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PROPERTIES OF FUNCTIONS RELATED TO

HADAMARD TYPE INEQUALITY AND APPLICATIONS

WEN WANG AND XINQUAN ZHANG ∗

(Communicated by J. Pečarić)

Abstract. The aim of this paper is first to generalize Hadamard’s inequality. Further, Schur m -
power convex of the associated continuous function of two variables by utilize the Hadamard
type inequalities are obtained. As applications, a inequality related special mean is established.
And we also improve Jordan’s inequality.

1. Introduction

Convex functions and Schur convex functions have been found to play an impor-
tant role in the theory of special functions and mathematical statistics (see
[4,10,11,14,17]).

Let R++ = (0,∞) .
A function f : I ⊂ R → R is convex function on I , if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y), ∀x,y ∈ I,t ∈ [0,1]. (1.1)

f is said to be concave if − f is convex.
Let f : I ⊂ R → R be a convex function. The well-known Hadamard’s inequality

states as follows

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
, a,b ∈ I with a < b. (1.2)

For many recent results related to this classic result, see books [4,10,11,14,17] and
the papers [5,8,15,16,21].

In [6], S. S. Dragomir established the following theorem which a refinement of the
first inequality of (1.2).
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THEOREM 1.1. ([6]). Let f : [a,b]→ R be a convex function, and

G(t) =
1

2(b−a)

∫ b

a
[ f (ta+(1− t)x)+ f (tb+(1− t)x)]dx, t ∈ [0,1].

Then G is convex on [0,1], and for all t ∈ [0,1] , we have

1
b−a

∫ b

a
f (x)dx = G(0) � G(t) � G(1) =

f (a)+ f (b)
2

. (1.3)

In [12, 13], M. Merkle discussed the Schur convexity of the associated function of
two variables F(x,y) = ( f (y)− f (x))/(y− x) by using the Hadamard’s inequality.

In [7], N. Elezović and J. Pec̆arić researched the Schur convexity on the upper and
the lower limit of the integral for the mean of the convex function and established the
following important result by utilize the Hadamard’s inequality.

THEOREM 1.2. ([7]). Let f : I ⊂ R → R be a continuous function on I . Then

Φ(x,y) :=

⎧⎨
⎩

1
y− x

∫ y

x
f (t)dt, x,y ∈ I, x �= y

f (x), x = y ∈ I.

is Schur convex (Schur concave) on I2 if and only if f is convex (concave)on I .

For many results related to the Schur convex related to Hadamard’s inequality, see
the papers [2,3,19,20].

Recently, Yang [26-28] generalized the notion of Schur convexity to Schur m-
power convexity, which contains the Schur convexity, Schur geometrical convexity,
Schur harmonic convexity. Moreover, he discussed Schur m-power convexity of Sto-
larsky means [26], Gini means [27] and Daróczy means [28]. Wang and Yang proved
that generalized Hamy symmetric function [22] and a class of multiplicatively functions
[23] are Schur m-power convex.

The aim of this paper is first establish a generalization of Hadamard’s inequal-
ity. Further, the Schur m-power convex of the associated continuous function of two
variables by utilize the Hadamard type inequalities are obtained. As applications, a
relevant double inequality which is a extension of the known inequality is established.
And several refinements and new inequalities for Jordan’s inequality are obtained.

2. Main results

Our main results are presented as follows.

THEOREM 2.1. Let f : I ⊂ R++ → R be a continuous function on I . If f is
convex and increasing, and a parameter m � 1 (or if f is convex and decreasing, and
m > 1 ), then

1
y− x

∫ y

x
f (t)dt � x1−m f (x)+ y1−m f (y)

x1−m + y1−m . (2.1)
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If f is concave and decreasing, and m � 1 (or if f is concave and increasing, and
m > 1 ), then (2.1) is reversed.

REMARK 1. From the proof of the theorem 2.1, it can be seen that the monotonic
conditions of functions in the theorem 2.1 for m = 1 can be omitted.

THEOREM 2.2. Let f : I ⊂ R++ → R be a continuous function on I . If f is
convex and increasing, and a parameter m � 1 (or if f is convex and decreasing, and
m > 1 ), then

Φ(x,y) :=

⎧⎨
⎩

1
y−x

∫ y

x
f (t)dt, x,y ∈ I,x �= y

f (x), x = y ∈ I

is Schur m-power convex on I2 . If f is concave and decreasing, and m � 1 (or if f is
concave and increasing, and m > 1 ), then Φ(x,y) is Schur m-power concave on I2 .

REMARK 2. From the proof of the theorem 2.2, it can be seen that the monotonic
conditions of functions in the theorem 2.1 for m = 1 can be omitted.

Take m = 1,0,−1, we get the following corollaries.

COROLLARY 2.1. Let f : I ⊂ R++ → R be a continuous function on I . If f is
convex and monotonicity, then Φ(x,y) is Schur convex. If f is concave and monotonic-
ity, then Φ(x,y) is Schur concave.

REMARK 3. The Corollary 2.1 is the result in [7, P854, Theorem 1]. So, our
results generalize this conclusion.

COROLLARY 2.2. Let f : I ⊂ R++ → R be a continuous function on I . If f is
convex and increasing, then Φ(x,y) is Schur geometrically convex and Schur harmon-
ically convex. If f is concave and decreasing, then Φ(x,y) is Schur geometrically
concave and Schur harmonically concave.

THEOREM 2.3. Let f : I ⊂ R++ → R be a continuous function, and

G(t) =
1

2(y− x)

∫ y

x
[ f (tx+(1− t)u)+ f (ty+(1− t)u)]du, t ∈ [0,1].

For any t ∈ [0,1] , we define a function of x,y as follows:

P(x,y) :=

{
G(t), x,y ∈ I, x �= y

f (x), x = y ∈ I.

(i) for m � 1 and x1−m

x1−m+y1−m � t � 1 , if f is convex (concave) and decreasing on I ,

then P(x,y) is Schur m-power convex (Schur m-power concave) on I2 ;

(ii) for m < 1 and 0 � t � x1−m

x1−m+y1−m , if f is concave (convex) and increasing on I ,

then P(x,y) is Schur m-power concave (Schur m-power convex) on I2 .
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REMARK 4. From the proof of the theorem 2.3, it can be seen that the monotonic
conditions of functions in the theorem 2.3 for m = 1 can be omitted.

COROLLARY 2.3. For 1
2 � t � 1 , if f is convex (concave) on I , then P(x,y) is

Schur convex (Schur concave) on I2 ; for 0 � t � 1
2 , if is concave (convex) on I , then

P(x,y) is Schur concave (Schur convex) on I2 .

REMARK 5. The Corollary 2.3 is the result in [3, P1138,Corollary 1]. So, our
results partially generalize this conclusion.

COROLLARY 2.4. For x
x+y � t � 1 , if f is convex and decreasing on I , then

P(x,y) is Schur geometrically convex on I2 ; for 0 � t � x
x+y , if is concave and increas-

ing on I , then P(x,y) is Schur geometrically concave on I2 .

COROLLARY 2.5. For x2

x2+y2 � t � 1 , if f is convex and decreasing on I , then

P(x,y) is Schur harmonically convex on I2 ; for 0 � t � x2

x2+y2 , if is concave and in-

creasing on I , then P(x,y) is Schur harmonically concave on I2 .

3. Definitions and Lemmas

We first recall several definitions as follows.

DEFINITION 3.1. [11] Suppose that x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) ∈
R

n are two n -tuples real numbers.
(1) y majorizes x (in symbols x ≺ y ), if ∑k

i=1 x[i] � ∑k
i=1 y[i],(k = 1,2, · · · ,n−

1) and ∑n
i=1 x[i] = ∑n

i=1 y[i] , where x[1] � x[2] � · · · � x[n], y[1] � y[2] � · · · � y[n] are
rearrangements of x and y in a descending order.

(2) A real-valued function f : Ω ⊂ R
n → R is said to be Schur convex on Ω if

x ≺ y on Ω ⇒ f (x) � f (y).

f is a Schur concave function on Ω if and only if − f is a Schur convex function.

DEFINITION 3.2. [30] Suppose x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) ∈ R
n

are two n -tuples real numbers. Let Ω⊂R
n
++ . A function f : Ω →R++ is called Schur

geometrically convex if

lnx ≺ lny on Ω ⇒ ϕ(x) � ϕ(y).

f is Schur geometrically concave if − f is Schur geometrically convex.
The following Theorem is basic and plays an important role in the theory of the

Schur geometrically convex function.
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LEMMA 3.1. ([30]) Let ϕ(x) = ϕ(x1,x2, · · · ,xn) be symmetric and continuous on
Ω ⊂ R

n
++ and differentiable in Ω0 . Then ϕ : Ω → R++ is Schur geometrically convex

(Schur geometrically concave) if and only if

(lnx1− lnx2)
(

x1
∂ϕ
∂x1

− x2
∂ϕ
∂x2

)
� 0(� 0). (3.1)

DEFINITION 3.3. [1, 25] Let Ω ∈ R
n .

(1) A set Ω is called harmonically convex if xy
λx+(1−λy) ∈ Ω for every x,y ∈ Ω

and λ ∈ [0,1] , where xy = ∑n
i=1 xiyi and 1

x =
(

1
x1

, · · · , 1
xn

)
.

(2) A function ϕ : Ω → R++ is called Schur harmonically convex on Ω if 1
x ≺ 1

y
implies ϕ(x) � ϕ(y) . f is Schur harmonically concave if − f is Schur harmonically
convex.

LEMMA 3.2. ([1,25]) Let Ω ∈R
n
++ be a symmetric and harmonically convex set

with inner points and let ϕ : Ω → R++ be a continuously symmetric function which
is differentiable in Ω0 . then ϕ is Schur harmonically convex (Schur harmonically
concave) on Ω if and only of

(x1 − x2)
(

x2
1

∂ϕ
∂x1

− x2
2

∂ϕ
∂x2

)
� 0(� 0). (3.2)

Schur convex, Schur geometrically convex and Schur harmonically convex were
introduced by Schur [11], Zhang [30] and Chu [1], respectively, and played a key role
in analytic inequalities. Moreover, the theory of convex functions and Schur convex
functions is one of the most important research fields in modern analysis and geometry.

Recently, Yang present the Schur f -convexity in [26] as follows.

DEFINITION 3.4. [26-28] Let Ω ⊆ R
n be a set with nonempty interior and f be

a strictly monotone function defined on Ω . Let

f (x) = ( f (x1), f (x2), · · · , f (xn)) and f (y) = ( f (y1), f (y2), · · · , f (yn)).

Then function ϕ : Ω → R is said to be Schur f -convex on Ω if f (x) ≺ f (y) on Ω
implies ψ(x) � ψ(y) .

ψ is said to be Schur f -concave if −ψ is Schur f -convex.
Take f (x) = x , lnx , x−1 in Definition 3.4, it yields the Schur convexity, Schur ge-

ometrical convexity and Schur harmonic convexity. It is clear that the Schur f-convexity
is a generalization of the Schur convexity mentioned above. In general, we have:

DEFINITION 3.5. [26-28] Let f : R++ → R be defined by f (x) = (xm −1)/m if
m �= 0 and f (x) = lnx if m = 0. Then function ψ : Ω ⊆ R

n
++ → R is said to be Schur

m-power convex on Ω if f (x) ≺ f (y) on Ω implies ψ(x) � ψ(y) .
ψ is said to be Schur m-power concave if −ψ is Schur m-power convex.
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LEMMA 3.3. ([26−28]) Let ψ : Ω ⊆ R
n
++ → R be continuous on Ω and dif-

ferentiable in Ω0 . Then ψ is schur m-power convex (Schur m-power concave) on Ω
if and only if ψ is symmetric on Ω and

⎧⎪⎪⎨
⎪⎪⎩

xm
1 − xm

2

m

(
x1−m
1

∂ϕ
∂x1

− x1−m
2

∂ϕ
∂x2

)
� 0 (� 0), if m �= 0,

(lnx1− lnx2)
(

x1
∂ϕ
∂x1

− x2
∂ϕ
∂x2

)
� 0 (� 0), if m = 0,

(3.3)

hold for any x = (x1,x2, · · · ,xn) ∈ Ω0 with x1 �= x2 , where Ω ⊆R
n
++ is a symmetric set

with nonempty interior Ω0 .

The following lemma is clearly due to the monotonicity property of the function
xp on R++ .

LEMMA 3.4. [22,23] Then the two discrimination inequalities in Lemma 3.3
are equivalent to

(x1 − x2)
(

x1−m
1

∂ϕ
∂x1

− x1−m
2

∂ϕ
∂x2

)
� (�)0. (3.4)

LEMMA 3.5. Let f (x) = cosx
x − sinx

x2 , x ∈ (0,π ] . Then f (x) is convex and de-
creasing on (0, π

2 ] , and f (x) is convex and increasing on [π
2 ,π ] .

Proof. Since

f ′(x) =
2sinx−2xcosx− x2 sinx

x3 ,

f ′′x =
−x3 cosx+3x2 sinx+6xcosx−6sinx

x4 .

Let g(x) = 2sinx−2xcosx− x2 sinx , and g(0) = 0. Then g′(x) = −x2 cosx � 0. And
g(x) � g(0) = 0. Further, f ′(x) � 0. So f (x) is decreasing on (0, π

2 ] .

Let h(x) = −x3 cosx + 3x2 sinx + 6xcosx− 6sinx , and h(0) = 0. Then h′(x) =
x3 sinx � 0, and h(x) � h(0) = 0. Further, f ′′(x) � 0. So f (x) is convex on (0, π

2 ] .
Similarly, we get that f (x) is convex and increasing on [π

2 ,π ] . �
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4. Main results and Proof

Proof of Theorem 2.1. Since f (x) is convex. Then

Δ = (x1−m + y1−m)
1

y− x

∫ y

x
f (t)dt − (x1−m f (x)+ y1−m f (y))

� (x1−m + y1−m)
f (x)+ f (y)

2
− (x1−m f (x)+ y1−m f (y))

=
1
2
[y1−m( f (x)− f (y))− x1−m( f (x)− f (y))]

=
1
2
( f (x)− f (y))(y1−m − x1−m)

= − 1
2(y− x)2 [(y− x)( f (y)− f (x))][(y− x)(y1−m− x1−m)]. (4.1)

If m � 1 and f is increasing (or m > 1 and f is decreasing), further, according to the
monotonicity property of the functions f and xr and using (4.1), we get that Δ � 0.

If f (x) is concave. Then

Δ = (x1−m + y1−m)
1

y− x

∫ y

x
f (t)dt − (x1−m f (x)+ y1−m f (y))

� (x1−m + y1−m)
f (x)+ f (y)

2
− (x1−m f (x)+ y1−m f (y))

=
1
2
[y1−m( f (x)− f (y))− x1−m( f (x)− f (y))]

=
1
2
( f (x)− f (y))(y1−m − x1−m)

= − 1
2(y− x)2 [(y− x)( f (y)− f (x))][(y− x)(y1−m− x1−m)]. (4.2)

If m � 1 and f is decreasing (or m > 1 and f is increasing), further, according to the
monotonicity property of the functions f and xr and using (4.1), we get that Δ � 0. So
the proof of Theorem 2.1 is complete. �

Proof of Theorem 2.2. Let x �= y . Then

∂Φ(x,y)
∂x

=
1

(y− x)2

∫ y

x
f (t)dt − f (x)

y− x
,

∂Φ(x,y)
∂y

= − 1
(y− x)2

∫ y

x
f (t)dt +

f (y)
y− x

.
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By Lemma 3.3 and 3.4, one has

Δ1 = (y− x)
(

y1−m ∂Φ(x,y)
∂y

− x1−m ∂Φ(x,y)
∂x

)

= (y− x)
[
− 1

(y− x)2

∫ y

x
f (t)dt · (x1−m + y1−m)+

1
(y− x)

(y1−m f (y)+ x1−m f (x))
]

= − 1
(y− x)

∫ y

x
f (t)dt · (x1−m + y1−m)+ (y1−m f (y)+ x1−m f (x)). (4.3)

From (4.3) and applying Theorem 2.1, Theorem 2.2 is valid. �

Proof of Theorem 2.3. It is sufficient prove that (i) , the proof of (ii) is similar with
(i) . We need only consider the case of m > 1 and x1−m

x1−m+y1−m � t � 1. It is clear that

P(x,y) is symmetric. For x �= y , let

P1(x,y) =
∫ y

x
f (tx+(1− t)u)du

and

P2(x,y) =
∫ y

x
f (ty+(1− t)u)du.

Then

P(x,y) =
1

2(y− x)
[P1(x,y)+P2(x,y)] = G(t).

By using the change of the variable s = tx+(1− t)y , then

P1(x,y) =
1

1− t

∫ tx+(1−t)y

x
f (s)ds

=
1

1− t

[∫ tx+(1−t)y

0
f (s)ds−

∫ x

0
f (s)ds

]
.

∂P1(x,y)
∂x

=
t

1− t
f (tx+(1− t)y)− f (x)

1− t
. (4.4)

∂P1(x,y)
∂y

= f (tx+(1− t)y). (4.5)

Notice that P2(x,y) = −P1(y,x) , form (4.4) and (4.5), we have

∂P2(x,y)
∂x

= −∂P1(x,y)
∂y

= − f (tx+(1− t)y), (4.6)

∂P2(x,y)
∂x

= −∂P1(x,y)
∂y

=
f (x)
1− t

− t
1− t

f (tx+(1− t)y). (4.7)
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By Lemma 3.3 and 3.4, we get that

Δ2 = (y− x)
(

y1−m ∂P(x,y)
∂y

− x1−m ∂P(x,y)
∂x

)

=
1
2

[(
y1−m ∂P1(x,y)

∂y
− x1−m ∂P1(x,y)

∂x

)
+

(
y1−m ∂P2(x,y)

∂y
− x1−m ∂P2(x,y)

∂x

)]

− P1(x,y)+P2(x,y)
2(y− x)

(x1−m + y1−m)

=
1
2

[(
y1−m − x1−mt

1− t

)
f (tx+(1− t)y)+

(
x1−m− y1−mt

1− t

)
f (ty+(1− t)x)

+
x1−m f (x)+ y1−m f (y)

1− t

]
−G(t)(x1−m + y1−m)

=
1
2

[(
y1−m − (x1−m + y1−m)t

1− t

)
f (tx+(1− t)y)

+
(

x1−m − (x1−m + y1−m)t
1− t

)
f (ty+(1− t)x)

+
x1−m f (x)+ y1−m f (y)

1− t

]
−G(t)(x1−m + y1−m).

For m � 1 and x1−m

x1−m+y1−m � t � 1, then y1−m − (x1−m + y1−m)t � x1−m − (x1−m +

y1−m)t � 0. Since f is convex and decreasing, thus we get

Δ2 � 1
2

[(
y1−m − (x1−m + y1−m)t

1− t

)
(t f (x)+ (1− t) f (y))

+
(

x1−m − (x1−m + y1−m)t
1− t

)
(t f (y)+ (1− t) f (x))

+
x1−m f (x)+ y1−m f (y)

1− t

]
−G(t)(x1−m + y1−m)

= (x1−m f (x)+ y1−m f (y))−G(t)(x1−m + y1−m)

� (x1−m f (x)+ y1−m f (y))− 1
2
( f (x)+ f (y))(x1−m + y1−m)

=
1
2
(y1−m − x1−m)( f (y)− f (x)) � 0,

where we use G(t) � G(1) in (1.3).
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If f is concave and decreasing, thus we get

Δ2 � 1
2

[(
y1−m− (x1−m + y1−m)t

1− t

)
(t f (x)+ (1− t) f (y))

+
(

x1−m − (x1−m + y1−m)t
1− t

)
(t f (y)+ (1− t) f (x))

+
x1−m f (x)+ y1−m f (y)

1− t

]
−G(t)(x1−m + y1−m)

= (x1−m f (x)+ y1−m f (y))−G(t)(x1−m + y1−m)

� (x1−m f (x)+ y1−m f (y))− 1
y− x

∫ y

x
f (t)dt(x1−m + y1−m)

� 0.

where we use G(t) � G(0) in (1.3) and Theorem 2.1. The proof of Theorem 2.3 is
completed. �

5. Applications

THEOREM 5.1. For a,b ∈ R++ , and m � 1 . Then

G2(a,b) � am +bm

am−1 +bm−1 ·L(a,b), (5.1)

where G(a,b) =
√

ab,L(a,b) = b−a
lnb−lna .

Proof. Let f (x) = 1
x , x ∈ (0,∞) . Then for a,b ∈ (0,∞) and b > a , one has

1
b−a

∫ b

a

1
x
dx = L−1(a,b). (5.2)

Since f (x) is convex and decreasing, by Theorem 2.1, it follows that

1
b−a

∫ b

a

1
x
dx � am +bm

ab(am−1 +bm−1)
. (5.3)

Thus, from (4.2) and (4.3), we get

L−1(a,b) � am +bm

ab(am−1 +bm−1)
.

So, (5.1) holds. �
The classical Jordan’s inequality [14] states that for a ∈ (0, π

2 ]

2
π

� sinx
x

� 1, (5.4)
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with equality holds if and only if x = π
2 .

Some new developments on refinements, generalizations and applications of Jor-
dan’s inequality can be found in [9,18,24,29] and related references therein.

By applying Corollary 2.1 and 2.2, several refinements and new inequalities for
Jordan’s inequality are obtained, as follows.

THEOREM 5.2. For a ∈ (0, π
2 ] . Then

sina
a

� 2
2a+ π

(
1− 2

2a+ π
cosa

)
+

2
π

(5.5)

sina
a

� 2
π

+(
π
2
−a)

[
sin( a

2 + π
4 )(

a
2 + π

4

)2 − cos( a
2 + π

4 )(
a
2 + π

4

)
]

. (5.6)

Proof. By Lemma 3.5 and Corollary 2.1, then the function

Φ(x,y) =
1

y− x

∫ y

x

(
cost

t
− sin t

t2

)
dt

is Schur convex on (0, π
2 ] . Since

(
a+ π

2

2
,
a+ π

2

2

)
≺

(π
2

,a
)
≺

(
a+

π
2

,0
)

,

then

Φ
(

a+ π
2

2
,
a+ π

2

2

)
� Φ

(π
2

,a
)

� Φ
(
a+

π
2

,0
)

.

That is

cos
(

a+ π
2

2

)
a+ π

2
2

−
sin

(
a+ π

2
2

)
(

a+ π
2

2

)2 � 1
a− π

2

sinx
x

∣∣∣∣
a

π
2

� 1
− π

2 −a
sinx
x

∣∣∣∣
0

a+ π
2

, (5.7)

where sin0
0 = limt→0+

sinx
x . So, from (5.7), we get (5.5) and (5.6). �

REMARK. On the one hand, obviously,

sina
a

� 2
2a+ π

(
1− 2

2a+ π
cosa

)
+

2
π

� π
2

.

Therefore (5.5) is stronger than the left hand of (5.4).
On the other hand, since the function cost

t − sint
t2

is decreasing on (0, π
2 ] , then

sin( a
2 + π

4 )(
a
2 + π

4

)2 − cos( a
2 + π

4 )(
a
2 + π

4

) �
(

2
π

)2

.
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Hence, (5.6) may be written as

sina
a

� 2
π

+(
π
2
−a)

(
2
π

)2

.

Sample calculation, as π(4−π)
4 � a � π

2 , we have 2
π +(π

2 −a)
(

2
π
)2 � 1. Hence, (5.6)

partially improves the right hand of (5.4).

THEOREM 5.3. Let t ∈ [0,1) , a,b ∈ R++ , and

Lr(a,b;t) :=

⎧⎪⎨
⎪⎩

[
(br −ar)− (ur − vr)

r(1− t)(b−a)

] 1
r−1

, a �= b,

a , a = b,

where u = tb+(1− t)a, v = ta+(1− t)b. Then

(i) if 1 < r < 2 , for m < 1 and 0 � t � a1−m

a1−m+b1−m , Lr(a,b; t) is Schur m-power

concave on R
2
++ ;

(ii) if r � 1 and r �= 0 , for m � 1 and a1−m

a1−m+b1−m � t � 1 , Lr(a,b; t) is Schur m-power

concave on R
2
++ .

Proof. Take f (x) = xr−1,r �= 0. For a �= b , form theorem 2.3, we have

G(t) =
1

2(b−a)

∫ b

a
[(ta+(1− t)x)r−1 +(tb+(1− t)x)r−1]dx

=
(br −ar)− (ur− vr)

2r(1− t)(b−a)
.

(i) if 1 < r < 2, m < 1 and 0 � t � a1−m

a1−m+b1−m , since f (x) = xr−1 is concave and

increasing on R
2
++ . Furthermore, the function ϕ : t → t

1
r−1 is increasing on R++ , so

Lr(a,b; t) is Schur m-power concave on R
2
++ .

(ii) r � 1 (r �= 0), m � 1 and a1−m

a1−m+b1−m � t � 1, since f (x) = xr−1 is convex and

decreasing on R
2
++ . Furthermore, the function ϕ : t → t

1
r−1 is decreasing on R++ , so

Lr(a,b; t) is Schur m-power concave on R
2
++ . �
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[14] D. S. MITRINOVIĆ, J. E. PEČARIĆ, A. M. FINK, Classical and New Inequalities in Analysis, Kluwer
Academic Publishers, Dordrecht.

[15] C. P. NICULESCU, The Hermite-Hadamard inequality for log-convex functions, Nonlinear Analysis,
75 (2012), 662–669.
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