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ON CERTAIN CONJECTURES FOR THE TWO SEIFFERT MEANS

CHAO-PING CHEN AND JÓZSEF SÁNDOR

(Communicated by T. Burić)

Abstract. In 2015 Vukšić, by using the asymptotic expansion method, conjectured certain in-
equalities related to the first and second Seiffert means. In this paper, we prove certain conjec-
tures given by Vukšić.

1. Introduction

Throughout this paper we assume that the numbers x and y are positive and un-
equal. The first and second Seiffert means P(x,y) and T (x,y) are defined in [19] and
[20], respectively by

P(x,y) =
x− y

2arcsin x−y
x+y

and T (x,y) =
x− y

2arctan x−y
x+y

.

A power mean Ar is defined by

Ar(x,y) =

⎧⎪⎨
⎪⎩
(

xr + yr

2

)1/r

, r �= 0
√

xy, r = 0.

As usual, the symbols H,G,L,A,Q , and N will stand, respectively, for the harmonic,
geometric, logarithmic, arithmetic, root-square, and contraharmonic means of x and y ,

H =
2xy
x+ y

, G =
√

xy, L =
x− y

lnx− lny
, A =

x+ y
2

, Q =

√
x2 + y2

2
, N =

x2 + y2

x+ y
.

It is well known (see [21, 22]) that

H < G < L < P < A < T < Q < N.

Jagers [12] proved
A+G

2
= A1/2 < P < A2/3. (1)

For the comparison of P and Ar , see [11].
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Sándor [17] proved that

(A2G)1/3 < P <
G+2A

3
(2)

and ((
A+G

2

)2

A

)1/3

< P <
1
3

(
A+G

2
+2

√
A+G

2
A

)
. (3)

The left-hand side of (3) is sharper than the left-hand side of (1).
By using the sequential method, Sándor[18] improved the inequality A < T < Q

and obtained the following results:

(Q2A)1/3 < T <
A+2Q

3
(4)

and ((
Q+A

2

)2

Q

)1/3

< T <
1
3

(
Q+A

2
+2

√
Q+A

2
Q

)
. (5)

Extension of the sequential method by Sándor has been introduced for the Schwab-
Borchardt means (See [14], [15]), as L , P and T are particular Schwab-Borchardt
means. We note that, a new particular case of this mean, known also as the Neuman-
Sándor mean, has been introduced in [14]; see also [15]. By using another method, in
2013 Witkowski [23] has proved again inequalities (2)-(5), and also other inequalities.
In paricular, he proved the following results:

P >
2
π

A+
π −2

π
G (6)

and
T > sA+(1− s)Q, (7)

where

s =
2(π −2

√
2)

(2−√
2)π

= 0.3403413 . . ..

There is a large number of papers studying inequalities between Seiffert means
and convex combinations of other means [3, 4, 5, 10, 13, 22]. For example, Chu et al.
[3] established that the double inequality

μA+(1− μ)H < P < νA+(1−ν)H (8)

holds if and only if μ � 2/π and ν � 5/6. In 2011, Chu et al. [4] proved that the
double inequality

μQ+(1− μ)A < T < νQ+(1−ν)A (9)

holds if and only if μ � (4−π)/
(
π(

√
2−1)

)
and ν � 2/3.
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In fact, (7) can be written as(
1− 4−π

(
√

2−1)π

)
A+

4−π
(
√

2−1)π
Q < T, (10)

which is the left-hand side of (9).
Recently, Vukšić [22], by using the asymptotic expansion method, gave a system-

atic study of inequalities of the form

(1− μ)M1 + μM3 < M2 < (1−ν)M1 + νM3,

where Mj are chosen from the class of elementary means given above. For example,
Vukšić [22, Theorem 3.5, (3.15)] proved the following double inequality:

(1− μ)H + μN < T < (1−ν)H + νN,

with the best possible constants μ = 2/π and ν = 1/3. See [7, 8, 9] for more details
about comparison of means using asymptotic methods.

Also Vukšić [22] has conjectured certain inequalities related to the first and second
Seiffert means P(x,y) and T (x,y) . In particular, the following relations have been
conjectured [22, Conjecture 3.7]:

3G+2T
5

< P <
G+T

2
, (11)

3L+T
4

< P <
L+T

2
, (12)

2P+T
3

< A <
(4−π)P+(π −2)T

2
, (13)

1
4
P+

3
4
Q < T <

π −2
√

2

π −√
2

P+
√

2

π −√
2
Q. (14)

The first aim of this paper is to offer a proof of these inequalities (Theorems 1–4).

REMARK 1. Let (x−y)/(x+y) = z , and suppose x > y . Then z ∈ (0,1) , and the
following identities hold:

H(x,y)
A(x,y)

= 1− z2,
G(x,y)
A(x,y)

=
√

1− z2,
L(x,y)
A(x,y)

=
2z

ln 1+z
1−z

,

P(x,y)
A(x,y)

=
z

arcsinz
,

T (x,y)
A(x,y)

=
z

arctanz
,

Q(x,y)
A(x,y)

=
√

1+ z2.

By Remark 1, the left-hand side of (13) may be written also as

2

(
z

arcsinz

)
+

z
arctanz

< 3, 0 < z < 1. (15)

The second aim of this paper is to give an improvement of (15) (Theorem 5).
The following lemmas are needed in the sequel.
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LEMMA 1. The following inequalities hold:

Q+G < 2A (16)

and
A
√

2 < Q+(
√

2−1)G. (17)

Proof. From the inequality (Q+G)2 < 2(Q2 +G2) and the equality Q2 +G2 =
2A2 , we obtain (16).

The proof of (17) makes use of the following inequality:
√

u+(
√

2−1)
√

v >
√

u+ v for u > v > 0. (18)

By squaring both sides of (18), it is immediately seen that (18) is equivalent to (
√

2−
1)(

√
u−√

v) > 0 for u > v > 0. The choice u = x2 + y2 and v = 2xy in (18) yields
(17). The proof is complete. �

LEMMA 2. ([2]) The following inequalities hold:

1
9
H +

8
9
Q < T <

π −2
√

2
π

H +
2
√

2
π

Q. (19)

The double inequality (19) was conjectured by Vukšić [22, Conjecture 3.6, (3.19)].
Recently, Chen and Elezović [2] gave a proof of (19).

The numerical values given in this paper have been calculated via the computer
program MAPLE 13.

2. Proofs of the inequalities (11)-(14)

THEOREM 1. The inequalities (11) are true.

Proof. By Remark 1, the left-hand side of (11) may be rewritten as

3
5

√
1− z2 +

2
5

z
arctanz

<
z

arcsinz
, 0 < z < 1. (20)

Using the following inequality (see [1, Lemma 3]):

x

1+ x2

3

< arctanx, x > 0, (21)

we have

z
arcsinz

− 3
5

√
1− z2− 2

5
z

arctanz
>

z
arcsinz

− 3
5

√
1− z2− 2

5

(
1+

1
3
z2
)

.

In order to prove (20), it suffices to show that

z
arcsinz

− 3
5

√
1− z2− 2

5

(
1+

1
3
z2
)

> 0, 0 < z < 1. (22)
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By an elementary change of variable z = sinx(0 < x < π/2) , the inequality (22) be-
comes

g(x) > 0, 0 < x <
π
2

,

where

g(x) =
sinx
x

− 3
5

cosx− 2
5

(
1+

1
3

sin2 x

)
.

We find

g(x) =
sinx
x

− 3
5

cosx+
1
15

cos(2x)− 7
15

=
1
36

x4 − 1
189

x6 +
∞

∑
n=4

(−1)nun(x),

where

un(x) =
(2n+1)4n−18n+6

15 · (2n+1)!
x2n.

Elementary calculations reveal that, for 0 < x < π/2 and n � 4,

un+1(x)
un(x)

=
x2

n+1
(4n+6)4n−9n−6

(2n+3)
(
(2n+1)4n−18n+6

)
<

(π/2)2

n+1
(4n+6)4n−9n−6

(2n+3)
(
(2n+1)4n−18n+6

)
<

(4n+6)4n−9n−6

(2n+3)
(
(2n+1)4n−18n+6

).

We find, for n � 4,

(2n+3)
(
(2n+1)4n−18n+6

)
−
(
(4n+6)4n−9n−6

)
= (4n2 +4n−3)

(
4n− 36n2 +33n−24

4n2 +4n−3

)
> 0.

This inequality can be proved by induction on n, we omit it.
Hence, for all 0 < x < π/2 and n � 4,

un+1(x)
un(x)

< 1.

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ un(x) is strictly decreasing for
n � 4. We then obtain

g(x) > x4
(

1
36

− 1
189

x2
)

> 0, 0 < x <
π
2

.
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Hence, (20) holds.
We now prove the right-hand side of (11). In order to prove P < (G +T )/2, it

suffices to show by (7) that

P <
G+ sA+(1− s)Q

2
,

i.e.,
2(π −2

√
2)

(2−√
2)π

= s <
G+Q−2P

Q−A
. (23)

By Remark 1, (23) may be rewritten as

2(π −2
√

2)
(2−√

2)π
<

√
1− z2 +

√
1+ z2− 2z

arcsin z√
1+ z2−1

, 0 < z < 1. (24)

By an elementary change of variable z = sinx(0 < x < π/2) , the inequality (24) be-
comes

2(π −2
√

2)
(2−√

2)π
< J(x), 0 < x <

π
2

, (25)

where

J(x) =
cosx+

√
1+ sin2 x− 2sinx

x√
1+ sin2 x−1

.

Differentiation yields

J′(x) = − J2(x)− J1(x)

x2
√

1+ sin2 x
(√

1+ sin2 x−1
)2 ,

where

J2(x) = (2x2 −4)sinx+ x2 sinxcosx+2xcosx+2sinxcos2 x > 0

and

J1(x) = (x2 sinx+2xcosx−2sinx)
√

1+ sin2 x > 0.

Following the same method as was used in the proof of g(x) > 0, we can prove J1(x) >
0 and J2(x) > 0, we omit them.

Elementary calculations reveal that

J2
2 (x)− J2

1(x) = 2sinxJ3(x),

where

J3(x) = 2x3 cos2 x+2x3 cos3 x+2sinxcos4 x+2x2 sinxcos3 x

+(x4−6)sinxcos2 x+(2x4−4x2)sinxcosx+(4−4x2 + x4)sinx.
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We find

J3(x) = 2x3
(

1+ cos(2x)
2

)
+2x3

(
cos(3x)+3cosx

4

)

+2sinx

(
cos(4x)+4cos(2x)+3

8

)
+2x2 sinx

(
cos(3x)+3cosx

4

)

+(x4−6)sinx

(
1+ cos(2x)

2

)
+(x4−2x2)sin(2x)+ (4−4x2 + x4)sinx

= x3 + x3 cos(2x)+
1
2
x3 cos(3x)+

3
2
x3 cosx+

1
8

sin(5x)+
1
4
x2 sin(4x)

+
(

1
4
x4− 9

8

)
sin(3x)+

(
x4− 3

2
x2
)

sin(2x)+
(

5
4
x4 −4x2 +

11
4

)
sinx

=
13
540

x9− 299
18900

x11 +
∞

∑
n=6

(−1)nvn(x),

with

vn(x) =
cn

216 · (2n+1)!
x2n+1,

where

cn = 135 ·25n−27n(2n+1)16n+(32n4−128n3−8n2 +32n−729)9n

+108n(2n+1)(2n2−5n+5)4n+4320n4−6912n3 +2376n2 +3456n+594.

Elementary calculations reveal that, for 0 < x < π/2 and n � 6,

vn+1(x)
vn(x)

=
9x2

2(2n+3)
an

bn
<

9(π/2)2

2(2n+3)
an

bn
<

an

bn
,

where

an = 375 ·25n− (96n2 +240n++144)16n+(32n4−200n2−240n−801)9n

+(192n4 +384n3 +240n2 +336n+288)4n

+480n4 +1152n3 +840n2 +528n+426

and

bn = (n+1)
(
135 ·25n− (54n2 +27n)16n +(32n4−128n3−8n2 +32n−729)9n

+(432n4−864n3 +540n2 +540n)4n

+4320n4−6912n3 +2376n2 +3456n+594
)
.
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Elementary calculations reveal that

bn−an = (135n−240)25n−3(n+1)(18n2−23n−48)16n

+(32n5−128n4−136n3 +224n2−457n+72)9n

+12(n+1)(36n4−88n3 +29n2 +41n−24)4n

+4320n5−3072n4−5688n3 +4992n2 +3522n+168.

We claim that

bn−an > 0 for n � 6. (26)

Direct computations show that bn − an > 0 holds for n = 6, and n = 7. Noting
that

(32n5−128n4−136n3 +224n2−457n+72)9n > 0,

12(n+1)(36n4−88n3 +29n2 +41n−24)4n > 0,

4320n5−3072n4−5688n3 +4992n2 +3522n+168> 0

hold for n � 8, we have

bn−an

(135n−240)16n >

(
25
16

)n

− 3(n+1)(18n2−23n−48)
135n−240

> 0 for n � 8.

The last inequality can be proved by induction on n , we omit it. Hence, the claim (26)
holds.

We then obtan, for all 0 < x < π/2 and n � 6,

vn+1(x)
vn(x)

< 1.

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ vn(x) is strictly decreasing for
n � 6. We then obtain, for 0 < x < π/2,

J3(x) > x9
(

13
540

− 299
18900

x2
)

> 0 and J′(x) < 0.

So, J(x) is strictly decreasing for 0 < x < π/2, and we have

2(π −2
√

2)
(2−√

2)π
= J

(π
2

)
< J(x), 0 < x <

π
2

.

Hence, the right side of (11) holds. The proof is complete. �

THEOREM 2. The inequalities (12) are true.
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Proof. Noting that G < L holds, we see that the upper bound in (11) is sharper
than the upper bound in (12). Hence, the right-hand side of (12) holds.

By Remark 1, the left-hand side of (12) may be rewritten for 0 < x < 1 as

4
arcsinx

>
6

ln 1+x
1−x

+
1

arctanx
. (27)

We first prove (27) for 0 < x < 0.7. From the well known continued fraction for
ln 1+x

1−x (see [6, p. 196 Eq. (11.2.4)]), we find that for 0 < x < 1,

2x(15−4x2)
3(5−3x2)

=
2x

1+ − 1
3 x2

1+
− 4

15 x2

1

< ln
1+ x
1− x

. (28)

It follows from (28) and (21) that

4
arcsinx

−
(

6

ln 1+x
1−x

+
1

arctanx

)
>

4
arcsinx

−
⎛
⎝ 6

2x(15−4x2)
3(5−3x2)

+
1
3x

3+x2

⎞
⎠

= 4

[
1

arcsinx
− 90−39x2−2x4

6x(15−4x2)

]
.

In order to prove (27) for 0 < x < 0.7, it suffices to show that

U(x) =
6x(15−4x2)

90−39x2−2x4 − arcsinx > 0 for 0 < x < 0.7.

Differentiation yields

U ′(x) =
6(1350−495x2+246x4−8x6)

(90−39x2−2x4)2 − 1√
1− x2

.

Direct computation yields

(
6(1350−495x2+246x4−8x6)

(90−39x2−2x4)2

)2

− 1
1− x2 =

U1(x)+U2(x)
(90−39x2−2x4)4(1− x2)

,

where

U1(x) = 12757500−28503900x2+12786255x4−2911464x6

and

U2(x) = 110376x8−3552x10−16x12.

We now prove U ′(x) > 0 for 0 < x < 0.7. It suffices to show that

U1(x) > 0 and U2(x) > 0 for 0 < x < 0.7.
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Differentiation yields

U ′
1(x) = −x(57007800−51145020x2+17468784x4) < 0 for 0 < x < 0.7.

Hence, U1(x) is strictly decreasing for 0 < x < 0.7, and we have

U1(x) > U1

(
7
10

)
=

379509499341
250000

> 0 for 0 < x < 0.7.

Clearly,

U2(x) = x8(110376−3552x2−16x4) > 0 for 0 < x < 0.7.

We then obtain U ′(x) > 0 for 0 < x < 0.7, and we have

U(x) > U(0) = 0 for 0 < x < 0.7.

Hence, (27) holds for 0 < x < 0.7.
Second, we prove (27) for 0.7 � x < 1. Let

y(x) = y1(x)+ y2(x),

where

y1(x) = −
(

6

ln 1+x
1−x

+
1

arctanx

)
and y2(x) =

4
arcsinx

.

Let 0.7 � r � x � s < 1. Since y1(x) is increasing and y2(x) is decreasing, we obtain

y(x) � y1(r)+ y2(s) =: σ(r,s).

We divide the interval [0.7,1] into 300 subintervals:

[0.7,1] =
299⋃
k=0

[
0.7+

k
1000

,0.7+
k+1
1000

]
for k = 0,1,2, . . . ,299.

By direct computation we get

σ
(

0.7+
k

1000
,0.7+

k+1
1000

)
> 0 for k = 0,1,2, . . . ,299.

Hence,

y(x) > 0 for x ∈
[
0.7+

k
1000

,0.7+
k+1
1000

]
and k = 0,1,2, . . . ,299.

This implies that y(x) is positive on [0.7,1) . This proves (27) for 0.7 � x < 1. Hence,
(27) holds for all 0 < x < 1. The proof is complete. �
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THEOREM 3. The inequalities (13) are true.

Proof. Using the second inequalities in (2) and (4), combined with (16), we find

2P+T <
2G+4A+A+2Q

3
=

5A+2(Q+G)
3

<
5A+4A

3
= 3A.

This proves the left-hand side of (13).
By (6) and (7), after some elementary computations we obtain

(4−π)P+(π −2)T > 2Am+n
[
(
√

2Q+(2−
√

2)G
]
, (29)

where

m =
π2−4π −π

√
2+8

π(2−√
2)

and n =
(π −2)(4−π)

π(2−√
2)

.

By multiplying both sides of inequality (17) by
√

2, we obtain
√

2Q+(2−
√

2)G > 2A. (30)

Noting that m+n = 1 holds, it follows from (2) and (30) that

(4−π)P+(π −2)T > 2A(m+n) = 2A.

This proves the right-hand side of (13). The proof is complete. �

THEOREM 4. The inequalities (14) are true.

Proof. By Remark 1, the left-hand side of (14) may be rewritten for 0 < z < 1 as

z
arcsinz

+3
√

1+ z2 <
4z

arctanz
. (31)

The proof of (31) makes use of the following inequality:

z
arcsinz

<
3(20−9z2)
60−17z2 , 0 < z < 1 (32)

and

z
arctanz

>
3(3z2 +5)
4z2 +15

, 0 < z < 1. (33)

We now prove (32) and (33). For 0 < z < 1, let

f1(z) = arcsinz− z(60−17z2)
3(20−9z2)

and f2(z) =
z(4z2 +15)
3(3z2 +5)

− arctanz.
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Differentiation yields

f ′1(z) =
1√

1− z2
− 400−160z2 +51z4

(20−9z2)2 > 0 (34)

and

f ′2(z) =
4z6

(3z2 +5)2(1+ z2)
> 0.

The inequality (34) holds, because

1
1− z2 −

(
400−160z2+51z4

(20−9z2)2

)2

=
z6(24400−12360z2+2601z4)

(1− z2)(20−9z2)4 > 0.

Therefore, f1(z) and f2(z) are both strictly increasing for 0 < z < 1, and we have

f1(z) > f1(0) = 0 and f2(z) > f2(0) = 0 for 0 < z < 1.

This proves (32) and (33).
We now prove (31). For 0 < z < 1, we have, by (32) and (33),

z
arcsinz

+3
√

1+ z2− 4z
arctanz

<
3(20−9z2)
60−17z2 +3

√
1+ z2− 12(3z2 +5)

4z2 +15

= −3

{
3(145z2 +300−56z4)
(60−17z2)(4z2 +15)

−
√

1+ z2

}
. (35)

Elementary calculations reveal that

(
3(145z2 +300−56z4)
(60−17z2)(4z2 +15)

)2

− (1+ z2)

=
x4(36000+26025z2+21560z4−4624z6)

(60−17z2)2(4z2 +15)2 > 0

for 0 < z < 1. From (35), we obtain (31). Hence, the left-hand side of (14) holds.
We now prove the right-hand side of (14). By (6) and the right-hand side of (19),

we have

π −2
√

2

π −√
2

P+
√

2

π −√
2
Q−T

>
π −2

√
2

π −√
2

(
π −2

π
G+

2
π

A

)
+

√
2

π −√
2
Q−

(
π −2

√
2

π
H +

2
√

2
π

Q

)

=
π −2

√
2

π(π −√
2)

{
(π −2)G+2A− (π−

√
2)H −

√
2Q
}

.
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In order to prove the right-hand side of (14), it suffices to show that

(π −2)G+2A− (π−
√

2)H >
√

2Q,

which may be rewritten, by Remark 1, as

(π −2)
√

1− z2 +2− (π −
√

2)(1− z2) >
√

2
√

1+ z2, 0 < z < 1.

By an elementary change of variable x =
√

1− z2 (0 < z < 1) , it suffices to show that

(π −2)x+2− (π−
√

2)x2 >
√

2
√

2− x2, 0 < x < 1. (36)

Elementary calculations reveal that

(
(π −2)x+2− (π−

√
2)x2

)2−
(√

2
√

2− x2
)2

= xD(x),

where

D(x) = −8+4π +(6+ π2−8π +4
√

2)x

+(−2π2 +2π
√

2+4π −4
√

2)x2 +(−2π
√

2+ π2 +2)x3.

Differentiation yields

D′(x) = 6+ π2−8π +4
√

2+2(−2π2 +2π
√

2+4π −4
√

2)x

+3(π2−2π
√

2+2)x2 < 0, 0 < x < 1.

So, D(x) is strictly decreasing for 0 < x < 1, and we have

D(x) > D(1) = 0, 0 < x < 1.

Therefore, (36) holds. Hence, the right-hand side of (14) holds. The proof is com-
plete. �

REMARK 2. Vukšić conjectured (see the left-hand side of (3.22) of Conjecture
3.6 in [22]) that

L+T
2

< A. (37)

In fact, the left-hand side of (13) is sharper than (37), as the inequality (L + T )/2 <
(2P+T )/3 is equivalent to (3L+T )/4 < P , which is the left-hand side of (12). There-
fore, one has the following refinement of (37):

L+T
2

<
2P+T

3
< A. (38)
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REMARK 3. Relation (4) can be used to prove the following Conjecture (see the
right-hand side of (3.20) of Conjecture 3.6 in [22]):

T <
H +2N

3
. (39)

Remark that H = G2/A and N = Q2/A , so inequality (39) may be rewritten as

T <
G2 +2Q2

3A
. (40)

The inequality (40) follows by the right-hand side of (4), as the inequality (A+2Q)/3 <
(G2 +2Q2)/(3A) via the identity G2 +Q2 = 2A2 may be rewritten as 2AQ < A2 +Q2 ,
or (Q−A)2 > 0, which is true.

REMARK 4. Vukšić conjectured (see the left-hand side of (3.23) of Conjecture
3.6 in [22]) that

L+4Q
5

< T. (41)

By the left-hand sides of (14) and (12), we have

T >
P+3Q

4
>

(3L+T)/4+3Q
4

=
3L+T +12Q

16
,

which implies (41).

REMARK 5. Vukšić conjectured (see the right-hand side of (3.24) of Conjecture
3.6 of [22]) that

T <
2
3
A+

1
3
N (typo corrected). (42)

Noting that the following identity holds true:

H +N = 2A, (43)

we can state that (42) is the same as (39).
The left-hand side of (3.24) of Conjecture 3.6 of [22] is

(2π −4)A+(4−π)N
π

< T, (44)

and the left-hand side of (3.20) of Conjecture 3.6 of [22] is

(π −2)H +2N
π

< T. (45)

In fact, (44) and (45) are the same, by identity (43). The inequality (44) appears (with
notation C in place of N ) in [23] (Corollary 8.2).
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Similarly, the right-hand side of (3.18) of Conjecture 3.6 of [22]

A <
πT +(4−π)H

4
(46)

may be written as

T >
4A− (4−π)H

π
=

(π −2)H +2N
π

(47)

by identity (43). Thus inequality (47) is the same as (45), and this proves also (46).
The left-hand side of (3.18) of Conjecture 3.6 of [22]

A >
H +3T

4
(48)

can be written for 0 < x < 1 as

1− x2 +
3x

arctanx
< 4,

which can be rewritten as (21). Therefore, (48) is proved.

3. An improvement of (15)

THEOREM 5. For 0 < x < 1 , we have

2
( x

arcsinx

)
+

x
arctanx

< 3− 11
60

x4
( x

arcsinx

)
. (49)

The constant 11
60 is the best possible.

Proof. For 0 < x < 1, we have

2x+ 11
60x5

arcsinx
+

x
arctanx

−3

<
2x+ 11

60x5

x+ 1
6x3 + 3

40x5 + 5
112x7 + 35

1152x9 + 63
2816x11

+
x

x− 1
3x3 + 1

5x5− 1
7x7 + 1

9x9 − 1
11x11

−3

= − 15x6P(x)
(887040+147840x2+66528x4 +39600x6 +26950x8 +19845x10)Q(x)

,

(50)

where

P(x) = 6667584+13142052x2−32340x4−13134605x6+2355507x8

−2384305x10−169785x12−1250235x14
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and

Q(x) = 3465−1155x2+693x4−495x6 +385x8−315x10.

Now we prove P(x) > 0 and Q(x) > 0 for 0 < x < 1. Define functions F(t) and
G(t) by

F(t) = P(
√

t) and G(t) = Q(
√

t).

We find that for 0 < t < 1,

F ′′(t) = −64680− t(78807630−28266084t+47686100t2)

−5093550t4−52509870t5 < 0.

Hence, F(t) is strictly concave for 0 < t < 1, and we have

F(t) > min{F(0),F(1)} = 5193873 > 0, 0 < t < 1 =⇒ P(x) > 0, 0 < x < 1.

We find that for 0 < t < 1,

G′(t) = −1155+1386t−1485t2 +1540t3−1575t4

and

G′′′(t) = −2970+9240t−18900t2 < 0.

Hence, G′(t) is strictly concave for 0 < t < 1, and we have

G′(t) � max
0<t<1

{G′(t)} = −728.419216 . . . < 0, 0 < t < 1.

Thus, G(t) is strictly decreasing for 0 < t < 1, and we have

G(t) > G(1) = 2578 > 0, 0 < t < 1 =⇒ Q(x) > 0, 0 < x < 1.

From (50), we obtain (49).
Write (49) as

−2
(

x
arcsinx

)
+ x

arctan x −3

x5/arcsinx
>

11
60

.

We find

lim
x→0

{
−2
(

x
arcsinx

)
+ x

arctan x −3

x5/arcsinx

}
=

11
60

.

This means that inequality (49) holds with the best possible constant 11
60 . The proof is

complete. �
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[9] N. ELEZOVIĆ, AND L. VUKŠIĆ, Asymptotic expansions of bivariate classical means and related
inequalities, J. Math. Inequal. 8, 4 (2014), 707–724.

[10] S.-Q. GAO, H.-Y. GAO AND W.-Y. SHI, Optimal convex combination bounds of the centroidal and
harmonic means for the Seiffert mean, Int. J. Pure Appl. Math. 70 (2011), 701–709.

[11] P. HASTO, Optimal inequalities between Seiffert’s mean and power mean, Math. Ineq. Appl. 7, 1
(2004), 47–53.

[12] A. A. JAGERS, Solution of Problem 887, Nieuw Arch. Wiskunde 12, 4 (1994), 230–231.
[13] H. LIU AND X. J. MENG, The optimal convex combination bounds for Seiffert’s mean, J. Inequal.

Appl. 2011, Article ID 686834, 9 pages.
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