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AN EXTENSION OF THE DAVIS–GUT LAW AND LAI LAW

YONG ZHANG

(Communicated by X. Wang)

Abstract. Let {X ,Xn,n � 1} be a sequence of i.i.d. random variables with EX = 0 and EX2 = 1
and the partial sums Sn = ∑n

k=1 Xk , n � 1 . Assume that f (x) and g(x) are positive functions
defined on [0,∞) . In this short note, under some suitable conditions, we establish the following
results

∞

∑
n=1

f (n)P{|Sn| > β
√

ng(n)} < ∞ or = ∞

according as

∞

∑
n=1

f (n)
g(n)

exp{−β 2

2
g2(n)(1+α(n))}< ∞ or = ∞

where α(n) = EX2I{|X | >
√

ng(n)}/EX2I{|X | � √
ng(n)} , β > 0 . The results extend and

generalize the known Davis-Gut Law and Lai Law.

1. Introduction and main results

Throughout this paper, let {X ,Xn,n � 1} be a sequence of i.i.d. random variables
with EX = 0, EX2 = 1 and denote Sn = ∑n

k=1 Xk , n � 1. Let N be the standard
normal random variable. C denotes a positive constant, possibly varying from place to
place, the notion an ∼ bn stands for lim

n→∞
an/bn = 1.

The following theorem, which was related to the classical Hartman-Wintner law
of the iterated logarithm, is labeled as the Davis-Gut Law.

THEOREM A. Let {X ,Xn,n � 1} be a sequence of i. i. d. random variables
with the partial sums Sn = ∑n

k=1 Xk , n � 1 . Then the following three statements are
equivalent

EX = 0 and EX2 = 1, (1.1)

∞

∑
n=1

1
n
P{|Sn| > (1+ ε)

√
2n loglogn}

{
< ∞, i f ε > 0,
= ∞, i f ε < 0.

(1.2)
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∞

∑
n=1

loglogn
n

P{|Sn| > (1+ ε)
√

2n loglogn}
{

< ∞, i f ε > 0,
= ∞, i f ε < 0.

(1.3)

(1.1)⇒ (1.2) can be deduced by Theorem 4 of Davis [3] which was remedied by
Corollary 2.3 of Li et al. [7], (1.2)⇒ (1.1) can be got by Theorem 6.2 of Gut [4].
(1.1)⇔ (1.3) was proved by Li [6]. For analogue results, we refer to Li and Rosalsky
[8], Liu et al. [9].

The next theorem, which was related to the law of the single logarithm, is labeled
as the Lai Law.

THEOREM B. Let {X ,Xn,n � 1} be a sequence of i. i. d. random variables with
the partial sums Sn = ∑n

k=1 Xk , n � 1 . Then the following two statements are equivalent

EX = 0, EX2 = 1 and E(X2/log |X |)r+1 < ∞, r > 0, (1.4)

∞

∑
n=1

nr−1P{|Sn| > (1+ ε)
√

2rn logn}
{

< ∞, i f ε > 0,
= ∞, i f ε < 0.

(1.5)

Lai [5] established the equivalence for ε > 0, Chen and Wang [2] extended it to
ε < 0. Chen and Qi [1] discussed the similar results of (1.5) for r = 0. Liu and
Meng [11] established the analogue results of Davis-Gut Law and Lai Law for finitely
inhomogeneous walks.

The gap for ε = 0 of Theorem A was solved by Liu and Guo [10], they obtained

THEOREM C. Let {X ,Xn,n � 1} be a sequence of i. i. d. random variables with
EX = 0 , EX2 = 1 and the partial sums Sn = ∑n

k=1 Xk , n � 1 . Then

∞

∑
n=1

1
n
P{|Sn| >

√
2n loglogn} < ∞ or = ∞ (1.6)

according as

∞

∑
n=1

1
n
√

loglogn
· 1

(logn)1+α(n) < ∞ or = ∞ (1.7)

where α(n) = EX2I{|X | > √
n loglogn}/EX2I{|X |� √

n loglogn} .

∞

∑
n=1

loglogn
n

P{|Sn| >
√

2n loglogn} < ∞ or = ∞ (1.8)

according as

∞

∑
n=1

√
loglogn

n(logn)1+α(n) < ∞ or = ∞ (1.9)

where α(n) = EX2I{|X | > √
n loglogn}/EX2I{|X |� √

n loglogn} .

In this paper, we want to extend and generalize the above Theorems to some func-
tions. The main result of this note is the following.
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THEOREM 1. (Main) Let {X ,Xn,n � 1} be a sequence of i. i. d. random vari-
ables with EX = 0 , EX2 = 1 and the partial sums Sn = ∑n

k=1 Xk , n � 1 . Let f (x) ,
g(x) be positive functions defined on [0,∞) , suppose that the following conditions hold

(C1) g(x) is strictly increasing to ∞ ,
(C2) ∑n

k=1 k f (k) � Cn2 f (n) ,
(C3) ∑∞

k=n k−1/2 f (k)g−3(k) � Cn1/2 f (n)g−3(n) ,
(C4) n f (n) = O(g2(n)) , or

(C4*) limsup
n→∞

n f (n)
g2(n) = ∞ , limsup

n→∞
max

ng2(n)�x2�(n+1)g2(n+1)

g4(x2)
g4(n) · f (n)

f ( x2

g2(x2)
)
� C,

E[ X4

g4(X2) f ( X2

g2(X2) )] < ∞ . Then

∞

∑
n=1

f (n)P{|Sn| > β
√

ng(n)} < ∞ or = ∞ (1.10)

according as

∞

∑
n=1

f (n)
g(n)

exp{−β 2

2
g2(n)(1+ α(n))}< ∞ or = ∞ (1.11)

where α(n) = EX2I{|X | > √
ng(n)}/EX2I{|X |� √

ng(n)} , β > 0 .

REMARK 1. There are many functions satisfying the assumptions of f (x) and

g(x) , such as f (x) = l(x)
xα , g(x) = xγh(x) , with some suitable conditions of α , γ � 0

and l(x) and h(x) are slowly varying at infinity. We list some examples in the following
Corollaries.

COROLLARY 1. Let f (n) = (loglogn)b
n , g(n) =

√
loglogn with

EX2(log log |X |)max{0,b−1} < ∞ , b ∈ R, then

∞

∑
n=1

(log logn)b

n
P{|Sn| > β

√
n loglogn}

{
< ∞, i f β >

√
2,

= ∞, i f β <
√

2.

And for β =
√

2 , we have

∞

∑
n=1

(log logn)b

n
P{|Sn| >

√
2n loglogn} < ∞ or = ∞ (1.12)

according as

∞

∑
n=1

(loglogn)b−1/2

n(logn)1+α(n) < ∞ or = ∞ (1.13)

where α(n) = EX2I{|X | > √
n loglogn}/EX2I{|X |� √

n loglogn} .
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COROLLARY 2. Let f (n) = (logn)b
n , g(n) =

√
log logn with EX2 = 1 for b � 0

and EX2(log |X |)b(loglog |X |)−1 < ∞ for b > 0 , then

∞

∑
n=1

(logn)b

n
P{|Sn| > β

√
n loglogn}

{
< ∞, i f β 2 > 2(1+b),
= ∞, i f β 2 < 2(1+b).

And for β 2 = 2(1+b) > 0 , we have

∞

∑
n=1

(logn)b

n
P{|Sn| >

√
2(1+b)n loglogn} < ∞ or = ∞ (1.14)

according as

∞

∑
n=1

1

n(loglogn)1/2

1

(logn)1+(1+b)α(n) < ∞ or = ∞ (1.15)

where α(n) = EX2I{|X | > √
n loglogn}/EX2I{|X |� √

n loglogn} .

COROLLARY 3. Let f (n) = (loglogn)b
n , g(n) = logs n with EX2 = 1 , s > 0 , then

we have

∞

∑
n=1

(log logn)b

n
P{|Sn| > β

√
nlogs n} < ∞.

COROLLARY 4. Let f (n) = nr−1 , g(n) =
√

logn with E[ X2

log |X | ]
r+1 < ∞ , 0 < r <

1/2 , then

∞

∑
n=1

nr−1P{|Sn| > β
√

n logn}
{

< ∞, i f β >
√

2r,
= ∞, i f β <

√
2r.

And for β =
√

2r , we have

∞

∑
n=1

nr−1P{|Sn| >
√

2rn logn} < ∞ or = ∞ (1.16)

according as

∞

∑
n=1

1

n1+rα(n)(logn)1/2
< ∞ or = ∞. (1.17)

where α(n) = EX2I{|X | > √
n logn}/EX2I{|X |� √

n logn} .

COROLLARY 5. Let f (n) = n−α , g(n) = nγ , 0 < α � 1 ,γ > 0 , α + 2γ � 1 ,
EX2 = 1 , then

∞

∑
n=1

1
nα P{|Sn| > β

√
nnγ} < ∞.
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Especially, for 0 < p < r < 2 ,

∞

∑
n=1

n
r
p−2P{|Sn| > βn

1
p } < ∞.

REMARK 2. Obviously, Corollaries 1-5 extend the known results (Theorems A-
C), and we also give the gap ε = 0 in Theorem B.

The following examples shows that it is possible that the series converge or diverge
in (1.13), (1.15) and (1.17) under some different conditions.

EXAMPLE 1. Let X be a random variable such that
√

c/dX has the following
density function

fz(x) =
1
c
· loglog log |x|
|x|3 log |x|(loglog |x|)2 I{|x| > z}, z > 0

where

c = c(z) = 2
∫ ∞

z

loglog logx
x3 logx(loglogx)2 dx, d = d(z) = 2

∫ ∞

z

logloglogx
x logx(log logx)2 dx.

By the same discussion in Liu and Guo [10], we know d/c is strictly monotone in-
creasing in (0,∞) and limz→0 d/c = 0 and limz→∞ d/c = ∞ , and

EX = 0, EX2 = 1, EX2I{|X | >
√

n loglogn} ∼ d
c
· loglog logn

loglogn
,

(logn)EX2I{|X |>√
n loglogn} ∼ (log logn)

d
c , n → ∞.

Therefore there exist unique constants z1 and z2 such that

d(z1)
c(z1)

=
1
2

+b > 0,
d(z2)
c(z2)

=
1

2(1+b)
> 0.

So we can easily conclude the series (1.13) converges or diverges according as z ∈
(z1,∞) or z ∈ (0,z1) , the series (1.15) converges or diverges according as z ∈ (z2,∞)
or z ∈ (0,z2) .

EXAMPLE 2. As the same argument as in Example 1,
√

c′/d′Y has the following
density function

fz(y) =
1
c′
· loglog |y|
|y|3(log |y|)2 I{|y| > z}, z > 0

where

c′ = c′(z) = 2
∫ ∞

z

log logx
x3(logx)2 dx, d′ = d′(z) = 2

∫ ∞

z

loglogx
x(logx)2 dx.
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It is easy to prove d′/c′ is strictly monotone increasing in (0,∞) and limz→0 d′/c′ = 0
and limz→∞ d′/c′ = ∞ , and

EY = 0, EY 2 = 1, EY 2I{|Y | >
√

n logn} ∼ d′

c′
· loglogn

logn
,

nEX2I{|X |>√
n logn} ∼ (logn)

d′
c′ , n → ∞.

Therefore there exists an unique constant z3 such that

d′(z3)
c′(z3)

=
1
2r

.

So we can easily conclude the series (1.17) converges or diverges according as z ∈
(z3,∞) or z ∈ (0,z3) .

2. Proof of Theorem 1

The following lemmas are useful for the proof of Theorem 1. The first lemma
is the nonuniform estimates of the remainder term in the central limit theorem (see
Nagaev [12] ,Theorem 3, p.215).

LEMMA 1. Let {X ,Xn,n � 1} be a sequence of i.i.d. random variables with
EX = 0 , EX2 = σ2 and E|X |q < ∞ , 2 < q � 3 , then there a positive constant C ,
such that

|P{ Sn

σ
√

n
� x}−P{N � x}| � CE|X |q

nq/2−1(1+ |x|q) .

LEMMA 2. Under the conditions of Theorem 1, we have

∞

∑
n=1

n f (n)P{|X |> √
ng(n)} < ∞, (2.1)

∞

∑
n=1

f (n)√
ng3(n)

E|X |3I{|X |� √
ng(n)} < ∞. (2.2)

Proof. Obviously, note that (C2),

∞

∑
n=1

n f (n)P{|X | > √
ng(n)} =

∞

∑
n=1

n f (n)
∞

∑
k=n

P{
√

kg(k) < |X | � √
k+1g(k+1)}

=
∞

∑
k=1

P{
√

kg(k) < |X | � √
k+1g(k+1)}

k

∑
n=n0

n f (n)

� C
∞

∑
k=1

k2 f (k)P{
√

kg(k) < |X | � √
k+1g(k+1)}.
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If (C4) holds, we have

∞

∑
n=1

n f (n)P{|X |> √
ng(n)} � C

∞

∑
k=1

kg2(k)P{
√

kg(k) < |X | � √
k+1g(k+1)}

� CE|X |2 < ∞.

If (C4*) holds, we have

∞

∑
n=1

n f (n)P{|X |> √
ng(n)} � C

∞

∑
k=1

k2 f (k)P{
√

kg(k) < |X | � √
k+1g(k+1)}

= C
∞

∑
k=1

E[
X4

g4(X2)
f (

X2

g2(X2)
)] · k

2g4(k)
X4 · g

4(X2)
g4(k)

f (k)

f ( X2

g2(X2) )

·I{
√

kg(k) < |X | � √
k+1g(k+1)}

� C
∞

∑
k=1

E[
X4

g4(X2)
f (

X2

g2(X2)
)]I{

√
kg(k) < |X | � √

k+1g(k+1)}

� CE[
X4

g4(X2)
f (

X2

g2(X2)
)] < ∞.

Thus the proof of (2.1) is complete.
By the same argument as in (2.1), if (C3) and (C4) hold, we obtain

∞

∑
n=1

f (n)√
ng3(n)

E|X |3I{|X | � √
ng(n)}

� C
∞

∑
k=1

E|X |3I{
√

kg(k) < |X | � √
k+1g(k+1)}

∞

∑
n=k

f (n)√
ng3(n)

� C
∞

∑
k=1

√
k f (k)

g3(k)
E|X |3I{

√
kg(k) < |X | � √

k+1g(k+1)}

� C
∞

∑
k=1

k f (k)
g2(k)

E|X |2

·I{
√

kg(k) < |X | � √
k+1g(k+1)}

� C
∞

∑
k=1

E|X |2I{
√

kg(k) < |X | � √
k+1g(k+1)}� CE|X |2 < ∞,

if (C3) and (C4*) hold, we obtain

∞

∑
n=1

f (n)√
ng3(n)

E|X |3I{|X |� √
ng(n)}

� C
∞

∑
k=1

√
k f (k)

g3(k)
E|X |3I{

√
kg(k) < |X | � √

k+1g(k+1)}



222 Y. ZHANG

� C
∞

∑
k=1

E[
X4

g4(X2)
f (

X2

g2(X2)
)] ·

√
kg(k)
|X | · g4(X2)

g4(k)
f (k)

f ( X2

g2(X2) )

·I{
√

kg(k) < |X | � √
k+1g(k+1)}

� CE[
X4

g4(X2)
f (

X2

g2(X2)
)] < ∞.

Thus the proof of (2.2) is complete. �

LEMMA 3. Under the conditions of Theorem 1, we have

∞

∑
n=1

f (n)P{|N | > βg(n)±1/g(n)
σn

} < ∞ or = ∞ (2.3)

according as

∞

∑
n=1

f (n)
g(n)

exp{−β 2

2
g2(n)(1+ α(n))}< ∞ or = ∞ (2.4)

where σ2
n = E(XI{|X |� √

ng(n)}−EXI{|X |� √
ng(n)})2 ,

α(n) = EX2I{|X |> √
ng(n)}/EX2I{|X | � √

ng(n)} , β > 0 .

Proof. It is easy to show that EX = 0 and

|g
2(n)
σ2

n
− g2(n)

EX2I{|X | � √
ng(n)}| =

g2(n)|EXI{|X |> √
ng(n)}|2

σ2
n EX2I{|X |� √

ng(n)}
� 1

σ2
n EX2I{|X | � √

ng(n)}
1
n
→ 0.

Note that P{|N |> x} ∼ 2√
2π

1
x exp{− x2

2 } as x→ ∞ , σn → 1, 1 = EX2 = EX2I{|X |�√
ng(n)+EX2I{|X |> √

ng(n) , then we have

∞

∑
n=1

f (n)P{|N | > βg(n)±1/g(n)
σn

}

∼ C
∞

∑
n=1

f (n)
g(n)

exp{−β 2g2(n)±2β +1/g2(n)
2σ2

n
}

∼ C
∞

∑
n=1

f (n)
g(n)

exp{−β 2g2(n)
2σ2

n
}

∼ C
∞

∑
n=1

f (n)
g(n)

exp{− β 2g2(n)
2EX2I{|X |� √

ng(n)}}

∼ C
∞

∑
n=1

f (n)
g(n)

exp{−β 2g2(n)
2

(1+ α(n))},
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therefore the proof is completed. It is easy to see that ∑∞
n=1 f (n)P{|N |> βg(n)+1/g(n)

σn
}

and ∑∞
n=1 f (n)P{|N |> βg(n)−1/g(n)

σn
} have the same convergenceby the above proof. �

Proof of Theorem 1. Define S′n = ∑n
k=1 XkI{|Xk| �

√
ng(n)} , Obviously

|ES′n| = n|EXI{|X |> √
ng(n)}| � n(EX2)1/2P1/2{|X | > √

ng(n)}

� n(
EX2

ng2(n)
)1/2 =

√
n

g(n)
. (2.5)

Note that

{|Sn| > β
√

ng(n)} ⊂ { max
1�k�n

|Xk| >
√

ng(n)}∪{|S′n| > β
√

ng(n)},
{|S′n| > β

√
ng(n)} ⊂ { max

1�k�n
|Xk| >

√
ng(n)}∪{|Sn| > β

√
ng(n)},

and by (2.5)

{|S′n−ES′n| > β
√

ng(n)+
√

n
g(n)

} ⊂ {|S′n| > β
√

ng(n)}

⊂ {|S′n−ES′n| > β
√

ng(n)−
√

n
g(n)

}.

Hence

P{|S′n−ES′n| > β
√

ng(n)+
√

n
g(n)

}−P{ max
1�k�n

|Xk| >
√

ng(n)} � P{|Sn| > β
√

ng(n)}

� P{|S′n−ES′n| > β
√

ng(n)−
√

n
g(n)

}+P{ max
1�k�n

|Xk| >
√

ng(n)}.

By the fact |a|− |a−b|� |b| � |a|+ |a−b| , then

P{|N | >
β
√

ng(n)+
√

n
g(n)√

Var(S′n)
}− |P{|S′n−ES′n| > β

√
ng(n)+

√
n

g(n)
}

−P{|N | >
β
√

ng(n)+
√

n
g(n)√

Var(S′n)
}|−P{ max

1�k�n
|Xk| >

√
ng(n)}

� P{|Sn| > β
√

ng(n)}
� P{ max

1�k�n
|Xk| >

√
ng(n)}+ |P{|S′n−ES′n| > β

√
ng(n)−

√
n

g(n)
}

−P{|N | >
β
√

ng(n)−
√

n
g(n)√

Var(S′n)
}|+P{|N | >

β
√

ng(n)−
√

n
g(n)√

Var(S′n)
}.

By (2.1), we have

∞

∑
n=1

f (n)P{ max
1�k�n

|Xk| >
√

ng(n)} �
∞

∑
n=1

n f (n)P{|X |> √
ng(n)} < ∞.
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By Lemma 1 and (2.2), Var(S′n) = nσ2
n , σn → 1,

βg(n)± 1
g(n)

σn
→ βg(n) , we know

∞

∑
n=1

f (n)|P{|S′n−ES′n| > β
√

ng(n)±
√

n
g(n)

}−P{|N | >
β
√

ng(n)±
√

n
g(n)√

Var(S′n)
}|

=
∞

∑
n=1

f (n)|P{|S′n−ES′n| > β
√

ng(n)±
√

n
g(n)

}−P{|N | >
βg(n)± 1

g(n)

σn
}|

� C
∞

∑
n=1

f (n)√
ng3(n)

E|X |3I{|X |� √
ng(n)} < ∞.

Therefore

∞

∑
n=1

f (n)P{|Sn| > β
√

ng(n)} < ∞ or = ∞ (2.6)

according as

∞

∑
n=1

f (n)P{|N | >
βg(n)± 1

g(n)

σn
} < ∞ or = ∞, (2.7)

then by Lemma 3, the proof of Theorem 1 is complete. �
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