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AN INTERPOLATION OF JENSEN’S INEQUALITY AND ITS CONVERSES

WITH APPLICATIONS TO QUASI–ARITHMETIC MEAN INEQUALITIES

JADRANKA MIĆIĆ HOT AND YUKI SEO

(Communicated by J. Pečarić)

Abstract. In this paper, we show an interpolation of Davis-Choi-Jensen operator inequality and
the converse inequality for Hilbert space operators. As applications, we obtain an interpolation
of quasi-arithmetic mean inequalities and the converse inequalities.

1. Introduction

In [8], we showed operator versions of the inequality due to Cho, Matić and
Pečarić [1] in connection to Jensen’s inequality for convex functions. As applications,
we obtain an interpolation of the weighted arithmetic-geometricmean inequality for the
Karcher mean of positive invertible operators on a Hilbert space. Moreover, we obtain
an interpolation between the quasi-arithmetic means.

As a continuation of our research in [8], in this paper we show another interpola-
tion of Davis-Choi-Jensen operator inequalities for positive linear mappings. As appli-
cations, we obtain an interpolation of both the quasi-arithmetic means of operators and
the mean inequalities for the operator power means due to Lawson and Lim. Moreover,
we give converses of the above results.

2. Results related to Jensen’s inequality

Let B(H ) (resp. Bh(H )) be the algebra of all bounded linear operators (resp.
selfadjoint operators) on a Hilbert space H . A real valued continuous function f de-
fined on an interval [m,M] is said to be operator convex if f ((1− t)A + tB) � (1−
t) f (A)+ t f (B) for all selfadjoint opetaors A,B in Bh(H ) with m � A,B � M . By the
Davis-Choi-Jensen operator inequality [4, Theorem 8.9], we have f (∑n

j=1 Φ j(Aj)) �
∑n

j=1 Φ j( f (Aj)) for positive linear mappings Φ j with ∑n
j=1 Φ j(1H ) = 1H and self-

adjoint operators Aj with m � Aj � M , and an operator convex function f on [m,M]
for j = 1, . . . ,n .
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Mićić and Pečarić gave in [6] some mappings related to the Davis-Choi-Jensen op-
erator inequality as a generalization of the result with respect to the Hermite-Hadamard
inequality due to Dragomir [2, 3].

First, we give the multiple operator versions of [6, Theorem 2.2], which connects
both sides of the Davis-Choi-Jensen operator inequality:

THEOREM 2.1. For j = 1, . . . ,n, let A j ∈ Bh(H ) be self-adjoint operators such
that m � Aj � M for some scalars m � M and Φ j positive linear mappings on B(H )
such that ∑n

j=1 Φ j(1H ) = 1H . If f (x) is operator convex on [m,M] and ∑n
j=1 Φ j

preserves the operator A0 = ∑n
k=1 Φk(Ak) ( i.e. ∑n

j=1 Φ j(A0) = A0 ) , then

f

(
n

∑
j=1

Φ j(Aj)

)
�

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)

n

∑
k=1

Φk(Ak)
))

�
n

∑
j=1

Φ j
(
f (Aj)

)
(2.1)

for all t ∈ [0,1] . Moreover, the function

F(t) =
n

∑
j=1

Φ j

(
f
(
tA j +(1− t)

n

∑
k=1

Φk(Ak)
))

is monotonically nondecreasing and convex on [0,1] .

Proof. We give the direct proof for convenience. Since Φ j is a positive linear
mapping for all j = 1, . . . ,n and f is operator convex, then we have for t1,t2 ∈ [0,1]
and 0 < t < 1

tF(t1)+ (1− t)F(t2)

=
n

∑
j=1

Φ j

(
t f
(
t1Aj +(1− t1)A0

)
+(1− t) f

(
t2Aj +(1− t2)A0

))
�

n

∑
j=1

Φ j f
(
t(t1Aj +(1− t1)A0)+ (1− t)(t2Aj +(1− t2)A0)

)
=

n

∑
j=1

Φ j f
(
(tt1 +(1− t)t2)Aj +(1− tt1− (1− t)t2)A0

)
= F(tt1 +(1− t)t2)

and so F is convex on [0,1] .
Next, since ∑n

j=1 Φ j is a unital positive linear mapping, it follows from Davis-
Choi-Jensen operator inequality [4, Theorem 8.9] that

f

(
n

∑
j=1

Φ j(Bj)

)
�

n

∑
j=1

Φ j
(
f (Bj)

)
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and thus

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)

n

∑
k=1

Φk(Ak)
))

� f
( n

∑
j=1

Φ j

(
tA j +(1− t)

n

∑
k=1

Φk(Ak)
))

= f
(
t

n

∑
j=1

Φ j(Aj)+ (1− t)
n

∑
j=1

Φ j(A0)
)

= f
( n

∑
j=1

Φ j(Aj)
)

by ∑n
j=1 Φ j(A0) = A0.

So F(0) � F(t) . If 0 � s < t � 1, then s = t−s
t ·0+ s

t ·t , and the convexity of F implies

F(s) � t − s
t

F(0)+
s
t
F(t) � F(t)

and so F is monotonically nondecreasing on [0,1] . Hence it follows that F(0) �
F(t) � F(1) for all t ∈ [0,1] and therefore (2.1) is valid. �

A vector ω = (ω1, . . . ,ωn) is called a weight vector if ω j � 0 for all j = 1, . . . ,n
and ∑n

j=1 ω j = 1. A n -tuple Φ = (Φ1, . . . ,Φn) of positive linear mappings on B(H )
is called totally unital if ∑n

j=1 Φ j(1H ) = 1H .

REMARK 2.2. We present a simple example which satisfies the conditions of The-
orem 2.1. Let Mn(B(H ) be the algebra of all n× n matrices with entries from
B(H ) , and Pj = 0⊕ ·· · ⊕ 1H ⊕ ·· · ⊕ 0 an orthogonal projection for j = 1, . . . ,n
which is 1H at the j th position and zeros everywhere else. Put Φ j(X) = PjXPj for
j = 1, . . . ,n . Then Φ = (Φ1, . . . ,Φn) is totally unital and ∑n

j=1 Φ j preserves the oper-

ator A0 = ∑n
k=1 Φk(Ak) for Ak = (Ak

i j) ∈ Mn(B(H )) and k = 1, . . . ,n . In fact,

n

∑
j=1

Φ j(A0) =
n

∑
j=1

Φ j(A1
11⊕·· ·⊕An

nn) = A1
11⊕·· ·⊕An

nn = A0.

In this case, if f (x) is operator convex on [m,M] and f (Ak) = ( f (Ak)i j)∈Mn(B(H ))
for k = 1, . . . ,n , then Theorem 2.1 implies

f (Aj
j j) � f (tA j +(1− t)A0) j j � f (Aj) j j

for all t ∈ [0,1] and j = 1, . . . ,n .

Since ∑n
j=1 ω j

(
∑n

k=1 ωkAk

)
= ∑n

k=1 ωkAk , putting Φ j(X) = ω jX for X ∈ B(H )
in Theorem 2.1, we obtain a version of (2.1) with unital positive linear mappings as
follows (see [8, Theorem 2.2]):
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COROLLARY 2.3. For j = 1, . . . ,n, let A j be self-adjoint operators with m �
Aj � M for some scalars m � M, Φ j unital positive linear mappings on B(H ) , and
ω = (ω1, . . . ,ωn) a weight vector. If f (x) is operator convex on [m,M] , then

f

(
n

∑
j=1

ω jΦ j(Aj)

)
�

n

∑
j=1

ω j f

(
tΦ j(Aj)+ (1− t)

n

∑
k=1

ωkΦk(Ak)

)

�
n

∑
j=1

ω jΦ j
(
f (Aj)

)
(2.2)

for all t ∈ [0,1] . Moreover, the function

F(t) =
n

∑
j=1

ω j f

(
tΦ j(Aj)+ (1− t)

n

∑
k=1

ωkΦk(Ak)

)

is monotonically nondecreasing and convex on [0,1] .

Proof. If we put Φ j(X) = ω jX in Theorem 2.1, then

f

(
n

∑
j=1

ω jA j

)
�

n

∑
j=1

ω j

(
f
(
tA j +(1− t)

n

∑
k=1

ωkAk

))
�

n

∑
j=1

ω j
(
f (Aj)

)
holds for all t ∈ [0,1] and the function

t �→
n

∑
j=1

ω j

(
f
(
tA j +(1− t)

n

∑
k=1

ωk(Ak)
))

is monotonically nondecreasing and convex on [0,1] . Now, replacing Aj by Φ j(Aj) in
the above results, where Φ j is a unital positive linear mapping, we obtain

f

(
n

∑
j=1

ω jΦ j(Aj)

)
�

n

∑
j=1

ω j f

(
tΦ j(Aj)+ (1− t)

n

∑
k=1

ωkΦk(Ak)

)

�
n

∑
j=1

ω j f
(
Φ j(Aj)

)
�

n

∑
j=1

ω jΦ j
(
f (Aj)

)
(by the Davis-Choi-Jensen inequality)

for all t ∈ [0,1] and the function F is monotonically nondecreasing and convex on
[0,1] . �
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3. Application of Jensen’s inequality

As an application, we obtain an interpolation between quasi-arithmetic means. We
define the quasi-arithmetic mean of operators:

Mϕ (A;ΦΦΦΦΦ) := ϕ−1

(
n

∑
j=1

Φ j (ϕ(Aj))

)
, (3.1)

where A = (A1, . . . ,Ak) is an n -tuple of self-adjoint operators in Bh(H ) with spec-
tra in an interval I , ΦΦΦΦΦ = (Φ1, . . . ,Φk) is an n -tuple of positive linear mappings Φ j :
B(H )→B(K ) such that ∑n

j=1 Φ j(1H ) = 1K , and ϕ : I →R is a strictly monotone
function. If ϕ−1 is operator concave on ϕ(I) , then

Mϕ (A;Φ) � M1(A;Φ) =
n

∑
j=1

Φ j(Aj). (3.2)

The power mean is a special case of the quasi-arithmetic mean

Mr(A;ΦΦΦΦΦ) :=

⎧⎪⎨⎪⎩
(

∑n
j=1 Φ j

(
Ar

j

))1/r
, r ∈ R\{0},

exp
(

∑n
j=1 Φ j

(
log(Aj)

))
, r = 0 ,

(3.3)

where A = (A1, . . . ,An) is an n -tuple of positive invertible operators.
Replacing Φ j by ω jΦ j in (3.1), where Φ j : B(H ) → B(K ) are unital positive

linear mappings for all j = 1, . . . ,n , and ω = (ω1, . . . ,ωn) is a weight vector, we have
special cases of (3.1)

Mϕ(ω ;A;ΦΦΦΦΦ) := ϕ−1

(
n

∑
j=1

ω jΦ j (ϕ(Aj))

)
. (3.4)

We can define analogue a mean Mr(ω ;A;ΦΦΦΦΦ) by using (3.3).
By virtue of Theorem 2.1, we have an interpolation of the quasi-arithmetic mean

and the arithmetic mean M1(A;Φ) in (3.2).

THEOREM 3.1. Let A = (A1, . . . ,An) be an n-tuple of self-adjoint operators in
Bh(H ) with spectra in an interval I , ΦΦΦΦΦ = (Φ1, . . . ,Φn) a totally unital n-tuple of
positive linear mappings Φ j on B(H ) , and ej , j = 1, . . . ,n the standard basis vector
in R

n ( i.e. ej be an n-tuple that has 1 at the j th position and zeros everywhere else
) .

If ϕ : I → R is a strictly monotone function such that ϕ−1 is operator concave on
ϕ(I) and ∑n

j=1 Φ j preserves the operator A0 = ∑n
k=1 Φk(Ak) , then

Mϕ(A;ΦΦΦΦΦ) �
n

∑
j=1

Φ j
(
Mϕ (A;tej +(1− t)ΦΦΦΦΦ)

)
� M1(A;ΦΦΦΦΦ) (3.5)
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for all t ∈ [0,1] . Moreover,

M(t) :=
n

∑
j=1

Φ j
(
Mϕ (A;tej +(1− t)ΦΦΦΦΦ)

)
is monotonically nonincreasing and concave on [0,1] .

But, if ϕ−1 is operator convex on ϕ(I) , then the reverse inequalities are valid in
(3.5) and M(t) is monotonically nondecreasing and convex on [0,1].

Proof. If we replace Aj by ϕ(Aj) in Theorem 2.1 we obtain

f

(
n

∑
j=1

Φ j(ϕ(Aj))

)
�

n

∑
j=1

Φ j

(
f
(
tϕ(Aj)+ (1− t)

n

∑
k=1

Φk(ϕ(Ak))
))

�
n

∑
j=1

Φ j
(
f (ϕ(Aj))

)
for all t ∈ [0,1] , where f is operator concave on ϕ(I) . Since ϕ−1 is operator concave
on ϕ(I) , then

ϕ−1

(
n

∑
j=1

Φ j(ϕ(Aj))

)

�
n

∑
j=1

Φ j

(
ϕ−1

(
tϕ(Aj)+ (1− t)Φ1(ϕ(A1))+ . . .+(1− t)Φn(ϕ(An))

))
�

n

∑
j=1

Φ j(Aj),

which give the desired inequality (3.5). Next, it follows from Theorem 2.1 that

M(t) =
n

∑
j=1

Φ j

(
ϕ−1

(
tϕ(Aj)+ (1− t)

n

∑
k=1

Φk(ϕ(Ak))
))

=
n

∑
j=1

Φ j
(
Mϕ(A;tej +(1− t)ΦΦΦΦΦ)

is monotonically nonincreasing and concave on [0,1] . �
Combining inequalities in Theorem 3.1 we obtain the following corollary.

COROLLARY 3.2. Let the assumptions of Theorem 3.1 hold and ∑n
j=1 Φ j pre-

serves the operator A0 = ∑n
k=1 Φk(Ak) . If ϕ ,ψ : I →R is a strictly monotone functions

such that ϕ−1 is operator concave and ψ−1 is operator convex, then

Mϕ(A;ΦΦΦΦΦ) �
n

∑
j=1

Φ j
(
Mϕ(A;tej +(1− t)ΦΦΦΦΦ)

)
� M1(A;ΦΦΦΦΦ)

�
n

∑
j=1

Φ j
(
Mψ (A;tej +(1− t)ΦΦΦΦΦ)

)
� MΨ(A;ΦΦΦΦΦ)
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for all t ∈ [0,1] .

Now, we give a generalization of inequalities in Corollary3.2.

COROLLARY 3.3. Let A = (A1, . . . ,An) and B = (B1, . . . ,Bn) be two n-tuples
of self-adjoint operators in Bh(H) with spectra in JA and JB , respectively, and ΦΦΦΦΦ =
(Φ1, . . . ,Φn) and ΨΨΨΨΨ = (Ψ1, . . . ,Ψn) be two totally unital n− tuples of positive linear
mappings Φ j,Ψ j on B(H ) . If ∑n

j=1 Φ j preserves the operator A0 = ∑n
k=1 Φk(Ak) ,

∑n
j=1 Ψ j preserves the operator B0 = ∑n

k=1 Ψk(Bk) and A0 � B0 , then

Mϕ(A;ΦΦΦΦΦ) �
n

∑
j=1

Φ j
(
Mϕ(A;tej +(1− t)ΦΦΦΦΦ)

)
� M1(A;ΦΦΦΦΦ)

� M1(B;ΨΨΨΨΨ) �
n

∑
j=1

Ψ j
(
Mψ(B;sej +(1− s)ΨΨΨΨΨ)

)
� MΨ(B;ΨΨΨΨΨ)

for all t,s ∈ [0,1] and every strictly monotone functions ϕ : JA → R , ψ : JB → R such
that ϕ−1 is operator concave and ψ−1 is operator convex.

By virtue of Corollary 2.3, similar to Corollary 3.3 we have interpolations of the
quasi-arithmetic mean (3.4) and the weighted arithmetic mean M1(ω ;A;Φ) (see [8,
Theorem 3.4]).

COROLLARY 3.4. Let A = (A1, . . . ,An) and B = (B1, . . . ,Bn) be two n-tuples of
self-adjoint operators in Bh(H ) with spectra in [mA,MA] and [mB,MB] , respectively,
such that mA � MB . Let Φ = (Φ1, . . . ,Φn) be an n-tuple of unital positive linear
mappings Φ j : B(H )→B(K ) . If ω = (ω1, . . . ,ωn) and ν = (ν1, . . . ,νn) are weight
vectors, then

Mϕ (ω ;A;Φ) �
n

∑
j=1

ω jMϕ
(
te j +(1− t)ω ;A;Φ

)
� M1(ω ;A;Φ)

� M1(ν;B;Φ) �
n

∑
j=1

ν jMψ
(
se j +(1− s)ν;B;Φ

)
� Mψ (ω ;B;Φ)

holds for all t,s ∈ [0,1] and every strictly monotone functions ϕ : [mA,MA] → R ,
ψ : [mB,MB] → R such that ϕ−1 is operator concave and ψ−1 is operator convex.

Applying the above results we can obtain an interpolation of the power-arithmetic
mean inequalities. For example, we give the following corollary (see also [8, Remark
1]).

COROLLARY 3.5. Let A = (A1, . . . ,An) be an n-tuple of positive invertible op-
erators in B+

h (H) , Φ = (Φ1, . . . ,Φn) an n-tuple of unital positive linear mappings
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Φ j : B(H ) → B(K ) , and ω = (ω1, . . . ,ωn) a weight vector. Then

(
n

∑
j=1

ω jΦ j
(
Ar

j

)) 1
r

�
n

∑
j=1

ω j

(
t1Φ j(Ar

j)+ (1− t1)
n

∑
k=1

ωkΦk(Ar
k)
) 1

r

�
n

∑
j=1

ω jΦ j (Aj)

�
n

∑
j=1

ω j

(
t2Φ j(As

j)+ (1− t2)
n

∑
k=1

ωkΦk(As
k)
) 1

s �
(

n

∑
j=1

ω jΦ j
(
As

j

)) 1
s

for all t1, t2 ∈ [0,1] , r ∈ [1,∞) and s ∈ (−∞,−1]∪ [1/2,1] . Moreover, if r ∈ [1,∞) then

M(t) :=
n

∑
j=1

ω j

(
tΦ j(Ar

j)+ (1− t)
n

∑
k=1

ωkΦk(Ar
k)
) 1

r

is monotonically nonincreasing and concave on [0,1] , but if r ∈ (−∞,−1]∪ [1/2,1]
then M(t) is monotonically nondecreasing and convex on [0,1]

4. Application of Operator power means

Let A = (A1, . . . ,An) be an n -tuple of positive invertible operators on a Hilbert
space and ω = (ω1, . . . ,ωn) a weight vector. Putting Φ j(X) = ω jX in (3.3), we have
the ordinary power means

Mr(ω ;A) =

(
n

∑
j=1

ω jA
r
j

)1/r

for r �= 0 . (4.1)

It is known that the power mean Mr(ω ;A) is not operator mean except r = 1. In this
case, Corollary 3.5 says that(

n

∑
j=1

ω jA
r
j

)1/r

�
n

∑
j=1

ω j

(
tAr

j +(1− t)
n

∑
k=1

ωkA
r
k

)1/r

�
n

∑
j=1

ω jA j

for 1/2 � r � 1 and t ∈ [0,1] . If the Aj ’s commute, then we have(
n

∑
j=1

ω jA
r
j

)1/r

�
[

n

∑
j=1

ω j

(
tA j +(1− t)

n

∑
k=1

ωkAk

)r]1/r

�
n

∑
j=1

ω jA j (4.2)

for 0 < r � 1 and t ∈ [0,1] .
We try to study a noncommutative operator version of (4.2). For this, we recall the

operator power means for positive invertible operators. In 2014, Lawson and Lim [5]
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established a new definition of operator power means for positive invertible operators,
which is an extension of Mr(ω ;A) for 0 < r � 1 and the commuting A , that is, the
Aj ’s commute each other. They showed that there exists the unique positive invertible
solition of the power mean equation

X =
n

∑
j=1

ω jX �r A j (4.3)

for 0 < r � 1, where the opertor geometric mean �r is defined by

X �r Y = X1/2(X−1/2YX−1/2)rX1/2.

For each 0 < r � 1, we say that the solution X of (4.3) is the operator power mean for
A = (A1, . . . ,An) and denote it by Pr(ω ;A) = Pr(ω ;A1, . . . ,An) . In the case of n = 2,
the operator power mean Pr((1−u,u);A,B) coincides with

A �r,u B = A1/2
(
(1−u)1H +u(A−1/2BA−1/2)r

)1/r
A1/2

for 0 < r � 1 and u ∈ [0,1] . We list some properties of the operator power means
which we need later: For each 0 < r � 1

(P1) Consistency with scalars: Pr(ω ;A) =
(

∑n
j=1 ω jAr

j

)1/r
if the Aj ’s commute;

(P2) Joint concavity:

(1−u)Pr(ω ;A)+uPr(ω ;B) � Pr(ω ;(1−u)A+uB)

for any u ∈ [0,1] ;

(P3) Arithmetic-Geometric mean inequality: Pr(ω ;A) � ∑n
j=1 ω jA j .

Now, we show an interpolation of (P3), which is a noncommutative operator version of
(4.2):

THEOREM 4.1. Let A1, . . . ,An be positive invertible operators and
ω = (ω1, . . . ,ωn) a weight vector. Then for each 0 < r � 1

Pr(ω ;A1, . . . ,An)

� Pr(ω ;tA1 +(1− t)
n

∑
k=1

ωkAk, . . . ,tAn +(1− t)
n

∑
k=1

ωkAk)

�
n

∑
j=1

ω jA j

for all t ∈ [0,1] . Moreover, for each 0 < r � 1

Mr(t) = Pr(ω ;tA1 +(1− t)
n

∑
k=1

ωkAk, . . . ,tAn +(1− t)
n

∑
k=1

ωkAk)

is monotonically nonincreasing and concave on [0,1] .
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Proof. Put A0 = ∑n
k=1 ωkAk . By the joint concavity (P2) of the operator power

means, we have

Pr(ω ; tA1 +(1− t)A0, . . . ,tAn +(1− t)A0)
� tPr(ω ;A1, . . . ,An)+ (1− t)Pr(ω ;A0, . . . ,A0)
= tPr(ω ;A1, . . . ,An)+ (1− t)A0 by (P1)

� tPr(ω ;A1, . . . ,An)+ (1− t)Pr(ω ;A1, . . . ,An) by (P3)

= Pr(ω ;A1, . . . ,An).

The second inequality follows from (P3):

Pr(ω ;tA1 +(1− t)A0, . . . ,tAn +(1− t)A0)

�
n

∑
j=1

ω j(tA j +(1− t)A0) =
n

∑
j=1

ω jA j.

For the concavity of Mr , we have for t1,t2 ∈ [0,1] and 0 < t < 1

tMr(t1)+ (1− t)Mr(t2)
� Pr(ω ;t[t1A1 +(1− t1)A0]+ (1− t)[t2A1 +(1− t2)A0], . . . ,

t[t1An +(1− t1)A0]+ (1− t)[t2An +(1− t2)A0])
= Mr(tt1 +(1− t)t2)

and so Mr is concave on [0,1] .
For monotonically nonincreasing of Mr , if 0 < s < t < 1, then s = t−s

t · 0+ s
t · t

and the concavity of Mr implies

Mr(s) � t− s
t

Mr(0)+
s
t
Mr(t) � Mr(t)

because Mr(0) = Pr(ω ;A0) = A0 � Mr(t) , and the proof is complete. �

REMARK 4.2. Lawson and Lim [5] showed that the Karcher mean is the strong
operator limit as r → 0 of the operator power mean Pr . Therefore, as r → 0 in Theo-
rem 4.1, we obtain [8, Theorem 3.2].

5. Results related to converses of Jensen’s inequality

In this section we observe converses of the inequalities obtained in Section 2. For
given f : [m,M] → R , m < M , let l f (x) denote a linear function through (m, f (m))
and (M, f (M)) , i.e.

l f (x) = a f x+b f =
f (M)− f (m)

M−m
x+

M f (m)−mf (M)
M−m

.

To obtain our results, we will need a discrete version of [7, Lemma 4].
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LEMMA 5.1. For j = 1, . . . ,n, let A j ∈ Bh(H ) be self-adjoint operators such
that m � Aj � M for some scalars m < M and Φ j : B(H ) → B(K ) positive linear
mappings such that ∑n

j=1 Φ j(1H ) = 1K . Then

n

∑
j=1

Φ j
(
f (Aj)

)
� l f

( n

∑
k=1

Φk(Ak)
)
− δ Ã � l f

( n

∑
k=1

Φk(Ak)
)

(5.1)

for every continuous convex function f : [m,M] → R , where

δ = f (m)+ f (M)−2 f

(
m+M

2

)
� 0,

Ã =
1
2
1K − 1

M−m

n

∑
j=1

Φ j

(∣∣Aj − m+M
2

1H

∣∣)� 0.

If f is concave, then the reverse inequality is valid in (5.1).

Now, we give results related to converses of Jensen’s inequality given in Theo-
rem 2.1. We start with the difference case of a converse of (2.1):

THEOREM 5.2. For j = 1, . . . ,n, let A j ∈ Bh(H ) be self-adjoint operators such
that m � Aj � M for some scalars m < M and Φ = (Φ1, . . . ,Φn) a totally unital n-
tuple of positive linear mappings on B(H ) . If f (x) is convex on [m,M] and ∑n

j=1 Φ j

preserves the operator A0 = ∑n
k=1 Φk(Ak) , then

n

∑
j=1

Φ j
(
f (Aj)

)
�

n

∑
j=1

Φ j

(
f (tA j +(1− t)

n

∑
k=1

Φk(Ak)
)

+ β1H − δ Ã

� f
( n

∑
j=1

Φ j(Aj)
)

+2β1H − δ (Ã+ Ãt)
(5.2)

for all t ∈ [0,1] , where

β = max
m�x�M

{
l f (x)− f (x)

}
, δ = f (m)+ f (M)−2 f

(
m+M

2

)
,

Ãt =
1
2
1H − 1

M−m

n

∑
j=1

Φ j

(∣∣tA j +(1− t)A0− m+M
2

1H

∣∣)
and Ã =

1
2
1H − 1

M−m

n

∑
j=1

Φ j

(∣∣Aj − m+M
2

1H

∣∣) .

If f (x) is concave then the reverse inequality is valid in (5.2).

Proof. By using Lemma 5.1 and since A0 = ∑n
j=1 Φ j(A0) we have:

n

∑
j=1

Φ j
(
f (Aj)

)
� l f

( n

∑
j=1

Φ j(Aj)
)
− δ Ã = l f

( n

∑
j=1

Φ j
(
tA j +(1− t)A0

))− δ Ã. (5.3)

By using that m � tA j +(1− t)A0 � M for j = 1, . . . ,n , we have

l f
(
tA j +(1− t)A0

)− f
(
tA j +(1− t)A0

)
� max

m�x�M

{
l f (x)− f (x)

}
1H = β1H
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and so

l f

( n

∑
j=1

Φ j
(
tA j +(1− t)A0

))
=

n
∑
j=1

Φ j

(
l f
(
tA j +(1− t)A0

))
�

n

∑
j=1

Φ j

(
f (tA j +(1− t)A0

)
+ β1H .

(5.4)

Combining (5.3) and (5.4) we obtain

n

∑
j=1

Φ j
(
f (Aj)

)
�

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))
+ β1H − δ Ã. (5.5)

Next, replacing Aj by tA j +(1− t)A0 in (5.1) we obtain

n
∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))− f
( n

∑
j=1

Φ j(Aj)
)

� l f

( n

∑
j=1

Φ j
(
tA j +(1− t)A0

))− δ Ãt − f
( n

∑
j=1

Φ j(Aj)
)

= l f

( n

∑
j=1

Φ j
(
tA j
))− f

( n

∑
j=1

Φ j(Aj)
)
− δ Ãt

� max
m�x�M

{
l f (x)− f (x)

}
1H − δ Ãt = β1H − δ Ãt .

(5.6)

Now, combining (5.5) and (5.6) we obtain (5.2). �
Next, we give the ratio case of a converse of (2.1).

THEOREM 5.3. Let the assumptions of Theorem 5.2 hold. If f (x) is strictly posi-
tive convex on [m,M] , and ∑n

j=1 Φ j preserves the operator A0 , then

n

∑
j=1

Φ j
(
f (Aj)

)
� γ1

n

∑
j=1

Φ j

(
f (tA j +(1− t)

n

∑
k=1

Φk(Ak)
)

� γ1γ2 f
( n

∑
j=1

Φ j(Aj)
)

(5.7)

for all t ∈ [0,1] , where

γ1 = max
m�x�M

{
l f (x)− δmÃ

f (x)

}
, γ2 = max

mA�x�MA

{
l f (x)− δmÃt

f (x)

}
, mÃ and mÃt

are the

lower bound of the operator Ã and Ãt , respectively, and Ã and Ãt are as in Theo-
rem 5.2.

If f (x) is strictly positive concave then the reverse inequality is valid in (5.7).

Proof. We use the same technique as in the proof of Theorem 5.2. Ineq. (5.3) give

∑n
j=1 Φ j

(
f (Aj)

)
�

n
∑
j=1

Φ j

(
l f
(
tA j +(1− t)A0

))− δmÃ

=
n
∑
j=1

Φ j

(
l f
(
tA j +(1− t)A0

)− δmÃ

) (5.8)
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Since

l f
(
tA j +(1− t)A0

)− δmÃ � max
m�x�M

{
l f (x)− δmÃ

f (x)

}
f
(
tA j +(1− t)A0

)
= γ1 f

(
tA j +(1− t)A0

)
,

we obtain

n

∑
j=1

Φ j

(
l f
(
tA j +(1− t)A0

)− δmÃ

)
� γ1

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))
. (5.9)

Combining (5.8) and (5.9) we obtain

n

∑
j=1

Φ j
(
f (Aj)

)
� γ1

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))
. (5.10)

Next, replacing Aj by tA j +(1− t)A0 in (5.1) we obtain

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))
� l f

( n

∑
j=1

Φ j
(
tA j +(1− t)A0

))− δmÃt

= l f

( n

∑
j=1

Φ j
(
Aj
))− δmÃt

and so

n
∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))
� max

mA�x�MA

{
l f (x)− δmÃt

f (x)

}
f
( n

∑
j=1

Φ j(Aj)
)

= γ2 f
( n

∑
j=1

Φ j(Aj)
)
.

(5.11)

Now, combining (5.10) and (5.11) we obtain (5.7). �

REMARK 5.4. Let the assumptions of Theorem 5.3 hold. Similar to (5.7) we can
obtain the following inequalities:

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))
� γ

n

∑
j=1

Φ j

(
f (tA j +(1− t)A0

)
− δ Ã

� γ γ0 f
( n

∑
j=1

Φ j(Aj)
)
− δ

(
Ã+ γÃt

)
and

n

∑
j=1

Φ j

(
f
(
tA j +(1− t)A0

))
� γ

n

∑
j=1

Φ j

(
f (tA j +(1− t)A0

)
− δ Ã

� γ γ2 f
( n

∑
j=1

Φ j(Aj)
)
− δ Ã
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for all t ∈ [0,1] , where γ = max
m�x�M

{
l f (x)/ f (x)

}
, γ0 = max

mA�x�MA

{
l f (x)/ f (x)

}
and

γ2 = max
mA�x�MA

{
l f (x)− δmÃt

f (x)

}
.

Now we give converses of (2.2).

COROLLARY 5.5. For j = 1, . . . ,n, let A j be self-adjoint operators with m �
Aj � M for some scalars m < M, Φ j be unital positive linear mappings, and ω =
(ω1, . . . ,ωn) be a weight vector. If f (x) is convex on [m,M] , then

n

∑
j=1

ω jΦ j
(
f (Aj)

)
�

n

∑
j=1

ω j

(
f (tΦ j(Aj)+ (1− t)

n

∑
k=1

Φk(Ak)
)

+ β1H − δ Ã

� f
( n

∑
j=1

ω jΦ j(Aj)
)

+2β1H − δ (Ã+ Ãt)
(5.12)

for all t ∈ [0,1] , where β , Ãt and Ã are as in Theorem 5.2.
Additionally, if f (x) is strictly positive convex on [m,M] , then

n

∑
j=1

ω jΦ j
(
f (Aj)

)
� γ1

n

∑
j=1

(
f (tΦ j(Aj)+(1−t)

n

∑
k=1

ω jΦk(Ak)
)

� γ1γ2 f
( n

∑
j=1

ω jΦ j(Aj)
)

(5.13)
for all t ∈ [0,1] , where γ1 , γ2 are as in Theorem 5.3.

6. Application of converses of Jensen’s inequality

As an application, we give converses of (3.5).

THEOREM 6.1. (Difference case) Let A = (A1, . . . ,Ak) be an n-tuple of self-
adjoint operators in Bh(H ) such that m � Aj � M for some scalars m < M, ΦΦΦΦΦ =
(Φ1, . . . ,Φk) be a totally unital n-tuple of positive linear mappings Φ j on B(H ) and
ej , j = 1, . . . ,n, be the standard basis vector in R

n .
If ϕ : [m,M]→R is a strictly monotone function such that ϕ−1 is concave on ϕ([m,M])
and ∑n

j=1 Φ j preserves the operator A0 = ∑n
k=1 Φk(Ak) , then

Mϕ(A;ΦΦΦΦΦ)+ (β0 + β )1H − δ (Ã+ Ãt) �
n

∑
j=1

Φ j
(
Mϕ(A; tej +(1− t)ΦΦΦΦΦ)

)
+ β1H − δ Ã

� M1(A;ΦΦΦΦΦ)
(6.1)

for all t ∈ [0,1] , where β , β0 , Ãt and Ã are as in Theorem 5.2.
But, if ϕ−1 is convex on ϕ([m,M]) , then the reverse inequalities are valid in (6.1).



INTERPOLATIONS OF JENSEN’S INEQUALITY AND QUASI-ARITHMETIC MEAN INEQUALITIES 119

THEOREM 6.2. (Ratio case) Let the assumptions of Theorem 5.2 hold. If ϕ :
I → R is a strictly monotone function such that ϕ−1 is strictly positive concave on
ϕ([m,M]) and ∑n

j=1 Φ j preserves the operator A0 , then

Mϕ(A;ΦΦΦΦΦ) � γ1

n

∑
j=1

Φ j
(
Mϕ (A;tej +(1− t)ΦΦΦΦΦ)

)
� γ1γ2 M1(A;ΦΦΦΦΦ) (6.2)

for all t ∈ [0,1] , , where γ1 , γ2 are as in Theorem 5.3.

But, if ϕ−1 is convex on ϕ([m,M]) , then the reverse inequalities are valid in (6.2).

Proof. We omit the proofs of the above two theorems because it is proved in a
similar method as Theorem 3.1. �

REMARK 6.3. The interested reader can obtain other results. E.g.

1) Combining inequalities in Theorem 6.1 can be obtained a converse of inequal-
ities in Corollary 3.2. Combining inequalities in Theorem 6.2 can be obtained another
converse of these inequalities.

2) Similar, can be obtained converses of inequalities in Corollary 3.3 and 3.4.
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[7] J. MIĆIĆ, J. PEČARIĆ AND J. PERIĆ, Refined converses of Jensen’s inequality for operators, J. In-
equal. Appl. 2013:353 (2013) 1–20.
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