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Abstract. In this paper, the authors study the complete moment convergence of the weighted
sum of ρ∗ -mixing sequences which are stochastically dominated by a random variable X . The
obtained results improve the corresponding ones of Sung (2013) and Wu (2014).

1. Introduction

Let {Xn,n � 1} be a sequence of random variables defined on a fixed probability
space (Ω,F ,P) . Denote FS = σ(Xi, i ∈ S ⊂ N) . For given sub-σ -algebras FS , FT

of F , let

ρ(FS,FT ) = sup
X∈L2(FS),Y∈L2(FT )

|EXY −EXEY |
(Var(X) ·Var(Y ))1/2

Define
ρ∗(k) = supρ(FS,FT )

where the supremum is taken over all finite subsets S,T ∈ N such that

dist(S,T ) = min
j∈S,h∈T

| j−h|� k,k � 0

DEFINITION 1.1. A sequence of random variables {Xn,n � 1} is said to be a
ρ∗ -mixing sequence if there exists k ∈ N such that ρ∗(k) < 1.

An array of random variables {Xnk,k∈N,n∈N} is said to be rowwise ρ∗ -mixing,
if for every n ∈ N , {Xnk,k ∈ N} is a ρ∗ -mixing sequence of random variables.

The concept of ρ∗ -mixing sequence can be dated back to Stein [1]. Bradley [2]
studied the properties of ρ∗ -mixing sequence and obtained the central limit theorem.
Since the article of Bradley [2], many authors studied the convergence properties for
sequences or arrays of ρ∗ -mixing random variables. We refer the reader to [2,3,4,5,6]
for more details.
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A sequence of random variables {Un,n � 1} is said to convergence completely to
a constant a if for any ε > 0,

∞

∑
n=1

P(|Un−a|> ε) < ∞

This notion was first given by Hsu and Robbins [7], further studied by Baum and Katz
[8], and it has been an important basic tool to study the convergence in probability and
statistics.

Let {Zn,n � 1} be a sequence of random variables and an > 0,bn > 0,q > 0. If

∞

∑
n=1

anE{b−1
n |Zn|− ε}q

+ < ∞ (1.1)

for all ε > 0, then {Zn,n � 1} was called a complete moment convergence sequence by
Chow [9]. Zhou et al. [10] and Sung [11] obtained the following complete convergence
results for weighted sums of ρ∗ -mixing sequence, respectively.

THEOREM A. (Zhou et al. [10]) Let {Xn,n � 1} be a sequence of identically
distributed ρ∗ -mixing sequence, and let {ani,1 � i � n,n � 1} be an array of constants
satisfying

n

∑
i=1

|ani|max{α ,γ} = O(n) (1.1)

for some 0 < α � 2 and γ > 0 with α �= γ . Let bn = n1/α(logn)1/γ . If EX1 = 0 for
1 < α � 2 and {E|X |α < ∞, α > γ,

E|X |α log |X | < ∞, α = γ,
E|X |γ < ∞, α < γ.

(1.2)

holds for α �= γ , then

∞

∑
n=1

n−1P

(
max

1�m�n

∣∣∣∣∣ m

∑
i=1

aniXi

∣∣∣∣∣> bnε

)
< ∞ f or all ε > 0 (1.3)

THEOREM B. (Sung [11]) Let {Xn,n � 1} be a sequence of identically distributed
ρ� -mixing sequence, and let {ani,1 � i � n,n � 1} be an array of constants satisfying
(1.1) for some 0 < α � 2 . Let bn = n1/α(logn)1/α . If EX1 = 0 for 1 < α � 2 and
E|X1|α log(1+ |X1|) < ∞ , then (1.3) holds.

As Sung [11] pointed out, theorem A. actually only studied the complete conver-
gence of ρ∗ -mixing sequence for the case α > γ . Sung [11, Remark 2.2] presented
an open problem whether the case α < γ of Theorem A. remains true for ρ∗ -mixing
sequence. Later, Wu et al. [12] solved this open problem, and get some useful inequal-
ities.
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THEOREM C. (Wu et al. [12]) Let {Xn,n � 1} be a sequence of identically dis-
tributed ρ∗ -mixing sequence, and let {ani,1 � i � n,n � 1} be an array of constants
satisfying (1.1) for some 0 < α � 2 . Let bn = n1/α(logn)1/γ . If EX1 = 0 for 1 < α � 2
and conditions (1.2) holds for α < γ , then conclusions (1.3) holds.

In this work, the complete moment convergence for ρ∗ -mixing sequence shall be
studied. The main result is given in Section 3. The formal definition of ρ∗ -mixing
sequence and other preliminaries are recalled in Section 2.

Throughout this paper, the symbol C always stands for a generic positive constant
which may differ from one place to another.

2. Preliminaries

We first state some lemmas, which will be used in the proofs of our main result.

LEMMA 2.1. (Utev and Peligrad [13]) Let 0 � r < 1 , p � 2 , and k be a posi-
tive integer. Assume that {Xn,n � 1} is a mean zero sequence of ρ∗ -mixing random
variables satisfying ρ∗(k) � r . Let E|Xn|p < ∞ for every n � 1 . Then there exists a
positive constant C not depending on n such that

E

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

Xi

∣∣∣∣∣
p)

� C

⎧⎨⎩ n

∑
i=1

E|Xi|p +

(
n

∑
i=1

Var(Xi)

)p/2
⎫⎬⎭

LEMMA 2.2. (Sung [14]) Let {Xi,1 � i � n} and {Yi,1 � i � n} be the sequence
of random variables. Then for any q > 1 , ε > 0 , and a > 0 ,

E

(
max

1�k�n

∣∣∣∣∣ k

∑
i=1

(Xi +Yi)

∣∣∣∣∣− εa

)
+

�
(

1
εq +

1
q−1

)
1

aq−1 E

(
max

1�k�n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣
q)

+E

(
max

1�k�n

∣∣∣∣∣ k

∑
i=1

Yi

∣∣∣∣∣
)

LEMMA 2.3. (Adler and Rosalsky [15] and Adler et al. [16]) Let {Xn,n � 1} be a
sequence of random variables, which is stochastically dominated by a random variable
X , i.e.

sup
n�1

P(|Xn| > x) � CP(|X | > x),∀x � 0

Then, for any α > 0 and b > 0 , the following two statements hold:

E[|Xn|α I(|Xn| � b)] � C1{E[|X |αI(|X | � b)]+bαP(|X | > b)}
E[|Xn|α I(|Xn| > b)] � C2E[|X |αI(|X | > b)]

Consequently, E|Xn|α � C3E|X |α for all n � 1 .

By Lemma 2.3 and Lemma 2.2 of Wu et al. [12], we can get the following lemma.
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LEMMA 2.4. Let {Xn,n � 1} be a sequence of random variables, which is stochas-
tically dominated by a random variable X . Suppose {ani,1 � i � n,n � 1} ba an array
of constants satisfying

n

∑
i=1

|ani|α = O(n) (2.1)

for some α > 0 . Let bn = n1/α(logn)1/γ for some γ > 0 , then,

∞

∑
n=2

n−1b−α
n

n

∑
i=1

E|aniXi|α I(|aniXi| > bn) � HX(α,γ)

where

HX(α,γ) =

⎧⎨⎩
CE|X |α , α > γ,
CE|X |α log(1+ |X |), α = γ
CE|X |γ , α < γ.

(2.2)

Proof. Note the fact that {Xn,n � 1} is stochastically dominated by a random
variable X , we can get,

P(|aniXi| > x) � CP(|aniX | > x)

By Lemma 2.3, we have

E [|aniXi|α I(|aniXi| > bn)] � CE [|aniX |α I(|aniX | > bn)]

Then by Lemma 2.2 of Wu [8], we have,

∞

∑
n=2

n−1b−α
n

n

∑
i=1

E|aniXi|α I(|aniXi| > bn)

� C
∞

∑
n=2

n−1b−α
n

n

∑
i=1

E|aniX |αI(|aniX | > bn)

� HX(α,γ)

where HX(α,γ) is defined as equation (2.2). �
The following lemma plays an important role in the proof of our main results,

which improves Lemma 2.3 of Wu et al. [12].

LEMMA 2.5. Let {Xn,n � 1} be a sequence of random variables, which is stochas-
tically dominated by a random variable X . Suppose {ani,1 � i � n,n � 1} be an array
of constants satisfying equation (2.1) for some α > 0 . Let bn = n1/α(logn)1/γ for some
γ > 0 . If q > max{α,γ} , then

∞

∑
n=2

n−1b−q
n

n

∑
i=1

E|aniXi|qI(|aniXi| � bn) � HX(α,γ)
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where HX(α,γ) is defined as equation (2.2).

Proof. By Lemma 2.3, we can get that

∞

∑
n=2

n−1b−q
n

n

∑
i=1

E|aniXi|qI(|aniXi| � bn)

� C

(
∞

∑
n=2

n−1b−q
n

n

∑
i=1

E|aniX |qI(|aniX | � bn)+
∞

∑
n=2

n−1
n

∑
i=1

P(|aniX | > bn)

)
� C(J1 + J2)

By Lemma 2.3 of Wu et al. [12], we can get

J1 � HX (α,γ)

where HX (α,γ) is defined as equation (2.2). For J2 , by Lemma 2 of Wu et al. [12], we
have

J2 =
∞

∑
n=2

n−1
n

∑
i=1

P(|aniX | > bn)

=
∞

∑
n=2

n−1
n

∑
i=1

E(I(|aniX | > bn))

�
∞

∑
n=2

n−1b−α
n

n

∑
i=1

E(|aniX |αI(|aniX | > bn))

� HX (α,γ)

Then, we complete the proof. �

3. Main result

In this section, we state our main theorem and its proofs, which improve Theorem
A., Theorem B. and Theorem C. to the complete moment convergence under more
general conditions.

THEOREM 3.1. Let {Xn,n � 1} be a mean zero sequence of ρ∗ -mixing ran-
dom variables, which is stochastically dominated by a random variable X . Suppose
{ani,1 � i � n,n � 1} be an array of constants satisfying (1.1) for some 0 < α � 2 and
γ > 0 . Let bn = n1/α(logn)1/γ . If equation (1.2) holds, then, for all ε > 0 ,

∞

∑
n=2

(nbn)−1E

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

aniXi

∣∣∣∣∣− εbn

)
+

< ∞ (3.1)

Proof. Without loss of generality, we may assume that ∑n
i=1 |ani|max{α ,γ} � n . For

all n � 1, let Xni = XiI(|aniXi| � bn) , X̃ni = XiI(|aniXi| > bn) , 1 � i � n . Obviously,

aniXi = aniXni +aniX̃ni = [aniXni−E(aniXni)]+E(aniXni)+aniX̃ni (3.2)
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Then, by equation (3.2) and Lemma 2.2 with a = bn and q > max{2,2γ/α} , we
have

∞

∑
n=2

(nbn)−1E

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

aniXi

∣∣∣∣∣− εbn

)
+

� C
∞

∑
n=2

n−1(bn)−qE

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

[aniXni−E(aniXni)]

∣∣∣∣∣
q)

+
∞

∑
n=2

(nbn)−1E

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

aniX̃ni

∣∣∣∣∣
)

+
∞

∑
n=2

(nbn)−1

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

E(aniXni)

∣∣∣∣∣
)

=: I1 + I2 + I3

First, for I3 , for 0 < α < 1,0 < γ < 1, then, 1 > max{α,γ} . Then, by equation (1.2)
and Lemma 2.5, we have,

I3 �
∞

∑
n=2

(nbn)−1
n

∑
i=1

E|aniXni|

=
∞

∑
n=2

n−1b−1
n

n

∑
i=1

E|aniXi|I(|aniXi| � bn)

� HX (α,γ)
< ∞

where HX (α,γ) is defined as equation (2.2). For 0 < α < 1, γ � 1, then α < γ and
∑n

i=1 |ani|γ � n . By Lemma 2.3 and E(Xn) = 0,n � 1,

I3 �
∞

∑
n=2

(nbn)−1
n

∑
i=1

E|aniXi|I(|aniXi| � bn)

�
∞

∑
n=2

(nbn)−1
n

∑
i=1

E|aniXi|I(|aniXi| > bn)

�
∞

∑
n=2

n−1b−γ
n

n

∑
i=1

E|aniXi|γ I(|aniXi| > bn)

�
∞

∑
n=2

n−1b−γ
n

n

∑
i=1

E|aniX |γ I(|aniX | > bn)

=
∞

∑
n=2

n−1−γ/α(logn)−1
n

∑
i=1

E|aniX |γ I(|aniX | > bn)

�
∞

∑
n=2

n−γ/α(logn)−1E|X |γ

�
∞

∑
n=2

n−1(logn)−γ/αE|X |γ

� CE|X |γ
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< ∞

For 1 � α � 2, noting E(Xn) = 0 for all n � 1, by equation (1.2) and Lemma 2.4, we
get that

I3 =
∞

∑
n=2

(nbn)−1

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

E(aniX̃ni)

∣∣∣∣∣
)

�
∞

∑
n=2

n−1b−α
n

n

∑
i=1

E|aniXi|α I(|aniXi| > bn)

� HX(α,γ)
< ∞.

For I2 , it can be easily get that

I2 �
∞

∑
n=2

(nbn)−1
n

∑
i=1

E|aniXi|I(|aniXi| > bn)

Similarly to the proof of I3 < ∞ , we can get that I2 < ∞ for 0 < α � 2.
By Lemma 2.1, we can get that

I1 = C
∞

∑
n=2

n−1(bn)−qE

(
max

1� j�n

∣∣∣∣∣ j

∑
i=1

[aniXni−E(aniXni)]

∣∣∣∣∣
q)

� C
∞

∑
n=2

n−1(bn)−q
n

∑
i=1

E|aniXni|q +C
∞

∑
n=2

n−1(bn)−q

(
n

∑
i=1

E(aniXni)2

)q/2

=: I11 + I12

By Lemma 2.5, we can get I11 � HX(α,γ) < ∞ . For I12 , if α �= γ , by α � 2,
∑n

i=1 |ani|α � n and q > 2γ/α ,

I12 � C
∞

∑
n=2

n−1

(
b−α

n

n

∑
i=1

|ani|αE|Xi|α I(|aniXi| � bn)

)q/2

� C
∞

∑
n=2

n−1(logn)−αq/2γ(E|X |α)q/2 < ∞

If α = γ , let q = 2, by Lemma 2.5, we get that,

I12 = C
∞

∑
n=2

n−1(bn)−2
n

∑
i=1

E|aniXi|2I(|aniXi| � bn)

� CE|X |α log(1+ |X |) < ∞

Therefore, the proof is completed. �
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4. Conclusions

The main result study the complete moment convergence for the weighted sums
of ρ∗ -mixing sequences which are stochastically dominated by a random variable X .
Sung (2013) and Wu et al. (2014) studied the complete convergence for the identically
distributed random variables. So, our results improve the corresponding ones of Sung
(2013) and Wu et al. (2014) under more general conditions.
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