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Abstract. We establish several martingale inequalities on Hardy-Lorentz-Karamata spaces via
atomic decompositions. We also prove that all martingale Hardy-Lorentz-Karamata spaces are
equivalent if the stochastic basis is regular.

1. Introduction

The study of martingale inequalities has a long history. Let (Ω,F ,P) be a com-
plete probability space with non-decreasing sub-algebras (Fn)n�0 satisfying F =
σ(∪nFn) . For a martingale f = ( fn)n�0 , we define M( f ) = supn�0 | fn| and S( f ) =
(∑∞

n=0 | fn+1− fn|2)1/2 . In [2], Burkholder and Gundy proved the well-known inequality

‖M( f )‖p ≈ ‖S( f )‖p, 1 < p < ∞.

The case p = 1 for this inequality was due to Davis [4]. The martingale version of
the John-Nirenberg inequality was investigated by Garsia [6]. For more martingale
inequalities, we refer the reader to [3] and [13].

The atomic decomposition, which is a useful tool to prove martingale inequalities
and dualities, of martingale Hardy spaces were studied by many authors; see for exam-
ple [7], [17] and [16]. In particular, Jiao et al. [10] obtained the following result (see
next section for any unexplained notations).

THEOREM 1.1. ([10, Theorem 3.4]) Suppose that 0 < p < ∞,0 < q � ∞ . Then
the following inequalities hold:

‖ f‖Hp,q � C‖ f‖Hs
p,q

, ‖ f‖HS
p,q

� C‖ f‖Hs
p,q

, 0 < p < 2;

‖ f‖Hp,q � ‖ f‖Pp,q , ‖ f‖HS
p,q

� ‖ f‖Qp,q ;

‖ f‖HS
p,q

� C‖ f‖Pp,q , ‖ f‖Hp,q � C‖ f‖Qp,q ;

‖ f‖Hs
p,q

� C‖ f‖Pp,q , ‖ f‖Hs
p,q

� C‖ f‖Qp,q .
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It is well known that the family of Lorentz-Karamata spaces, defined via the slowly
varying functions, is a generalization of the Lorentz spaces and the Lorentz-Zygmund
spaces; see [5]. Recently, Ho [8] introduced the martingale Hardy-Lorentz-Karamata
spaces, established duality and interpolation results by atomic decompositions. Jiao et
al. [12], via atomic decomposition, proved a John-Nirenberg inequality in the frame of
Lorentz-Karamata spaces. Liu and Zhou [14] showed the dual space of weak martingale
Hardy-Karamata space. In this paper, we continue this line of research. More precisely,
we devote to extending Theorem 1.1 to the frame of Lorentz-Karamata spaces. Our
main result reads as follows.

THEOREM 1.2. Let b be a non-decreasing slowly varying function. Suppose that
0 < p < ∞,0 < q � ∞ . Then the following inequalities hold:

‖ f‖Hp,q,b � C‖ f‖Hs
p,q,b

, ‖ f‖HS
p,q,b

� C‖ f‖Hs
p,q,b

0 < p < 2; (1.1)

‖ f‖Hp,q,b � ‖ f‖Pp,q,b , ‖ f‖HS
p,q,b

� ‖ f‖Qp,q,b ; (1.2)

‖ f‖HS
p,q,b

� C‖ f‖Pp,q,b , ‖ f‖Hp,q,b � C‖ f‖Qp,q,b ; (1.3)

‖ f‖Hs
p,q,b

� C‖ f‖Pp,q,b , ‖ f‖Hs
p,q,b

� C‖ f‖Qp,q,b ; (1.4)

‖ f‖Pp,q,b � C‖ f‖Qp,q,b � C‖ f‖Pp,q,b . (1.5)

If b ≡ 1, then the above theorem reduces to Theorem 1.1.
Recall that the stochastic basis {Fn}n�0 is said to be regular, if there exists an

absolute constant R > 0 such that

fn � R fn−1, ∀n ∈ N,

holds for all non-negative adapted martingales f = ( fn)n�0 . We refer the reader to [15]
for more information.

With the help of Theorem 1.2, we find that all five martingale Hardy-Lorentz-
Karamata spaces are equivalent if {Fn}n�0 is regular.

THEOREM 1.3. Let b be a non-decreasing slowly varying function. Suppose that
0 < p < ∞,0 < q � ∞ . If {Fn}n�0 is regular, then

HS
p,q,b = Qp,q,b = Pp,q,b = Hp,q,b = Hs

p,q,b

with equivalent quasi-norms.

This article is organized as follows. In next section, we present preliminaries,
definitions and lemmas used throughout the paper. The proofs of Theorem 1.2 and
Corollary 1.3 are given in Section 3.

In the paper, the set of integers and the set of non-negative integers are always
denoted by Z and N , respectively. We use C to denote the absolute constant which
may vary from line to line. If we write f ≈ g , then it stands for C1 f � g � C2 f . We
call that f is equivalent to g if f ≈ g .



MARTINGALE INEQUALITIES 137

2. Preliminaries

Let (Ω,F ,P) be a complete probability space. We denote by L0(Ω,F ,P) , or
simply L0(Ω) , the space of all measurable functions on (Ω,F ,P) . We firstly recall
some notations and properties of Lorentz-Karamata function spaces.

DEFINITION 2.1. ([5]) A Lebesgue measurable function b : [1,∞) → (0,∞) is
said to be a slowly varying function, if for any given ε > 0, the function tεb(t) is
equivalent to a non-decreasing function and the function t−εb(t) is equivalent to a non-
increasing function on [1,∞) .

Let b be a slowly varying function on [1,∞) . Define γb on (0,∞) by

γb(t) = b(max{t,1/t}), t > 0.

REMARK 2.2. ([5]) (1) If b is a non-decreasing function, by the definition of γb ,
we know that γb is non-increasing on (0,1] . For any given ε > 0, the function tε γb(t)
is equivalent to a non-decreasing function and the function t−εγb(t) is equivalent to a
non-increasing function on (0,∞) .

(2) Let r > 0. Then γb(rt) ≈ γb(t) for all t > 0.

For any f ∈ L0(Ω,F ,P) , the distribution function of f is defined by

λs( f ) = P
({ω ∈ Ω : | f (ω)| > s}), s � 0.

Denote by f ∗(t) the decreasing rearrangement of f , defined by

f ∗(t) = inf{s � 0 : λs( f ) � t}, t � 0,

with the convention that inf /0 = ∞ .

DEFINITION 2.3. Let 0 < p < ∞ , 0 < q � ∞ and b be a slowly varying func-
tion. The Lorentz-Karamata space Lp,q,b consists of those measurable functions on
(Ω,F ,P) such that ‖ f‖p,q,b < ∞ , where

‖ f‖p,q,b =
[∫ 1

0

(
t

1
p γb(t) f ∗(t)

)q dt
t

]1/q
, 0 < q < ∞,

and
‖ f‖p,∞,b = sup

0�t�1
t

1
p γb(t) f ∗(t), q = ∞.

The Lorentz-Karamata space Lp,q,b is a rearrangement invariant quasi-Banach
function space (see [9]), and the quasi-norm ‖·‖p,q,b has the following equivalent char-
acterization [8, Lemma 2.4]:

‖ f‖p,q,b ≈
[∫ ∞

0

(
λs( f )

1
p γb
(
λs( f )

)
s
)q ds

s

]1/q
, 0 < q < ∞,
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and
‖ f‖p,∞,b ≈ sup

s>0
λs( f )

1
p γb
(
λs( f )

)
s, q = ∞.

We now introduce the martingale Hardy-Lorentz-Karamata spaces. In the se-
quel, let {Fn}n�0 be a non-decreasing sequence of sub-σ -algebra of F such that
F = σ(

⋃∞
n=0 Fn) . Denote by M the set of all martingales f = ( fn)n�0 relative to

{Fn}n�0 such that f0 = 0. The expectation operator and the conditional expectation
operator relative to Fn are denoted by E and En , respectively. For f ∈ M , denote its
martingale difference by dn f = fn − fn−1 (n � 0, with convention f−1 = 0) . Then the
maximal function, the quadratic variation and the conditional quadratic variation of a
martingale f are respectively defined by

Mn( f ) = sup
0�i�n

| fi|, M( f ) = sup
n�0

| fn|,

Sn( f ) =
( n

∑
i=1

|di f |2
) 1

2
, S( f ) =

( ∞

∑
i=1

|di f |2
) 1

2
.

sn( f ) =
( n

∑
i=1

Ei−1|di f |2
) 1

2
, s( f ) =

( ∞

∑
i=1

Ei−1|di f |2
) 1

2
.

Let 0 < p < ∞ , 0 < q � ∞ and b be a slowly varying function. Let Λp,q,b

be the collection of all sequences λ = (λn)n�0 of non-decreasing, non-negative and
adapted functions with λ∞ = limn→∞ λn ∈ Lp,q,b . We define martingale Hardy-Lorentz-
Karamata spaces as follows.

DEFINITION 2.4. Let 0 < p < ∞,0 < q � ∞ and b be a slowly varying function.
Define

Hp,q,b = { f ∈ M : ‖ f‖Hp,q,b = ‖M( f )‖p,q,b < ∞},
HS

p,q,b = { f ∈ M : ‖ f‖HS
p,q,b

= ‖S( f )‖p,q,b < ∞},
Hs

p,q,b = { f ∈ M : ‖ f‖Hs
p,q,b

= ‖s( f )‖p,q,b < ∞},
Qp,q,b = { f ∈ M : ∃λ = (λn)n�0 ∈ Λp,q,b s.t. Sn( f ) � λn−1}

with ‖ f‖Qp,q,b = inf
λ
‖λ∞‖p,q,b,

Pp,q,b = { f ∈ M : ∃λ = (λn)n�0 ∈ Λp,q,b s.t. | fn| � λn−1}
with ‖ f‖Pp,q,b = inf

λ
‖λ∞‖p,q,b.

If b ≡ 1, then the martingale Hardy-Lorentz-Karamata spaces return to martingale
Hardy-Lorentz spaces. If p = q , b ≡ 1, then the martingale Hardy-Lorentz spaces
become the classical martingale Hardy spaces; see e.g. [15, 18].

We recall a lemma which is useful to judge whether a function belongs to the
Lorentz-Karamata spaces Lp,q,b . By borrowing some idea from [1], it was firstly proved
for q = ∞ in [14]. The case 0 < q < ∞ can be similarly proved. We omit the details.
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LEMMA 2.5. Let 0 < p < ∞ , 0 < q � ∞ and b be a slowly varying function.
Assume that the non-negative sequence {2kλk}k∈Z belongs to lq . Further suppose
that the non-negative function ϕ verifies the following property: there exists 0 < ε <
min(1,q/p) such that, given an arbitrary integer k0 , we have ϕ � ψk0 + ηk0 , where
ψk0 and ηk0 satisfy

2k0 p
P

ε(ψk0 > 2k0)γε p
b (P(ψk0 > 2k0)) � C

k0−1

∑
−∞

(2kλ ε
k )p,

and

2k0ε p
P(ηk0 > 2k0)γ p

b (P(ηk0 > 2k0)) � C
∞

∑
k=k0

(2kε λk)p.

Then ‖ψk0‖p,q,b �C‖{2kλk}‖lq and ‖ηk0‖p,q,b �C‖{2kλk}‖lq , and consequently, ϕ ∈
Lp,q,b and ‖ϕ‖p,q,b � C‖{2kλk}‖lq .

3. Proof of main results

We begin this section with the concept of atoms introduced in [18].

DEFINITION 3.1. Let 0 < p < ∞ . A measurable function a is called a (1, p,∞)-
atom if there exists a stopping time ν such that

(1) an = En(a) = 0 if ν � n ,

(2) ‖s(a)‖∞ � P(ν < ∞)−
1
p .

Replacing (2) by ‖S(a)‖∞ � P(ν < ∞)−
1
p (or ‖M(a)‖∞ � P(ν < ∞)−

1
p ), then we

get the definition of (2, p,∞)-atom (or (3, p,∞)-atom).

The following result is from Jiao et al. [12] which extends the atomic decomposi-
tion of [10, 11, 18].

THEOREM 3.2. Let b be a non-decreasing slowly varying function. If martingale
f = ( fn)n�0 ∈ Hs

p,q,b for 0 < p < ∞,0 < q � ∞ , then there exist a sequence (ak)k∈Z of

(1, p,∞)-atoms and a sequence (μk)k∈Z of real numbers satisfying μk = A ·2k
P(νk <

∞)
1
p , where A is a positive constant and νk is the stopping time associated with ak ,

such that
fn = ∑

k∈Z

μka
k
n, a.e., n ∈ N, (3.1)

and
‖{γb(P(νk < ∞))μk}‖lq � C‖ f‖Hs

p,q,b
.

Conversely, if the martingale f has the above decomposition, then f ∈ Hs
p,q,b and

‖ f‖Hs
p,q,b

≈ inf‖{γb(P(νk < ∞))μk}‖lq .

where the infimum is taken over all the above decompositions.
Moreover, if we replace Hs

p,q,b, (1, p,∞)-atoms by Qp,q,b, (2, p,∞)-atoms (or
Pp,q,b, (3, p,∞)-atoms), then the above conclusions still hold.
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Recall that an operator T : X → Y is called σ -sublinear if for any constant α it
satisfies ∣∣∣∣∣T

(
∞

∑
k=1

fk

)∣∣∣∣∣�
∞

∑
k=1

|T ( fk)| and |T (α f )| = |α||T ( f )|,

where X is a martingale space and Y is a measurable function space.
By Theorem 3.2, in next two lemmas, we establish a sufficient condition for a σ -

sublinear operator to be bounded from martingale Hardy-Lorentz-Karamata spaces to
Lorentz-Karamata spaces. With the help of the following two lemmas, the embeddings
between different Hardy-Lorentz-Karamata spaces will be proved.

LEMMA 3.3. Let b be a non-decreasing slowly varying function. Suppose that
0 < p < ∞,0 < q � ∞ and 1 < r < ∞ satisfy p < r . If T : Hs

r → Lr is a bounded
σ -sublinear operator and

{|T (a)| > 0} ⊂ {ν < ∞} (3.2)

for every (1, p,∞)-atom a associated with the stopping time ν , then

‖T ( f )‖p,q,b � C‖ f‖Hs
p,q,b

.

Proof. Take f ∈Hs
p,q,b . According to Theorem 3.2, we find that f has the decom-

position as (3.1) such that for every k , ak is a (1, p,∞)-atom and μk = 3 ·2k‖χ{νk<∞}‖p .
For an arbitrary integer k0 , set

f = ∑
k

μka
k := F1 +F2,

where

F1 =
k0−1

∑
k=−∞

μka
k and F2 =

∞

∑
k=k0

μka
k.

By the σ -sublinearity of the operator T , we have

|T (F1)| �
k0−1

∑
k=−∞

μk|T (ak)|, |T (F2)| �
∞

∑
k=k0

μk|T (ak)|.

To complete the lemma, it suffices to show that T (F1) ∈ Lp,q,b and T (F2) ∈ Lp,q,b ,
separately.

Step 1: In this step, we prove T (F2) ∈ Lp,q,b . According to condition (3.2),

{|T (F2)| > 2k0} ⊂ {|T (F2)| > 0} ⊂
∞⋃

k=k0

{|T (ak)| > 0} ⊂
∞⋃

k=k0

{νk < ∞}.
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Applying Remark 2.2(1), we have

2k0ε p
P(|T (F2)| > 2k0)γ p

b (P(|T (F2)| > 2k0))

�2k0ε p
∞

∑
k=k0

P(νk < ∞)γ p
b (P(νk < ∞))

�
∞

∑
k=k0

[2kε
P(νk < ∞)

1
p γb(P(νk < ∞))]p.

By Lemma 2.5 and Theorem 3.2, we obtain

‖T (F2)‖p,q,b � C‖{2k
P(νk < ∞)

1
p γb(P(νk < ∞))}‖�q � C‖ f‖Hs

p,q,b
.

Step 2: In this step, we estimate ‖T (F1)‖p,q,b . We prove this into two cases: q
p ∈ [1,∞]

and q
p ∈ (0,1) .

Case 1: q
p ∈ [1,∞] . For 0 < � < 1, by Hölder’s inequality, we have

|T (F1)| �
k0−1

∑
k=−∞

μk|T (ak)|χ{νk<∞}

�
( k0−1

∑
k=−∞

2k�r′
)1/r′

{
k0−1

∑
k=−∞

2−k�r
(

μk|T (ak)|χ{νk<∞}
)r
}1/r

� C2k0�

{
k0−1

∑
k=−∞

2−k�r
(

μk|T (ak)|χ{νk<∞}
)r
}1/r

.

Since ak is a (1, p,∞)-atom for each k ∈ Z , we have ‖s(ak)‖∞ � P(νk < ∞)−
1
p Note

that the boundedness of T implies ‖T f‖r �C‖ f‖Hs
r
. Then, by Chebyshev’s inequality,

P(T (F1) > 2k0) �
∥∥∥ |T (F1)|r

2k0r

∥∥∥
1
� C2k0r(�−1)

k0−1

∑
k=−∞

2−k�rμ r
k‖T (ak)χ{νk<∞}‖r

r

� C2k0r(�−1)
k0−1

∑
k=−∞

2−k�rμ r
k‖s(ak)‖r

r

� C2k0r(�−1)
k0−1

∑
k=−∞

2k(1−�)r
P(νk < ∞).
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By Remark 2.2, for 0 < ε < 1, we deduce that

P(T (F1) > 2k0)ε γε p
b (P(T (F1) > 2k0))

�C
(
2k0r(�−1)

k0−1

∑
k=−∞

2k(1−�)r
P(νk < ∞)

)ε

× γε p
b

(
k0−1

∑
k=−∞

C2(k−k0)(1−�)r
P(νk < ∞)

)

�C
k0−1

∑
k=−∞

2(k−k0)(1−�)rε
P(νk < ∞)ε × γε p

b

(
C2(k−k0)(1−�)r

P(νk < ∞)
)

.

Take ε ∈ ( p
r ,1) (this implies ε < q

p ) and � ∈ (0,1− p
εr ) . Set

z := ε − p
(1− �)r

> 0.

Then (1− �)r(ε − z) = p . Since tzγb(t) is equivalent to a non-decreasing function, we
obtain

2k0 p
P(T (F1) > 2k0)ε γε p

b (P(T (F1) > 2k0))

�C2k0 p
k0−1

∑
k=−∞

2(k−k0)(1−�)rε
P(νk < ∞)ε2−(k−k0)(1−�)rz× γε p

b (P(νk < ∞))

=C
k0−1

∑
k=−∞

(
2k

P(νk < ∞)ε 1
p γε

b (P(νk < ∞))
)p

. (3.3)

By Lemma 2.5, we have T (F1) ∈ Lp,q,b , which finishes the proof of Case 1.

Case 2: q
p ∈ (0,1) . Take � ∈ (0,1− p

r ) , ε ∈ ( p
(1−�)r ,1) and set

z := 1− p
(1− �)rε

.

Similar to (3.3), we have

2k0 p
P(T (F1) > 2k0)ε γε p

b (P(T (F1) > 2k0))

�C

(
k0−1

∑
k=−∞

(
2

k
ε P(νk < ∞)

1
p γb(P(νk < ∞))

)p
)ε

,
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which further implies that

∞

∑
k0=−∞

2k0qP(|T (F1)| > 2k0)
q
p γq

b (P(|T (F1)| > 2k0))

�C
∞

∑
k0=−∞

2k0(1− 1
ε )q

(
k0−1

∑
k=−∞

(
2

k
ε P(νk < ∞)

1
p γb(P(νk < ∞))

)p
) q

p

�C
∞

∑
k0=−∞

2k0(1− 1
ε )q

k0−1

∑
k=−∞

2k 1
ε q

P(νk < ∞)
q
p γq

b (P(νk < ∞))

=
∞

∑
k=−∞

2k 1
ε q

P(νk < ∞)
q
p γq

b (P(νk < ∞))
∞

∑
k0=k+1

2k0(1− 1
ε )q

�C
∞

∑
k=−∞

2kq
P(νk < ∞)

q
p γq

b (P(νk < ∞)).

By Theorem 3.2, we obtain

‖T (F1)‖p,q,b � C‖ f‖Hs
p,q,b

.

This finishes the proof of Case 2. �
An argument similar to that used above allows to prove the following result. We

omit the proof.

LEMMA 3.4. Let b be a non-decreasing slowly varying function. Suppose that
0 < p < ∞,0 < q � ∞ and 1 < r < ∞ with p < r . If T : HS

r → Lr (or Hr → Lr ) is a
bounded σ -sublinear operator and

{|T (a)| > 0} ⊂ {ν < ∞} (3.4)

for every (2, p,∞)-atom (or (3, p,∞)-atom) a associated with the stopping time ν ,
then

‖T ( f )‖p,q,b � C‖ f‖Qp,q,b (or ‖T ( f )‖p,q,b � C‖ f‖Pp,q,b ).

Now we prove our first main result of the paper.

Proof of Theorem 1.2. Note that the operators M,S and s are all σ -sublinear
and satisfy (3.2). First we show (1.1). Indeed, it follows from the facts ‖M( f )‖2 �
C‖s( f )‖2 ([18, Theorem 2.11(i)]), ‖S( f )‖2 = ‖s( f )‖2 and Lemma 3.3 that the two
inequalities in (1.1) hold. The inequalities (1.2) comes easily from the definitions of
these martingale spaces.

Consider T ( f ) = M( f ) or S( f ) . Then (1.3) follows from the combination of the
Burkholder-Gundy inequalities ([18, Theorem 2.12]), Doob’s maximal inequalities

‖S( f )‖r ≈ ‖M( f )‖r ≈ ‖ f‖r (1 < r < ∞)

and Lemma 3.4.
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Applying the inequalities (see [18, Theorem 2.11(ii)])

‖s( f )‖r � C‖M( f )‖r, ‖s( f )‖r � C‖S( f )‖r, 2 < r < ∞,

and Lemma 3.4, we obtain (1.4).
In order to prove (1.5), we use (1.3). Take f = ( fn)n�0 ∈Qp,q,b . Then there exists

an optimal control (λ (1)
n )n�0 such that Sn( f ) � λ (1)

n−1 with λ (1)
∞ ∈ Lp,q,b . Since

| fn| � Mn−1( f )+ λ (1)
n−1,

by the second inequality of (1.3) we have

‖ f‖Pp,q,b � C
(‖ f‖Hp,q,b +‖λ (1)

∞ ‖Lp,q,b

)
� C‖ f‖Qp,q,b .

Conversely, if f = ( fn)n�0 ∈ Pp,q,b , then there exists an optimal control (λ (2)
n )n�0

such that | fn| � λ (2)
n−1 with λ (2)

∞ ∈ Lp,q,b . Note that

Sn( f ) � Sn−1( f )+2λ (2)
n−1.

According to the first inequality of (1.3), we have ‖ f‖Qp,q,b �C‖ f‖Pp,q,b . The proof is
complete. �

In order to prove our second main result, we need the atomic decompositions of
Hp,q,b and HS

p,q,b .

LEMMA 3.5. Let b be a non-decreasing slowly varying function. Suppose that
0 < p < ∞,0 < q � ∞ . If {Fn}n�0 is regular, then

HS
p,q,b ⊂ Qp,q,b, Hp,q,b ⊂ Pp,q,b.

Proof. We only give the proof for Hp,q,b ⊂ Pp,q,b . The other one can be similarly
shown. Take f ∈ Hp,q,b . It follows from the regularity of {Fn}n�0 that there exists a
sequence of stopping times νk such that

{M( f ) > 2k} ⊂ {νk < ∞}, Mνk ( f ) � 2k, P(νk < ∞) � RP(M( f ) > 2k)

and νk � νk+1 , νk ↑ ∞ (see [15, Definition 7.1.1]). It is easy to check the following
decomposition

fn = ∑
k∈Z

( f νk+1
n − f νk

n ).

Define

μk = 3 ·2k
∥∥χ{νk<∞}

∥∥
p

and ak
n =

f
νk+1
n − f νk

n

μk
.

Then ak is a (3, p,∞)-atom for each k ∈ Z .
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Now we know that f has a decomposition of (3.1) with a sequence (μk)k∈Z of
non-negative real numbers satisfying μk = 3 · 2k‖χ{νk<∞}‖p . Applying Theorem 3.2,
we have

f ∈ Pp,q,b.

The proof is complete. �
Now we are in a position to prove our second main result of this paper.

Proof of Theorem 1.3. According to [18, p. 33], by regularity, we have

Sn( f ) � R1/2sn( f ) and ‖ f‖HS
p,q,b

� ‖ f‖Hs
p,q,b

.

Since sn( f ) ∈ Fn−1 , by the definition of Qp,q,b we have

‖ f‖Qp,q,b � ‖s( f )‖Lp,q,b = ‖ f‖Hs
p,q,b

.

Hence, by (1.4) we obtain
Qp,q,b = Hs

p,q,b.

Combining Lemma 3.5, the inequalities (1.2), (1.3) and (1.5), we get

HS
p,q,b = Qp,q,b = Pp,q,b = Hp,q,b.

The proof is complete. �
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