h(L,u)pdSp(K,u). (2.6)

Associated with formula (2.6) and dSp(K,u) = h(K,u)1−pdS(K,u) for u ∈ Sn−1 ,
if K = L , then

Vp(K,K) =
1
n

∫
Sn−1

h(K,u)pdSp(K,u) =
1
n

∫
Sn−1

h(K,u)dS(K,u) = V (K). (2.7)

2.3. Lp -dual mixed volume

For K is a compact star shaped (about the origin) in R
n , the radial function ρK of

K , ρK = ρ(K, ·) : R
n\{0}→ [0,+∞) , is defined by (see [5])

ρ(K,x) = max{λ � 0 : λx ∈ K}, x ∈ R
n\{0},

if ρK is positive and continuous, then called K is a star body.
If K,L ∈S n

o , p � 1, the Lp -dual mixed volume of K and L is given by (see [12])

Ṽ−p(K,L) =
1
n

∫
Sn−1

ρ(K,u)n+pρ(L,u)−pdS(u). (2.8)

Another kind of Lp -dual mixed volume was introduced as follows (see [6, 7]): If
K,L ∈ S n

o and p > 0, the Lp -dual mixed volume of K and L is given by

Ṽp(K,L) =
1
n

∫
Sn−1

ρ(K,u)n−pρ(L,u)pdS(u). (2.9)

Here the integral expression is with respect to spherical Lebesgue measure S on Sn−1 .
From (2.8) and (2.9), we easily know that

Ṽ−p(K,K) = Ṽp(K,K) = V (K) =
1
n

∫
Sn−1

ρ(K,u)ndS(u). (2.10)

Associated with (1.2), (2.6) and (2.8), Lutwak ([12]) gave the following result. If
K ∈ F n

o , and p � 1, then for any Q ∈ S n
o ,

Vp(K,Q∗) =
ωn

V (ΛpK)
Ṽ−p(ΛpK,Q). (2.11)
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2.4. Lp -affine surface area

In 1996, associated with Lp -mixed volume (2.6), Lutwak ([12]) defined the Lp -
affine surface area as follows: For K ∈ K n

o and p � 1, the Lp -affine surface area,
Ωp(K) , of K is defined by

n−
p
n Ωp(K)

n+p
n = inf{nVp(K,Q∗)V (Q)

p
n : Q ∈ S n

o }. (2.12)

From definitions (2.12) and (1.2), the following formula can be obtained (see [12]):
For K ∈ F n

o , and p � 1, then

Ωp(K) = nω
n

n+p
n V (ΛpK)

p
n+p . (2.13)

Regarding the studies of Lp -affine surface areas, many results have been found in
these articles (see [9, 10, 12, 18, 23, 24, 26, 27, 28, 29, 30, 31]).

2.5. Two Lp -dual affine surface areas

In 2008, Wang and He (see [21]) gave the definition of Lp -dual affine surface
area. Further, Wang and Feng ([3]) made the appropriate improvement as follows: For
K ∈ S n

o , n �= p � 1, the Lp -dual affine surface area, Ω̃−p(K) , of K is defined by

n
p
n Ω̃−p(K)

n−p
n = inf{nṼ−p(K,Q)V (Q∗)−

p
n : Q ∈ S n

c }. (2.14)

Afterwards, Wang and Wang ([20], also see [22]) defined another Lp -dual affine
surface area as follows: For K ∈ S n

o and p > 0, then the Lp -dual affine surface area,
Ω̃p(K) , of K is defined by

n−
p
n Ω̃p(K)

n+p
n = sup{nṼp(K,Q∗)V (Q)

p
n : Q ∈ S n

c }. (2.15)

For the studies of above two type of Lp -dual affine surface areas, some results
have been obtained in these articles (see [2, 19, 25, 32]).

3. Proofs of Theorems

In this part, we will give the proofs of Theorems 1.1–1.5. In order to prove Theo-
rem 1.1, we need the following lemmas.

LEMMA 3.1. ([25]) If K ∈ F n
o , p � 1 and φ ∈ GL(n) , then

ΛpφK = |detφ | 1
p φ−τ ΛpK. (3.1)

LEMMA 3.2. ([12]) If K ∈ K n
o , p � 1 and φ ∈ GL(n) , then

Ωp(φK) = |detφ | n−p
n+p Ωp(K). (3.2)

According to Lemma 3.2, we immediately obtain that:
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LEMMA 3.3. If K ∈ K n
o , p � 1 and c > 0 , then

Ωp(cK) = c
n(n−p)
n+p Ωp(K). (3.3)

LEMMA 3.4. ([12]) If K ∈ K n
c , p � 1 , then

Ωp(K) � nω
2p

n+p
n V (K)

n−p
n+p , (3.4)

with equality if and only if K is an ellipsoid.

Proof of Theorem 1.1. From (2.12), for any Q ∈ S n
o , we obtain

Ωp(ΛpK)
n+p

n � n
n+p

n Vp(ΛpK,Q∗)V (Q)
p
n .

Let Q = Λ∗
pK , since ΛpK ∈ S n

c , associated with (2.5) and (2.7), we get

Ωp(ΛpK)
n+p

n � n
n+p

n V (ΛpK)V (Λ∗
pK)

p
n

= n
n+p

n V (ΛpK)
p
n V (Λ∗

pK)
p
n V (ΛpK)

n−p
n

� n
n+p

n ω
2p
n

n V (ΛpK)
n−p

n ,

i.e.,

V (ΛpK)
p−n
n Ωp(ΛpK)

n+p
n � n

n+p
n ω

2p
n

n . (3.5)

From (2.13), we have

V (ΛpK) = n−
n+p

p ω
− n

p
n Ωp(K)

n+p
p . (3.6)

This together with (3.5) yields

Ωp(ΛpK)Ωp(K)
p−n

p � (nωn)
2p−n

p ,

i.e., inequality (1.6) is obtained.
Now, we give the equality condition of inequality (1.6). For unit ball B , we know

V (B) = ωn , Ωp(B) = nωn . If ΛpK = B in left part of (3.5), we get

V (B)
p−n
n Ωp(B)

n+p
n = (ωn)

p−n
n (nωn)

n+p
n = n

n+p
n ω

2p
n

n . (3.7)

Thus, if ΛpK = B , then equality holds in (3.5).
Further, for φ ∈ GL(n) , according to (3.5) and using (3.1), (3.2) and (3.3), we

have

V (ΛpφK)
p−n
n Ωp(ΛpφK)

n+p
n

= V (|detφ | 1
p φ−τ ΛpK)

p−n
n Ωp(|detφ | 1

p φ−τΛpK)
n+p

n

= |detφ | p−n
p |detφ−τ | p−n

n V (ΛpK)
p−n
n |detφ | n−p

p |detφ−τ | n−p
n Ωp(ΛpK)

n+p
n

= V (ΛpK)
p−n
n Ωp(ΛpK)

n+p
n .
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This means that the left side of (3.5) is affine invariance. Let E denote the ellipsoid and
take E = φB in left part of (3.5), we see that if ΛpK is an ellipsoid, then equality holds
in (3.5).

Conversely, if equality holds in (3.5), by (2.13), we get

Ωp(ΛpK) = (nωn)
2p−n

p Ωp(K)
n−p

p = nω
2p

n+p
n V (ΛpK)

n−p
n+p . (3.8)

This combining with the equality condition of (3.4), we see that ΛpK must be an ellip-
soid.

Because of (3.5) and (1.6) are equivalent, thus, equality holds in inequality (1.6) if
and only if ΛpK is an ellipsoid. �

According to the (1.4) and (2.13), we immediately get the following result.

LEMMA 3.5. ([12]) If K ∈ K n
c , then

Ωp(K) � nω
2n

n+p
n V (K∗)

p−n
n+p , (3.9)

with equality if and only if K is an ellipsoid.

Proof of Theorem 1.2. From (2.12), we get

Ωp(Λ∗
pK)

n+p
n � n

n+p
n Vp(Λ∗

pK,Q∗)V (Q)
p
n .

Let Q = ΛpK , associated with (2.5) and (2.7), we see that

Ωp(Λ∗
pK)

n+p
n � n

n+p
n V (Λ∗

pK)V (ΛpK)
p
n

� n
n+p

n ω2
nV (ΛpK)

p−n
n ,

i.e.,
V (ΛpK)

n−p
n Ωp(Λ∗

pK)
n+p

n � n
n+p

n ω2
n . (3.10)

This and (2.13) give inequality (1.7).
Similar to the deduction of equality condition of inequality (3.5), we know that

equality holds in (3.10) if and only if ΛpK is an ellipsoid.
Since (3.10) and (1.7) are equivalent, thus, equality holds in (1.7) if and only if

ΛpK is an ellipsoid. �

Proof of Theorem 1.3. For 1 � p < q < r and any Q1,Q3 ∈ S n
o , there exists

Q2 ∈ S n
o such that

ρ(Q2, ·)q(r−p) = ρ(Q1, ·)p(r−q)ρ(Q3, ·)r(q−p). (3.11)

Then for any u ∈ Sn−1 , this yields

ρ(Q2,u)n = ρ(Q1,u)
np(r−q)
q(r−p) ρ(Q3,u)

nr(q−p)
q(r−p) .
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Since 1 � p < q < r , then q(r−p)
p(r−q) > 1, according to the Hölder’s integral inequality and

formula (2.10), we get

V (Q1)
p(r−q)
q(r−p)V (Q3)

r(q−p)
q(r−p)

=
[
1
n

∫
Sn−1

(
ρ(Q1,u)

np(r−q)
q(r−p)

) q(r−p)
p(r−q)

dS(u)
] p(r−q)

q(r−p)

×
[
1
n

∫
Sn−1

(
ρ(Q3,u)

nr(q−p)
q(r−p)

) q(r−p)
r(q−q)

dS(u)
] r(q−p)

q(r−p)

� 1
n

∫
Sn−1

ρ(Q1,u)
np(r−q)
q(r−p) ρ(Q3,u)

nr(q−p)
q(r−p) dS(u)

=
1
n

∫
Sn−1

ρ(Q2,u)ndS(u) = V (Q2).

i.e.,
V (Q2)q(r−p) � V (Q1)p(r−q)V (Q3)r(q−p). (3.12)

Since for any 1 � p < q < r and ΛpK,ΛrK ∈ K n
o , by (1.1) and Lp -Minkowski’s

existence theorem (see [1] or Theorem 9.2.3 of [5]), we know that there exists ΛqK ∈
K n

o such that

fq(ΛqK,u) = fp(ΛpK,u)
r−q
r−p fr(ΛrK,u)

q−p
r−p . (3.13)

Associated with (3.11) and (3.13) , we see that for any u ∈ Sn−1 ,

ρ(Q2,u)−q fq(ΛqK,u) =
[

ρ(Q1,u)−p fp(ΛpK,u)
] r−q

r−p
[

ρ(Q3,u)−r fr(ΛrK,u)
] q−p

r−p

.

Since 1 � p < q < r , then 0 < r−q
r−p < 1, according to the Hölder’s integral in-

equality and using (2.2) and (2.6), we get

Vp(ΛpK,Q∗
1)

r−q
r−pVr(ΛrK,Q∗

3)
q−p
r−p

=
[
1
n

∫
Sn−1

(
(ρ(Q1,u)−p fp(ΛpK,u))

r−q
r−p

) r−p
r−q

dS(u)
] r−q

r−p

×
[
1
n

∫
Sn−1

(
(ρ(Q3,u)−r fr(ΛrK,u))

q−p
r−p

) r−p
q−p

dS(u)
] q−p

r−p

� 1
n

∫
Sn−1

(
(ρ(Q1,u)−p fp(ΛpK,u)

) r−q
r−p

×
(

(ρ(Q3,u)−r fr(ΛrK,u)
) q−p

r−p

dS(u)

= Vq(ΛqK,Q∗
2),

i.e.,
Vq(ΛqK,Q∗

2)
r−p � Vp(ΛpK,Q∗

1)
r−qVr(ΛrK,Q∗

3)
q−p. (3.14)
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Hence, combined with (3.12) and (3.14) , we get

(
Vq(ΛqK,Q∗

2)V (Q2)
q
n

)r−p

�
(

Vp(ΛpK,Q∗
1)V (Q1)

p
n

)r−q(
Vr(ΛrK,Q∗

3)V (Q3)
r
n

)q−p

.

This together with (2.12) yields

Ωq(ΛqK)(n+q)(r−p) � Ωp(ΛpK)(n+p)(r−q)Ωr(ΛrK)(n+r)(q−p).

This gives (1.8). �

Proof of Theorem 1.4. By (2.15), we have

Ω̃p(ΛpK)
n+p
np = sup{n n+p

np Ṽp(ΛpK,Q∗)
1
pV (Q)

1
n : Q ∈ S n

c }. (3.15)

Since 1 � p < q < r and ΛpK,ΛrK ∈ S n
o , there exists ΛqK ∈ S n

o such that

ρ(ΛqK, ·)(n−q)(r−p) = ρ(ΛpK, ·)(n−p)(r−q)ρ(ΛrK, ·)(n−r)(q−p). (3.16)

Associated with (3.16), we see that for any Q ∈ S n
o and u ∈ Sn−1 ,

ρ(ΛqK,u)(n−q)ρ(Q∗,u)q

=
[

ρ(ΛpK,u)(n−p)ρ(Q∗,u)p
] r−q

r−p
[

ρ(ΛrK,u)(n−r)ρ(Q∗,u)r
] q−p

r−p

.

Notice that p < q < r implies 0 < r−q
r−p < 1, according to the Hölder’s integral

inequality and (2.9), we have

Ṽp(ΛpK,Q∗)
r−q
r−p Ṽr(ΛrK,Q∗)

q−p
r−p

=
[
1
n

∫
Sn−1

(
(ρ(ΛpK,u)n−pρ(Q∗,u)p)

r−q
r−p

) r−p
r−q

dS(u)
] r−q

r−p

×
[
1
n

∫
Sn−1

(
(ρ(ΛrK,u)n−rρ(Q∗,u)r)

q−p
r−p

) r−p
q−p

dS(u)
] q−p

r−p

� 1
n

∫
Sn−1

(
ρ(ΛpK,u)(n−p)ρ(Q∗,u)p

) r−q
r−p

(
ρ(ΛrK,u)(n−r)ρ(Q∗,u)r

) q−p
r−p

dS(u)

= Ṽq(ΛqK,Q∗),

i.e.,
Ṽq(ΛqK,Q∗)r−p � Ṽp(ΛpK,Q∗)r−qṼr(ΛrK,Q∗)q−p. (3.17)

From the equality condition of Hölder’s integral inequality, we see that equality
holds in (3.17) if and only if ΛpK and ΛrK are dilates. This together with (3.16)
shows that equality holds in (3.17) if and only if ΛpK , ΛqK and ΛrK are dilates.
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This together with (3.15) yields

[
Ω̃q(ΛqK)

n+q
nq

]q(r−p)

�
[

Ω̃p(ΛpK)
n+p
np

]p(r−q)[
Ω̃r(ΛrK)

n+r
nr

]r(q−p)

,

i.e.,
Ω̃q(ΛqK)(n+q)(r−p) � Ω̃p(ΛpK)(n+p)(r−q)Ω̃r(ΛrK)(n+r)(q−p).

This gives (1.9).
According to the equality condition of (3.17), we know that equality holds in (1.9)

if and only if ΛpK , ΛqK and ΛrK are dilates. �

LEMMA 3.6. ([12]) If K,L ∈ K n
o , 1 � p < q, then

[
Vp(K,L)
V (K)

] 1
p

�
[
Vq(K,L)
V (K)

] 1
q

, (3.18)

with equality if and only if K and L are dilates.

Proof of Theorem 1.5. According to (2.14), we have

Ω̃−p(ΛpK)
n−p

n = inf{n n−p
n Ṽ−p(ΛpK,Q)V (Q∗)−

p
n : Q ∈ S n

c }.

This together with (2.11), we see that for any Q ∈ S n
c ,

Ω̃−p(ΛpK)
n−p

n = inf{n n−p
n

V (ΛpK)
ωn

Vp(K,Q∗)V (Q∗)−
p
n : Q ∈ S n

c }.

Hence, by Lemma 3.6, we get for 1 � p < q ,

[
ωn

n Ω̃−p(ΛpK)n−p

nn−pV (ΛpK)nV (K)n−p

] 1
p

= inf

{[
Vp(K,Q∗)

V (K)

] n
p

V (K)V (Q∗)−1 : Q ∈ S n
c

}

� inf

{[
Vq(K,Q∗)

V (K)

] n
q

V (K)V (Q∗)−1 : Q ∈ S n
c

}

=
[

ωn
n Ω̃−q(ΛqK)n−q

nn−qV (ΛqK)nV (K)n−q

] 1
q

.

This gives (1.10).
By the equality condition of Lemma 3.6, we know that equality holds in (1.10) if

and only if ΛpK and ΛqK are dilates. �
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