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AN EXTENSION OF THE DAVIS-GUT LAW AND LAI LAW

YONG ZHANG

(Communicated by X. Wang)

Abstract. Let {X,X,,n > 1} be asequence of i.i.d. random variables with EX =0 and EX? = 1
and the partial sums S, =Y/, Xi, n > 1. Assume that f(x) and g(x) are positive functions
defined on [0,e°). In this short note, under some suitable conditions, we establish the following
results

S (0P| > Big(n)} <= o =<

according as

o0 n 2
gf—nexp{—%g2<n>(1+a<n>>}<w or =

where o(n) = EX?I{|X| > \/ng(n)}/EX?I{|X| < v/ng(n)}, B > 0. The results extend and
generalize the known Davis-Gut Law and Lai Law.

1. Introduction and main results

Throughout this paper, let {X,X,,,n > 1} be a sequence of i.i.d. random variables
with EX =0, EX? =1 and denote S, = Yi 1 Xk, n>1. Let .4 be the standard
normal random variable. C denotes a positive constant, possibly varying from place to
place, the notion a, ~ b, stands for nh_rilo an/by=1.

The following theorem, which was related to the classical Hartman-Wintner law
of the iterated logarithm, is labeled as the Davis-Gut Law.

THEOREM A. Let {X,X,,n > 1} be a sequence of i. i. d. random variables
with the partial sums S, =Y X, n > 1. Then the following three statements are
equivalent

EX =0 and EX* =1, (1.1)

Y P{|S > (1+¢) \/2n10g10gn}{ i; izg’ (1.2)

n= 1
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3 O, > (1) Fnoglogn { ST T 0
= n =oo, if €<0.

(1.1)=- (1.2) can be deduced by Theorem 4 of Davis [3] which was remedied by
Corollary 2.3 of Li et al. [7], (1.2)= (1.1) can be got by Theorem 6.2 of Gut [4].
(1.1)& (1.3) was proved by Li [6]. For analogue results, we refer to Li and Rosalsky
[8], Liu et al. [9].

The next theorem, which was related to the law of the single logarithm, is labeled
as the Lai Law.

THEOREM B. Letr {X,X,,n > 1} be a sequence of i. i. d. random variables with
the partial sums S, = Y};_ Xk, n > 1. Then the following two statements are equivalent

EX =0, EX*=1 and E(X?/log|X|)"! <o, r>0, (1.4)
3 PS> (l+£)\/2rnlogn}{f:’ i; izg’ (1.5)
n=1 - .

Lai [5] established the equivalence for € > 0, Chen and Wang [2] extended it to
€ < 0. Chen and Qi [1] discussed the similar results of (1.5) for r = 0. Liu and
Meng [ 1] established the analogue results of Davis-Gut Law and Lai Law for finitely
inhomogeneous walks.

The gap for € = 0 of Theorem A was solved by Liu and Guo [10], they obtained

THEOREM C. Let {X,X,,n > 1} be a sequence of i. i. d. random variables with
EX =0, EX? =1 and the partial sums S, =7 _ Xy, n> 1. Then

&1
Y, —P{|Su| > /2nloglogn} < e or =-eo (1.6)
n:ln

according as

1
2 n\/loglogn (logn)+a()

where o(n) = EX?I{|X| > \/nloglogn}/EX?I{|X| < y/nloglogn}.

<o or = (1.7)

logl
y log OgnP{|S | > \/2nloglogn} < e or = (1.8)

n=1

according as

= /loglogn
2 o O < or = (1.9)

n(logn) 1+oc (loe )1 +o(n)
where o(n) = EX?I{|X| > \/nloglogn}/EX?I{|X| < y/nloglogn}.

In this paper, we want to extend and generalize the above Theorems to some func-
tions. The main result of this note is the following.
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THEOREM 1. (Main) Let {X,X,,n > 1} be a sequence of i. i. d. random vari-
ables with EX =0, EX? =1 and the partial sums S, = Y¢_ Xy, n > 1. Let f(x),
g(x) be positive functions defined on [0,0), suppose that the following conditions hold

(CI) g(x) is strictly increasing to oo,

(C2) X kf(k )<Cn2f( ),

(C3) T, k' 2 f(k)g (k) < Cn'2f(n)g > (n),

(C4) nf(n)=0(g*(n)), or

(C4*) limsup =% nfln) _ oo, limsup max ;,;44(_)52). f (r;) <C,
ne &0 T <<t N2t 1) € ()
4 2
El gt/ (gemy)) < o= Then
Y. f()P{ISu| > Bv/ng(n)} <o or =eo (1.10)

n=1
according as
2

s /(1) B _
r;g(n) exp{—7g2(n)(l+a(n))}<oo or =oo (L.1D)

where o(n) = EX?I{|X| > /ng(n)}/EX*I{|X| < \/ng(n)}, B > 0.

REMARK 1. There are many functions satisfying the assumptions of f(x) and
g(x), such as f(x) = 1)5_2)’ g(x) = x"h(x), with some suitable conditions of ¢, y >0
and /(x) and h(x) are slowly varying at infinity. We list some examples in the following
Corollaries.

COROLLARY 1. Let f(n) = M, g(n) = /loglogn with
EX?(loglog|X|)m{0b=1} < 0o b € R, then

< loglogn oo if B>V2,
> P{|s>wm}{ ez

And for B = /2, we have

=

loglogn)®
3 {oglogn)” oo | /anToglogn} < oo or — oo (1.12)
—1 n

according as
i (loglogn)?—1/2

n(logn) Ha ) <oo or =oo (1.13)

where o(n) = EX?I{|X| > \/nloglogn}/EX?I{|X| < y/nloglogn}.
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COROLLARY 2. Let f(n) = (log") , g(n) = /loglogn with EX*> =1 for b<0
and EX?(log|X|)?(loglog |X|)~! < °°f0r b >0, then

< (logn) if p?
3 08 piis, > ptogtogn) { =201 0,230+

And for B> =2(1+5b) >0, we have

= (1
3 (Og”) P{IS| > /2(1 + b)nloglogn} < e or =eo (1.14)

n=1
according as
i :
= loglogn )1/2 (logn)+(1+b)a(n)

where o(n) = EX?I{|X| > \/nloglogn}/EX?I{|X| < v/nloglogn}.

<oo or =oo (1.15)

b
COROLLARY 3. Let f(n) = (logl%"), g(n) =log’n with EX* =1, s >0, then
we have

=

(logl
> (102108 11, . B ylog' ) < =

COROLLARY 4. Let f(n) =n""!, g(n) = \/logn with E[lo’gflle]”rl <o, 0<r<
1/2, then

inrflpﬂsn\ >B\/’Fg"}{i:: ﬁ? g Z\/@

n=1

And for B =+/2r, we have

S 0 P{|Su| > \/2rnlogn} <o or =co (1.16)
n=1

according as

i 1

= n1+ra(n)(10gn)l/2
where o(n) = EX?I{|X| > \/nlogn}/EX*I{|X| < \/nlogn}.

COROLLARY 5. Let f(n) =n"%, gn)=n", 0<a<1,y>0, a+2y>1,
EX? =1, then

< oo Oor =oo, (1.17)

Y PS> By} <o

n=1
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Especially, for 0 < p <r<?2,

hd r 1
S np PP{IS,| > Bnv} < .

n=1

REMARK 2. Obviously, Corollaries 1-5 extend the known results (Theorems A-
C), and we also give the gap € =0 in Theorem B.

The following examples shows that it is possible that the series converge or diverge
in (1.13), (1.15) and (1.17) under some different conditions.

EXAMPLE 1. Let X be a random variable such that y/c¢/dX has the following
density function

1 logloglog |x|

=—- 1 >z}, z>0
S0 = & eFlog e loglog 17 ¥ 2
where
> logloglogx /°° logloglogx
= =2 d d=d(z)=2 — = d
c=c() /Z x3logx(loglogx)? * @) . xlogx(loglogx)? *

By the same discussion in Liu and Guo [10], we know d/c is strictly monotone in-
creasing in (0,e0) and lim,_,gd/c =0 and lim;_...d/c = e, and

d logloglogn

EX =0, EX*=1, EX*I{|X| > \/nlogl ~
’ ’ {IX]> v/nloglogn} ¢ loglogn

(logn)EXZI{\X\>\/nlog10gn} ~ (loglogn)%, 1 —s oo

Therefore there exist unique constants z; and z such that

> 0.

dz) 1 dz) 1
o) 27 % ) T

So we can easily conclude the series (1.13) converges or diverges according as z €
(z1,%) or z € (0,71), the series (1.15) converges or diverges according as z € (z2,°)
orze (0,22) .

EXAMPLE 2. As the same argument as in Example 1, 1/¢’/d'Y has the following

density function
1 logloglyl
f0) == —=—=EL_[{ly| >z}, 2>0
0= BRgoghpz > ¥

where

> loglogx > loglogx
e :2/ —=—="dx, d=d :2/ ——d
¢=cld) . x3(logx)? * @) . x(logx)? *
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It is easy to prove d’'/c’ is strictly monotone increasing in (0,o0) and lim,_,od’/c’ =0
and lim;_..d' /¢ = e, and

4 logl
EY =0, EY> =1, EY?I{|[Y| > \/nlogn} ~ = . 22281
¢ logn
nEX21{|X|>\/nlogn} ~ (logn)%, 71— oo,

Therefore there exists an unique constant z3 such that

d'(z) 1

() 2

So we can easily conclude the series (1.17) converges or diverges according as z €
(z3,00) or z € (0,z3).

2. Proof of Theorem 1

The following lemmas are useful for the proof of Theorem 1. The first lemma
is the nonuniform estimates of the remainder term in the central limit theorem (see
Nagaev [12] ,Theorem 3, p.215).

LEMMA 1. Let {X,Xy,n = 1} be a sequence of i.i.d. random variables with
EX =0, EX?> =02 and E|X|1 < e, 2 < q < 3, then there a positive constant C,
such that

P A\ CE|X|1
oyn = na/2=1(1 + [x]9)”
LEMMA 2. Under the conditions of Theorem 1, we have
Z (m)P{IX| > Vng(n)} < o=, 2.1
2 Tnd e EX PH{|X| < Ving(n)} <o 22)

Proof. Obviously, note that (C2),

Ms

nfP{X| > Vg = 3 nf(n) S, P{VEg(K) < |X| < VAT Tg(k+1)}
k=n

n=1

I
—_

n

k
EP{\/_g( ) < |X| < Ve 1gk+1)} Y nf(n)

k=1 n=nq

czk2 K)P{Vkg(k) < |X| < Vk+1g(k+1)}.

8
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If (C4) holds, we have

3 nf()P{X| > Vig(n) }<c2kg (K)P{VRg(k) < |X| < VAT Tg(k + 1)}

n=1

< CE|X|* < oo,

If (C4%) holds, we have

3 nf(m)P{IX| > vg(n }<C2k2f \P{VEg(K) < |X| < VET Tg(k+ 1))
n=1
—ciE x4 X RRw SO0

)] : 2
g Xt g ) f(H)

I{Vkg(k) < |X| < \/k+ 1g(k+1)}

<CiE f;z)f( X2 ))]I{\/_g( ) < |X| < Vk+1gk+1)}
x4 X?
< CElamy e <=

Thus the proof of (2.1) is complete.
By the same argument as in (2.1), if (C3) and (C4) hold, we obtain

3 GBI < Vi)

T+ 1g( ’;(n)

ki XPr{VEg(k)

g (k)

o kf(k) 2
<C E|X
S Z‘lgz(k) ol

T{Vkg(k) < |X| < VE+1g(k+1)}
< ciE\XFI{\/lEg(k) < |X| < Vk+1g(k+1)} <CE[X]* < oo,
k=1

<03 Y i brVRg k) < %] < VEF Ta(k+ 1)}
k=1

if (C3) and (C4%*) hold, we obtain

E\X\31{IX| < V/ng(n)}

E|X|3I{\/—g( ) < [X| < Vk+1g(k+1)}
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- o X* X2 Vke(k) g'(X?)  f(k)
ngZ‘lE[gzt(Xz)f(gz(Xz))} |X| g4(k) f(gz}((;z))

1{VEs(6) < X| < VET Tg(k+ 1)}
x4 X2
o)

< CE|

Thus the proof of (2.2) is complete. [l

LEMMA 3. Under the conditions of Theorem 1, we have

S fm)P{A| > w} <oo or —es 2.3)
n=1 n

according as
o n 2
2 gEn; exp{—%gz(n)(1+a(n))}<°° or =oo (2.4)
n=1

where o = E(XI{|X| < v/g(n)} — EXI{|X| < /Aig(n)})?,
() = EX2I{|X| > \/ng(n)} /EXI{|X| < \/g(n)}, B > 0.

Proof. Ttis easy to show that EX =0 and

£ £
o7 EX{X|<ugn)
1 1

< - =0
GPEXCI{|X[< Jmg(m)}n

g () EXI{|X| > /ng(n)}|*
O EX?I{|X] < V/ng(n)}

Note that P{| 4| > x} ~ exp{ } as x — oo, 0, — 1, 1 = EX? = EX?I{|X| <
vng(n )+EX21{|X|>\/—g( ), then we have

gf(n)P{L/V ﬁg(">jn1/g(n)}
~C il ! E; exp{—E&() izzf,% +U/0),
~ef fyen-Eh
i Crg gé:i exp{— 25x21{[|3)2(g|;2<(n\)/;g(n>} }
> e oL 1 o),
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therefore the proof is completed. It is easy to see that Y| f(n)P{|.#| > M}

On

and Y57, f(n)P{| | > M} have the same convergence by the above proof. [
Proof of Theorem 1. Define S), = Y7 X, I{|Xi| < \/ng(n)}, Obviously
|ES;| = n|EXI{|X| > v/ng(n)}| < n(EX?)'/?PV{|X| > v/ng(n)}
( EX? )1/2 \/’_1
n =——.
ng*(n) 8(n)
Note that
{18l > BVAg(n)} € { max ] > Viign)} U {15y > Big(n)).
{1 > Bvg(n)} € {max 15| > Vig(n)} U{[Si] > B/ag(m)},

and by (2.5)

(2.5)

(18, — ES}| > B\/ﬁg(n)+£} C {18, > Bv/g(n))

c {Is,— ES)| >Bﬁg(n)—$}~

Hence

P(1S, ~ ES,| > Big(n) + ) — PLmax %] > Viig(n)} < P(IS,] > Byg(n)}

g(n) 1<k<

?\/n_)}—’_P{&l]?gJXH > /ng(n)}.
|

By the fact |a| — |a — b| < |b| < |a| + |a — b], then

< P{[S, —ES,| > Bv/ng(n) -

Bag(n) + 35 g

PN > =) il 5 > Bio) + 25}
o)
o BV

ﬁﬂ P{lxg?gn |Xx| > V/ng(n)}
< P{|Su| > Bv/ng(n)}

< PlLmax D4l > Vigln)} + P(IS, ~ E5,) > Bvigln) ~ )

g(n)
B/ng(n) — /o B/ng(n) — /o
—P{|A]> T(SQ)}HP{M/‘ > T(S;,}'

By (2.1), we have

3. FP{ma, 1% > Vig(n)} < S nf)PIX] > Viigon)} <=

n=1
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Bg(n)=-L

By Lemma 1 and (2.2), Var(S,) =nc?, 6, — 1, o ), Bg(n), we know

ngn \/ﬁ
Vi s BV il

f(n)|P{|S, — ES,)| >ﬁ\/ﬁg(n)iw Var(s)

M Tpas

n) 4 L
Fm)P{|S, — ES;,\>ﬁ\/ﬁg(n):|:ﬂ}—P{|,/V‘>M}‘

| g(n) Oy
< 3 L X i < Vi) <
Therefore
gf(n)P{lSnl > Byg(n)} <o or —eo 2.6
according as
i (n)P{|4] > %}@o or =oo, 2.7)

— n

then by Lemma 3, the proof of Theorem 1 is complete. [
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