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ON CERTAIN CONJECTURES FOR THE TWO SEIFFERT MEANS

CHAO-PING CHEN AND JOZSEF SANDOR

(Communicated by T. Buri¢)

Abstract. In 2015 Vuksi¢, by using the asymptotic expansion method, conjectured certain in-
equalities related to the first and second Seiffert means. In this paper, we prove certain conjec-
tures given by Vuksic.

1. Introduction

Throughout this paper we assume that the numbers x and y are positive and un-
equal. The first and second Seiffert means P(x,y) and T (x,y) are defined in [19] and
[20], respectively by

xX—-y xX=y
Plx,y) = >——=—= and T(xy)=-——"737.
2arcsin o 2arctan o
A power mean A, is defined by
r N\ 1/
X 4y
0
Arlx,y) = ( 2 ) S

VXY, r=0.

As usual, the symbols H,G,L,A,Q, and N will stand, respectively, for the harmonic,
geometric, logarithmic, arithmetic, root-square, and contraharmonic means of x and y,

2 — (42 142 232
H:ﬂ,G: 5. L= xX—y ’A:x+y’Q: x+y,N:x +y'
x+y ! Inx—Iny 2 2 x+y

It is well known (see [21, 22]) that

H<G<L<P<A<T<Q<N.

Jagers [12] proved
A+G
T:A1/2<P<A2/3. (l)

For the comparison of P and A,, see [11].
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Sandor [17] proved that

G+24
(A2G)'P <P< il

2)

5\ 13
((#) A) <P<§<AJ2FG+2 A—;GA>. 3)

The left-hand side of (3) is sharper than the left-hand side of (1).
By using the sequential method, Sandor[18] improved the inequality A < T < Q
and obtained the following results:

and

() <1< 252 @

and
o+a\? \" L_L(o+A , [0FA S
(—2)Q cr< i (25 /2 ) )

Extension of the sequential method by Sdndor has been introduced for the Schwab-
Borchardt means (See [14], [15]), as L, P and T are particular Schwab-Borchardt
means. We note that, a new particular case of this mean, known also as the Neuman-
Sandor mean, has been introduced in [14]; see also [15]. By using another method, in
2013 Witkowski [23] has proved again inequalities (2)-(5), and also other inequalities.
In paricular, he proved the following results:

2 -2

P>-A+T =G ©

T 4

and

T >sA+(1-5)Q, )
where

g 2E2VD) G aosans
2-v2)n

There is a large number of papers studying inequalities between Seiffert means
and convex combinations of other means [3, 4, 5, 10, 13, 22]. For example, Chu et al.
[3] established that the double inequality

PA+(1—w)H <P <VA+(1—V)H (8)

holds if and only if g <2/m and v >5/6. In 2011, Chu et al. [4] proved that the
double inequality

pO+(1—A<T <vQ+(1—Vv)A 9)

holds if and only if u < (4 —x)/(n(v/2—1)) and v > 2/3.
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In fact, (7) can be written as
4—m 4—r
1— A+ <T, 10
( (\/f—l)n) (ﬁ—l)nQ (1

which is the left-hand side of (9).
Recently, Vuksi¢ [22], by using the asymptotic expansion method, gave a system-
atic study of inequalities of the form

(1 — )M, + uMs <M < (1 —=Vv)M; + vMs3,

where M; are chosen from the class of elementary means given above. For example,
Vuksié [22, Theorem 3.5, (3.15)] proved the following double inequality:

(1—u)H+uN<T <(l—=Vv)H+VN

with the best possible constants it =2/m and v = 1/3. See [7, 8, 9] for more details
about comparison of means using asymptotic methods.

Also Vuksi¢ [22] has conjectured certain inequalities related to the first and second
Seiffert means P(x,y) and T(x,y). In particular, the following relations have been
conjectured [22, Conjecture 3.7]:

3G+2T G+T
<P<

11
5 > (11)
34T L+T

P 12
) <P< 7 (12)

PAT A— )P+ (m—2)T
T, UomPr(E=2T (13)

3 2

1 3 T—2V2 V2
SPYIQ<T< P+ . 14
4 4Q T—2 n—\/EQ (14

The first aim of this paper is to offer a proof of these inequalities (Theorems 1-4).

REMARK 1. Let (x—y)/(x+y) =z, and suppose x > y. Then z € (0, 1), and the
following identities hold:

Hxy) o Gy s Ly 2

A(x,y) TA(xy) Alxy)  InE’
Plry) _ 2z Txy)  z Q) _ /a2
A(x,y) arcsinz’  A(x,y) arctanz’ A(x,y) '
By Remark 1, the left-hand side of (13) may be written also as
z( < )+ L3, 0<z<l (15)
arcsinzg arctanz

The second aim of this paper is to give an improvement of (15) (Theorem 5).
The following lemmas are needed in the sequel.
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LEMMA 1. The following inequalities hold:
0+G<2A (16)
and

AV2 <0+ (V2-1)G. 17

Proof. From the inequality (Q+ G)? < 2(Q* + G?) and the equality Q* + G*> =
2A2%, we obtain (16).
The proof of (17) makes use of the following inequality:

Vi+(V2=1)W>Vutv for u>v>0. (18)

By squaring both sides of (18), it is immediately seen that (18) is equivalent to (v/2 —
1)(v/u—+/v) >0 for u>v>0. The choice u = x*> +y? and v = 2xy in (18) yields
(17). The proof is complete. [

LEMMA 2. ([2]) The following inequalities hold:

n—2\/§H+2\/§Q. (19)
T T

1 8
—H+-0<T<
5H+50
The double inequality (19) was conjectured by Vuksi¢ [22, Conjecture 3.6, (3.19)].
Recently, Chen and Elezovi¢ [2] gave a proof of (19).

The numerical values given in this paper have been calculated via the computer
program MAPLE 13.

2. Proofs of the inequalities (11)-(14)

THEOREM 1. The inequalities (11) are true.

Proof. By Remark 1, the left-hand side of (11) may be rewritten as

2
% /1—24 2 < < < O0<z< 1. (20)

Sarctanz  arcsinzg’

Using the following inequality (see [1, Lemma 3]):

> < arctanx, x>0, 2D
1+
3
we have
Z 3 ;> 2z Z 3 2 1,
— = —77—= > —=V1-22—-Z(1+= .
arcsinzg 5 ‘ 5arctanz  arcsinz 5 ‘ 5 +3Z

In order to prove (20), it suffices to show that

3 2 |
L 2122 (1422)>0, O0<z<l. 22)
arcsinz 5 5 3
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By an elementary change of variable z = sinx (0 < x < 7/2), the inequality (22) be-
comes

g()>0, 0<x< g
where

i 3 2 1

gx) = ? —gcosx— g (1 + §Sin2x> .
We find
sinx 3 1 7 1 1 i
g(x) = —~ § cosx+ Ecos(2x) 15T %x“ 189X6+ %(—l)n”n(x)»
where
() = 2n+1)4"—18n+6 ,,

15-(2n+1)!

Elementary calculations reveal that, for 0 < x < /2 and n > 4,

Upt1(x) _ x? (4n+6)4"—9n—6
)+l 2n43)((2n+ 1)4 - 180 -+6)
_ (@2 (4n+6)4" —9n—6

n+1 (2n+3)<(2n+ 1)4n — 18n+6>
(4n+6)4" —9n—6
(2n+3)<(2n+ 1)4n — 18n+6>

We find, for n > 4,

(2n+3)<(2n+ 1)4" — 18n+6> ((4n+6)4" —9n—6)

36n>+33n— 24)
> 0.

= (4n? +dn—3) (4 - DL TON T A7
(4n”+4n )< 4n? +4n—3

This inequality can be proved by induction on n, we omit it.
Hence, forall 0 <x < m/2 and n >4,

Un+1(X)

() <1

Therefore, for fixed x € (0,7/2), the sequence n — u,(x) is strictly decreasing for
n > 4. We then obtain
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Hence, (20) holds.
We now prove the right-hand side of (11). In order to prove P < (G+T)/2, it
suffices to show by (7) that

G+sA+(1-s5)0

P< > ,
i.e., v
2(m—2v2) G+Q-2P
— . 23
Vs < 0o (23)

By Remark 1, (23) may be rewritten as

2z —2v2) < R A = 0<z<l. (24)
2-V2)m Vi+z22-1 ’

By an elementary change of variable z = sinx (0 < x < 1/2), the inequality (24) be-
comes

2(m—2+/2
M<J(x), O<x< X (25)
2—-V2)r 2
where
COSX + 1+sin2x—25iﬂ

J(x) =
V1+sin?x—1

Differentiation yields
S(x) —Ji(x)

J(x)=— ,
® x2\/14—sin2x(\/1+sin2x—1)2

where
Jo(x) = (2x* — 4) sinx + x* sinxcosx + 2xcosx + 2sinxcos? x > 0
and
Ji(x) = (x*sinx + 2xcosx — 2sinx)V/ 1 +sin”x > 0.

Following the same method as was used in the proof of g(x) > 0, we can prove J (x) >
0 and J>(x) > 0, we omit them.
Elementary calculations reveal that

J3(x) — J3 (x) = 2sinxJ3(x),

where

J3(x) = 2x° cos? x + 2x” cos® x + 2 sinxcos® x + 2x? sinxcos” x

+ (x* — 6) sinxcos? x + (2x* — 4x?) sinxcosx 4 (4 — 4x> + x*) sinx.
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We find
() = 223 1+ cos(2x) Loy cos(3x) + 3cosx
2 4
4x) + 4 cos(2
4 2sinx (cos( x) +4cos(2x) + 3) 42 sinx (cos(3x) + 3cosx>
8 4
1 2
+ (x* — 6) sinx (%S(XU + (x* — 2x?) sin(2x) + (4 — 4x® 4 x*) sinx
3,3 L 35 L. 1o
=x +xcos(2x) + 7% cos(3x) + 7% cosx + 3 sin(5x) + R sin(4x)
1 9 3 5 11
+ <1x4 - g) sin(3x) + <x4 - §x2) sin(2x) + (ZX4 — 4%+ Z) sinx
13 5 299 | &
= — _——_— —1 n n s
540" 18900" +n§6( fval®)
with
L 2 |
W) = s e
where

cn = 135-25"—27n(2n+ 1)16" 4 (32n* — 128n° — 8n” 4 32n — 729)9"
+108n(2n 4 1)(2n% — 50+ 5)4" + 4320n* — 6912n> + 23760 + 34561 + 594.

Elementary calculations reveal that, for 0 < x < /2 and n > 6,

var1(x) 9% @, 9(m/2)? an  ay

va(x)  2(2n+3)b, 2(2n+3)b, b,

where

ay = 375-25" — (96n* 4-240n + +144)16" + (32n* — 2000 — 240n — 801)9"
+ (1920 + 384> 4-240n> + 336n + 288)4"
+480n* 4 11521 + 840n* 4 528n 4 426

and
by=(n+1) (135 25" — (54n% +27n)16" + (32n* — 128n° — 8n* 4 32n — 729)9"

+ (432n* — 864n° + 5400 + 540n)4"
+4320n* — 69121 + 23761 4 3456n + 594).
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Elementary calculations reveal that

by — ay = (1351 —240)25" — 3(n 4 1)(18n* — 23n — 48) 16"
+(32n° — 128n* — 136n° + 224n* — 4570+ 72)9"
+12(n+ 1)(36n* — 88n® +-29n* + 41n — 24)4"
+4320n° — 3072n* — 5688n° 4+-4992n% 4 3522n + 168.

We claim that
b,—a, >0 for n>6. (26)

Direct computations show that b, —a, > 0 holds for n =6, and n = 7. Noting
that

(32n° — 128n* — 136n° +224n*> — 4570 +72)9" > 0,
12(n+ 1)(36n* — 88n° + 290> + 41n — 24)4" > 0,
4320n° — 3072n* — 5688n° + 49921* 4+ 35221 + 168 > 0

hold for n > 8, we have

— n 2_ —
by —ay (25) ~ 3(n+1)(182°—23n 48)>O for n>8.

(1350 —240)16" ~ \ 16 135n — 240

The last inequality can be proved by induction on n, we omit it. Hence, the claim (26)
holds.
We then obtan, forall 0 < x < /2 and n > 6,

Vn+1 (X)

v (x) <1

Therefore, for fixed x € (0,7/2), the sequence n —— v,(x) is strictly decreasing for
n > 6. We then obtain, for 0 < x < /2,

13 299
J3()C) >x9 (% - mx2> >0 and J/()C) <0.

So, J(x) is strictly decreasing for 0 < x < 7/2, and we have

2zn—2v2)  (m T

Hence, the right side of (11) holds. The proof is complete. [J

THEOREM 2. The inequalities (12) are true.
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Proof. Noting that G < L holds, we see that the upper bound in (11) is sharper
than the upper bound in (12). Hence, the right-hand side of (12) holds.
By Remark 1, the left-hand side of (12) may be rewritten for 0 < x < 1 as

4 6 1

— > — :
arcsinx lnﬁ arctanx

27)

We first prove (27) for 0 < x < 0.7. From the well known continued fraction for
In {2 (see [6, p. 196 Eq. (11.2.4)]), we find that for 0 <x <1,

2x(15 — 4x?) 2x 1+x
3630 . e Ty
1+ —5

(28)

It follows from (28) and (21) that

4 6 n 1 - 4 6 n 1
arcsinx In £ arctanx arcsinx 2x(15-4x2) 3x
1—x 3(5,3)(2) 34x2

Y 90 — 39x? — 2x*
~|arcsinx  6x(15 — 4x2)

In order to prove (27) for 0 < x < 0.7, it suffices to show that

6x(15 — 4x?
Ulx)= M —arcsinx >0 for 0<x<0.7.
Differentiation yields
6(1350 — 495x% + 246x* — 8x%) 1

V=" 30027 Vi

Direct computation yields

(6(1350—495x2+246x4—8x6)>2_ 1 Uy (x) 4 Us(x)
(90 — 39x2 — 2x%)2 I—x2 (90 —39x2 —2x*)4(1 —x2)’
where
U, (x) = 12757500 — 28503900x> + 12786255x* — 2911464x°
and
Us(x) = 110376x% — 3552x10 — 16x!2.
We now prove U’(x) > 0 for 0 < x < 0.7. It suffices to show that

U(x) >0 and Ux(x)>0 for 0<x<0.7.
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Differentiation yields
Ul (x) = —x(57007800 — 51145020x> 4 17468784x*) <0 for 0<x<0.7.
Hence, U (x) is strictly decreasing for 0 < x < 0.7, and we have

7 7 499341
) OB L0 for 0<x<0.7,

Uitx) >t (10 250000

Clearly,
Us(x) = x¥(110376 — 3552x* — 16x*) >0 for 0<x<0.7.
We then obtain U’(x) > 0 for 0 < x < 0.7, and we have
U(x)>U(0)=0 for 0<x<0.7.

Hence, (27) holds for 0 < x < 0.7.
Second, we prove (27) for 0.7 < x < 1. Let

y(x) = y1(x) +y2(x),

where

6 1 4
== t——] and
N <1n EXgal arctanx) and - y>(x) = arcsinx’

Let 0.7 <r<x<s< 1. Since y;(x) is increasing and y,(x) is decreasing, we obtain
y(x) = y1(r) +y2(s) =: o(r,s).
We divide the interval [0.7, 1] into 300 subintervals:

299
k k+1
07,1 =07 07+ | for k=0,1,2,...,299.
[0-7,1] ka[ + 1000° +1000] o AR

By direct computation we get

1
(07+ ko7 +li>>o for k=0,1,2,...,299.

1000’ 1000
Hence,
k k+1
fi 7 T+ — =0,1,2,...,299.
y(x) >0 for xE{O +10000 +1000] and k=0,1,2,...,299

This implies that y(x) is positive on [0.7,1). This proves (27) for 0.7 < x < 1. Hence,
(27) holds for all 0 < x < 1. The proof is complete. [
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THEOREM 3. The inequalities (13) are true.

Proof. Using the second inequalities in (2) and (4), combined with (16), we find

2G+44+A+20 5A+2(Q+G) _SA+4A _

2P+T < 3A.
+ 3 3 3
This proves the left-hand side of (13).
By (6) and (7), after some elementary computations we obtain
(4—m)P+ (n—2)T > 2Am+n[(vV20+ (2~ V2)G], (29)
where
n?—4r—nv2+8 (m—2)(4—m)
= and n=————-.
n(2—V?2) n(2—V2)
By multiplying both sides of inequality (17) by v/2, we obtain
V20+(2—V2)G > 2A. (30)

Noting that m+n =1 holds, it follows from (2) and (30) that
(4—m)P+ (r—2)T > 2A(m+n) =2A.
This proves the right-hand side of (13). The proof is complete. [

THEOREM 4. The inequalities (14) are true.

Proof. By Remark 1, the left-hand side of (14) may be rewritten for 0 <z < 1 as

4z
43/ l42< —= 31)

arcsinz arctanz’

The proof of (31) makes use of the following inequality:

z 3(20 —9z?)
) 0<z<1 32
arcsing =~ 60— 1772 < (32)
and
3322 +5
. (327 +5) O<z< 1. (33)

arctanz = 4724157

We now prove (32) and (33). For 0 <z < 1, let

2(60 — 172%)
3(20—922)

7(422 +15)

and  fo(z) = 3B215)

fi(z) = arcsinz — — arctanz.
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Differentiation yields

1 400 — 1602+ 517

fl (Z) = 1 Zz - (20 — 9Z2)2 >0 (34)
and
1N 47°
R0 = Garspar s 70

The inequality (34) holds, because

1 (400— 160z2+51z4)2 _ 25(24400 - 12360+ 26012%)
5 - .

-2 (20 —922)2 (1—22)(20 —9z2)*

Therefore, fi(z) and f>(z) are both strictly increasing for 0 < z < 1, and we have
fi(z) > f1(0)=0 and fo(z) > £2(0)=0 for O0<z<1.

This proves (32) and (33).
We now prove (31). For 0 < z < 1, we have, by (32) and (33),

4 3(20—92 232+5
iRl R 3009, s 126245)

arcsinz arctanz 60— 1772 4 42415

2 _
:_3{3(1451 +300 56z>_m}. (35)

(60— 172%)(42% +15)

Elementary calculations reveal that

3(145z% + 300 — 562%) 2
Yo —(1+7)
(60 — 1722) (422 + 15)
~ x*(36000 + 2602522 4 21560z* — 46247°)

0
(60— 1722(42 + 15)2 ~

for 0 < z < 1. From (35), we obtain (31). Hence, the left-hand side of (14) holds.
We now prove the right-hand side of (14). By (6) and the right-hand side of (19),
we have

m— 2\/— V2
e va et
_n- 22 V2 T—2V2 242
\/_<—G+ A)—i—n_ 2Q—< ——H+— Q)

7{(7: 2)G+24~ (x—V2)H - V20}.
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In order to prove the right-hand side of (14), it suffices to show that
(T —2)G+2A— (m—V2)H > V20,

which may be rewritten, by Remark 1, as

(r—2)V1—7242— V2)(1=22) > V2V 1+ 22, 0<z<1.

By an elementary change of variable x = v/1 —z2 (0 < z < 1), it suffices to show that
(T—2)x+2—(m—V2)* >V2v2—-x2,  0<x<l. (36)

Elementary calculations reveal that

((x=20x+2— (x— V2 ) (v2v2- x2> — D(x

where
D(x) = —8+4n+ (6 + 7> — 8T +4V2)x
+ (=21 4 27nV2 + 4w — 4V2)2 + (—2nV2 4+ 1 4 2)x°
Differentiation yields

D'(x) =6+7r° =87 +4V2+2(—27° +27V2 + 41 — 4V2)x
+3(n° —2mV2+2)x* <0, O0<x<l1.

So, D(x) is strictly decreasing for 0 < x < 1, and we have
D(x) >D(1) =0, 0<x<1

Therefore, (36) holds. Hence, the right-hand side of (14) holds. The proof is com-
plete. O

REMARK 2. Vuksi¢ conjectured (see the left-hand side of (3.22) of Conjecture
3.6 in [22]) that

L+T

5 <A. 37)

In fact, the left-hand side of (13) is sharper than (37), as the inequality (L+T)/2 <
(2P+T)/3 is equivalent to (3L+T)/4 < P, which is the left-hand side of (12). There-
fore, one has the following refinement of (37):

L+T - 2P+T
2 3

<A. (38)
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REMARK 3. Relation (4) can be used to prove the following Conjecture (see the
right-hand side of (3.20) of Conjecture 3.6 in [22]):
H+2N

T<—— (39)

Remark that H = G?>/A and N = Q? /A, so inequality (39) may be rewritten as

G*+20?
L Gr20
3A
The inequality (40) follows by the right-hand side of (4), as the inequality (A+2Q)/3 <
(G?420?)/(3A) via the identity G* + Q? = 2A% may be rewritten as 240 < A% +Q?,

or (Q—A)? >0, which is true.

T (40)

REMARK 4. VukSi¢ conjectured (see the left-hand side of (3.23) of Conjecture
3.6 in [22]) that

L+40Q
5

By the left-hand sides of (14) and (12), we have

<T. 41)

P+3Q  (3L+T)/4+3Q 3L+T+12Q

T
- 4 6

which implies (41).

REMARK 5. VukSi¢ conjectured (see the right-hand side of (3.24) of Conjecture
3.6 of [22]) that

2 1
T < §A + §N (typo corrected). 42)

Noting that the following identity holds true:
H+N=2A, (43)

we can state that (42) is the same as (39).
The left-hand side of (3.24) of Conjecture 3.6 of [22] is
2r—4)A+(4—m)N
T
and the left-hand side of (3.20) of Conjecture 3.6 of [22] is

<T, (44)

(m—2)H+2N
— <

T. (45)

In fact, (44) and (45) are the same, by identity (43). The inequality (44) appears (with
notation C in place of N) in [23] (Corollary 8.2).
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Similarly, the right-hand side of (3.18) of Conjecture 3.6 of [22]

nT+(4—m)H

: (46)

A<

may be written as

4A—(4-n)H (m—2)H+2N

T> = (47)
T T

by identity (43). Thus inequality (47) is the same as (45), and this proves also (46).
The left-hand side of (3.18) of Conjecture 3.6 of [22]

H+3T

A>
4

(48)

can be written for 0 < x <1 as

1—x*+

)

arctanx

which can be rewritten as (21). Therefore, (48) is proved.

3. An improvement of (15)

THEOREM 5. For 0 < x < 1, we have

1
2( il )+ T c3- 4( al ) (49)
arcsinx arctanx 60 arcsinx

The constant % is the best possible.

Proof. For 0 <x < 1, we have

1.5
2x+ 50X X B
arcsinx arctanx

1.5
2x—|—60x

1 3 5
X+ 303 4 300+ Tox + p2sx® + gpiexl!
x
-3

x— 303 15— LT 19— Lt
B 15x5P(x)

(887040 + 147840x2 + 66528x* + 39600x° + 26950x8 + 19845x10)O(x)’

(50)

where

P(x) = 6667584 + 13142052x* — 32340x* — 13134605x° + 2355507+
—2384305x'% — 169785x'? — 1250235x'
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and
0(x) = 3465 — 1155x% 4+ 693x* — 495x° 4-385x% — 315x1°.

Now we prove P(x) >0 and Q(x) > 0 for 0 < x < 1. Define functions F(¢) and
G(t) by

F(1)=P(V1) and G(t)=Q(V1).
We find that for 0 <7 < 1,

F"(1) = —64680 — (78807630 — 282660841 4 47686100:%)
—5093550* — 52509870¢° < 0.

Hence, F(t) is strictly concave for 0 < ¢ < 1, and we have
F(t) >min{F(0),F (1)} =5193873>0, 0<i<l=P(x)>0, O0<x<l1.
We find that for 0 <t <1,
G'(t) = —1155+ 13861 — 14851 4 15401 — 1575¢*
and
G (1) = —2970 4 9240r — 18900¢> < 0.
Hence, G'(z) is strictly concave for 0 <7 < 1, and we have

G (1) < max {G'()} = —728.419216... <0, 0<t<l.

0<r<1

Thus, G(r) is strictly decreasing for 0 < ¢ < 1, and we have
G(t)>G(1)=2578>0, 0<r<1l=0Q0(x)>0, O0<x<l.

From (50), we obtain (49).
Write (49) as

2 X X __3
(gomz) + _u

arcsinx arctan.x
x>/ arcsinx 60

We find

lim {_ 2 (arc?inx) + arcicanx -3 } 11

x—0 x>/ arcsinx - 60

This means that inequality (49) holds with the best possible constant % . The proof is
complete. [J
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