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ADDITIVE REFINEMENTS AND REVERSES OF YOUNG’S

OPERATOR INEQUALITY WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR

(Communicated by M. Fujii)

Abstract. In this paper we obtain some new additive refinements and reverses of Young’s opera-
tor inequality. Applications related to the Hölder-McCarthy inequality for positive operators and
for trace class operators on Hilbert spaces are given as well.

1. Introduction

Throughout this paper A, B are positive operators on a complex Hilbert space
(H,〈·, ·〉) . We use the following notations for operators

A∇νB := (1−ν)A+ νB,

the weighted operator arithmetic mean and

A�νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted operator geometric mean. When ν = 1
2 we write A∇B and A�B for

brevity, respectively.
The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0,1], then

a1−νbν � (1−ν)a+ νb (1.1)

with equality if and only if a = b . The inequality (1.1) is also called ν -weighted
arithmetic-geometric mean inequality.

We recall that Specht’s ratio is defined by [13]

S (h) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h
1

h−1

e ln

(
h

1
h−1

) if h ∈ (0,1)∪ (1,∞) ,

1 if h = 1.

(1.2)
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It is well known that limh→1 S (h) = 1, S (h)= S
(

1
h

)
> 1 for h > 0, h �= 1. The function

is decreasing on (0,1) and increasing on (1,∞) .
The following inequality provides a refinement and a multiplicative reverse for

Young’s inequality

S
((a

b

)r)
a1−νbν � (1−ν)a+ νb � S

(a
b

)
a1−νbν , (1.3)

where a, b > 0, ν ∈ [0,1], r = min{1−ν,ν} .
The second inequality in (1.3) is due to Tominaga [14] while the first one is due to

Furuichi [6].
The operator version is as follows [6], [14] :

THEOREM 1. For two positive operators A, B and positive real numbers m, m′,
M, M′ satisfying either of the following conditions:

(i) 0 < mI � A � m′I < M′I � B � MI,
(ii) 0 < mI � B � m′I < M′I � A � MI,

we have
S
((

h′
)r)

A�νB � A∇νB � S (h)A�νB, (1.4)

where h := M
m , h′ := M′

m′ and ν ∈ [0,1] .

We consider the Kantorovich’s constant defined by

K (h) :=
(h+1)2

4h
, h > 0. (1.5)

The function K is decreasing on (0,1) and increasing on [1,∞) , K (h) � 1 for any
h > 0 and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds.

Kr
(a

b

)
a1−νbν � (1−ν)a+ νb � KR

(a
b

)
a1−νbν (1.6)

where a, b > 0, ν ∈ [0,1], r = min{1−ν,ν} and R = max{1−ν,ν} .
The first inequality in (1.6) was obtained by Zou et al. in [15] while the second by

Liao et al. [11].
The operator version is as follows [15], [11]:

THEOREM 2. For two positive operators A, B and positive real numbers m, m′,
M, M′ satisfying either of the following conditions:

(i) 0 < mI � A � m′I < M′I � B � MI,
(ii) 0 < mI � B � m′I < M′I � A � MI,

we have
Kr (h′)A�νB � A∇νB � KR (h)A�νB, (1.7)

where h := M
m , h′ := M′

m′ , ν ∈ [0,1] , r = min{1−ν,ν} and R = max{1−ν,ν} .
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Kittaneh and Manasrah [8], [9] provided a refinement and an additive reverse for
Young inequality as follows:

r
(√

a−
√

b
)2

� (1−ν)a+ νb−a1−νbν � R
(√

a−
√

b
)2

(1.8)

where a, b > 0, ν ∈ [0,1], r = min{1−ν,ν} and R = max{1−ν,ν} . The case
ν = 1

2 reduces (1.8) to an identity.
For some operator versions of (1.8) see [8] and [9]. Other recent results for opera-

tors may be found in [1]-[5].
Motivated by the above results we establish in this paper some new additive refine-

ments and reverses of Young’s operator inequality. Applications related to the Hölder-
McCarthy inequality for positive operators and for trace class operators on Hilbert
spaces are given as well.

2. Additive Reverses

We consider the function fν : [0,∞) → [0,∞) defined for ν ∈ (0,1) by

fν (x) = 1−ν + νx− xν . (2.1)

The following lemma holds.

LEMMA 1. For any x ∈ [m,M] ⊂ [0,∞) we have

max
x∈[m,M]

fν (x) = Δν (m,M) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fν (m) if M < 1,

max{ fν (m) , fν (M)} if m � 1 � M,

fν (M) if 1 < m

(2.2)

and

min
x∈[m,M]

fν (x) = δν (m,M) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fν (M) if M < 1,

0 if m � 1 � M,

fν (m) if 1 < m.

(2.3)

Proof. The function fν is differentiable and

f ′ν (x) = ν
(
1− xν−1)= ν

x1−ν −1
x1−ν ,

which shows that the function fν is decreasing on [0,1] and increasing on [1,∞),
fν (0) = 1− ν, fν (1) = 0 and the equation fν (x) = 1− ν for x > 0 has the unique

solution xν = ν
1

ν−1 > 1.
Therefore, by considering the 3 possible situations for the location of the interval

[m,M] and the number 1 we get the desired bounds (2.2) and (2.3). �
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REMARK 1. We have the inequalities

0 � fν (x) � 1−ν for any x ∈
[
0,ν

1
ν−1

]
and

1−ν � fν (x) for any x ∈
[
ν

1
ν−1 ,∞

)
.

THEOREM 3. Assume that A, B are positive invertible operators and the con-
stants M > m > 0 are such that

mA � B � MA. (2.4)

Let ν ∈ [0,1] , then we have the inequalities

δν (m,M)A � A∇νB−A�νB � Δν (m,M)A, (2.5)

where Δν (m,M) and δν (m,M) are defined by (2.2) and (2.3), respectively.

Proof. From Lemma 1 we have the double inequality

δν (m,M) � 1−ν + νx− xν � Δν (m,M) (2.6)

for any x ∈ [m,M] .
If X is an operator such that mI � X � MI, then by (2.6) and the continuous

functional calculus, we have

δν (m,M) I � (1−ν)I + νX −Xν � Δν (m,M) I. (2.7)

If the condition (2.4) holds, then by multiplying in both sides with A−1/2 we get
mI � A−1/2BA−1/2 � MI and by taking X = A−1/2BA−1/2 in (2.7) we get

δν (m,M) I � (1−ν)I + νA−1/2BA−1/2−
(
A−1/2BA−1/2

)ν
(2.8)

� Δν (m,M) I.

Now, if we multiply (2.8) in both sides with A1/2 we get the desired result (2.5). �

COROLLARY 1. For two positive operators A, B and positive real numbers m,
m′, M, M′ put h = M

m and h′ = M′
m′ .

If
(i) 0 < mI � A � m′I < M′I � B � MI,

then
fν
(
h′
)
A � A∇νB−A�νB � fν (h)A. (2.9)

If
(ii) 0 < mI � B � m′I < M′I � A � MI,

then
fν
((

h′
)−1
)

A � A∇νB−A�νB � fν
(
h−1)A. (2.10)
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Proof. If (i) is valid, then we have

A <
M′

m′ A = h′A � B � hA =
M
m

A,

and by (2.5) we have for 1 < h′ � h

fν
(
h′
)
A � A∇νB−A�νB � fν (h)A,

and the inequality (2.9) is proved.
If (ii) is valid, then we have

1
h
A � B � 1

h′
A < A

and by (2.5) for 1
h � 1

h′ < 1 we also have

fν

(
1
h′

)
A � A∇νB−A�νB � fν

(
1
h

)
A,

and the inequality (2.10) is proved. �
We have the following simpler bounds:

COROLLARY 2. With the assumptions of Theorem 3 we have

r×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1−√

M
)2

A if M < 1,

0 if m � 1 � M,

(
√

m−1)2 A if 1 < m,

(2.11)

� A∇νB−A�νB

� R×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−√
m)2 A if M < 1,

max
{

(1−√
m)2

,
(√

M−1
)2}

A if m � 1 � M,

(√
M−1

)2
A if 1 < m,

,

where ν ∈ [0,1], r = min{1−ν,ν} and R = max{1−ν,ν} .

Proof. From the inequality (1.8) we have for b = t and a = 1 that

r
(√

t−1
)2 � fν (t) = 1−ν + νt− tν � R

(√
t−1

)2
for any t ∈ [0,1].
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Then we have

Δν (m,M) � R×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−√
m)2 if M < 1,

max
{
(1−√

m)2
,
(√

M−1
)2}

if m � 1 � M,

(√
M−1

)2
if 1 < m

and

δν (m,M) � r×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1−√

M
)2

if M < 1,

0 if m � 1 � M,

(
√

m−1)2 if 1 < m,

which by Theorem 3 proves the corollary. �

REMARK 2. With the assumptions of Corollary 1, we have, in the case (i), that

r
(√

h′ −1
)2

A � A∇νB−A�νB � R
(√

h−1
)2

A, (2.12)

and in the case (ii), that

r

(
1−√

h′
)2

h′
A � A∇νB−A�νB � R

(
1−√

h
)2

h
A. (2.13)

The following bounds in terms of Specht’s ratio can be stated as well:

COROLLARY 3. With the assumptions of Theorem 3 we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[S (Mr)−1]MνA if M < 1,

0 if m � 1 � M,

[S (mr)−1]mνA if 1 < m,

(2.14)

� A∇νB−A�νB

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[S (m)−1]mνA if M < 1,

max{[S (m)−1]mν , [S (M)−1]Mν}A if m � 1 � M,

[S (M)−1]MνA if 1 < m.
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Proof. From the inequality (1.3) we have for a = 1 and b = t that

S (tr) tν � 1−ν + νt � S (t)tν , (2.15)

where t > 0, ν ∈ [0,1], r = min{1−ν,ν} .
By subtracting tν in the inequality (2.15) we get

(0 �) [S (tr)−1]tν � fν (t) � [S (t)−1]tν , (2.16)

for any t > 0, ν ∈ [0,1].
Then we have

Δν (m,M) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[S (m)−1]mν if M < 1,

max{[S (m)−1]mν , [S (M)−1]Mν} if m � 1 � M,

[S (M)−1]Mν if 1 < m

and

δν (m,M) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[S (Mr)−1]Mν if M < 1,

0 if m � 1 � M,

[S (mr)−1]mν if 1 < m,

which by Theorem 3 proves the corollary. �

REMARK 3. With the assumptions of Corollary 1, we have in the case (i), that

[
S
((

h′
)r)−1

](
h′
)ν

A � A∇νB−A�νB � [S (h)−1]hνA, (2.17)

and in the case (ii), that

S ((h′)r)−1
(h′)r A � A∇νB−A�νB � S (h)−1

hν A. (2.18)

From the inequality (1.6) we have

(0 <) [Kr (t)−1]tν � 1−ν + νt− tν �
[
KR (t)−1

]
tν (2.19)

where t > 0, ν ∈ [0,1], r = min{1−ν,ν} and R = max{1−ν,ν} .

We then have the following bounds in terms of Kantorovich’s constant:
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COROLLARY 4. With the assumptions of Theorem 3 we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Kr (M)−1]MνA if M < 1,

0 if m � 1 � M,

[Kr (m)−1]mνA if 1 < m,

(2.20)

� A∇νB−A�νB

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
KR (m)−1

]
mνA if M < 1,

max
{[

KR (m)−1
]
mν ,

[
KR (M)−1

]
Mν}A if m � 1 � M,

[
KR (M)−1

]
MνA if 1 < m.

REMARK 4. With the assumptions of Corollary 1, we have in the case (i), that

[
Kr (h′)−1

](
h′
)ν

A � A∇νB−A�νB �
[
KR (h)−1

]
hνA, (2.21)

and in the case (ii), that

Kr (h′)−1
(h′)r A � A∇νB−A�νB � KR (h)−1

hν A. (2.22)

Let p, q > 1 with 1
p + 1

q = 1. Assume that the positive invertible operators A, B
satisfy the condition

mAp � Bq � MAp. (2.23)

Then by replacing A with Ap, B with Bq and ν = 1
q in (2.5) we have

δ 1
q
(m,M)Ap � 1

p
Ap +

1
q
Bq−Ap� 1

q
Bq � Δ 1

q
(m,M)Ap, (2.24)

where Δ 1
q
(m,M) and δ 1

q
(m,M) are defined by (2.2) and (2.3) respectively.

If the positive invertible operators A, B satisfy the condition (2.23), then from
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(2.11) we get for

rp,q×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1−√

M
)2

Ap if M < 1,

0 if m � 1 � M,

(
√

m−1)2 Ap if 1 < m

(2.25)

� 1
p
Ap +

1
q
Bq−Ap� 1

q
Bq

� Rp,q×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−√
m)2 Ap if M < 1,

max
{
(1−√

m)2
,
(√

M−1
)2}

Ap if m � 1 � M,

(√
M−1

)2
Ap if 1 < m,

,

from (2.14) we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[S (Mrp,q)−1]MνAp if M < 1,

0 if m � 1 � M,

[S (mrp,q)−1]mνAp if 1 < m

(2.26)

� 1
p
Ap +

1
q
Bq−Ap� 1

q
Bq

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[S (m)−1]mνAp if M < 1,

max{[S (m)−1]mν , [S (M)−1]Mν}Ap if m � 1 � M,

[S (M)−1]MνAp if 1 < m,
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while from (2.20) we get⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Krp,q (M)−1]MνAp if M < 1,

0 if m � 1 � M,

[Krp,q (m)−1]mνAp if 1 < m

(2.27)

� 1
p
Ap +

1
q
Bq−Ap� 1

q
Bq

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
KRp,q (m)−1

]
mνAp if M < 1,

max
{[

KRp,q (m)−1
]
mν ,

[
KRp,q (M)−1

]
Mν}Ap if m � 1 � M,

[
KRp,q (M)−1

]
MνAp if 1 < m,

where rp,q = min
{

1
p , 1

q

}
and Rp,q = max

{
1
p , 1

q

}
.

If p = q = 2 and if we assume that

mA2 � B2 � MA2, (2.28)

then by (2.24) we get

δ 1
2
(m,M)A2 � 1

2

(
A2 +B2)−A2�B2 � Δ 1

2
(m,M)A2. (2.29)

Assume that A and B satisfy the conditions

m1I � A � M1I, m2I � B � M2I (2.30)

for some 0 < m1 < M1 and 0 < m2 < M2. We have from (2.30) that

mp
1 I � Ap � Mp

1 I.

Then by (2.30) we also have

mp
1M−q

2 I � mp
1B−q � B− q

2 ApB− q
2 � Mp

1 B−q � Mp
1 m−q

2 I,

which implies that

m1M
− q

p
2 I �

(
B− q

2 ApB− q
2

) 1
p � M1m

− q
p

2 I.

Now, on using the inequality (2.24) for m = m1M
− q

p
2 and M = M1m

− q
p

2 , we get

δν

(
m1M

− q
p

2 ,M1m
− q

p
2

)
Ap � 1

p
Ap +

1
q
Bq−Ap� 1

q
Bq (2.31)

� Δν

(
m1M

− q
p

2 ,M1m
− q

p
2

)
Ap,
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where p, q > 1 with 1
p + 1

q = 1.
In particular, we have

δ 1
2

(
m1M

−1
2 ,M1m

−1
2

)
A2 � 1

2

(
A2 +B2)−A2�B2 (2.32)

� Δ 1
2

(
m1M

−1
2 ,M1m

−1
2

)
A2,

provided that A and B satisfy the conditions (2.30).
Further inequalities in terms of Specht’s ratio and Kantorovich’s constant may be

obtained by using (2.26) and (2.27) respectively, however the details are not presented
here.

3. Inequalities Related to McCarthy’s

By the use of the spectral resolution of P � 0 and the Hölder inequality, C. A.
McCarthy [12] proved that

〈Px,x〉p � 〈Ppx,x〉 , p ∈ (1,∞) (3.1)

and
〈Ppx,x〉 � 〈Px,x〉p , p ∈ (0,1) (3.2)

for any x ∈ H with ‖x‖ = 1.
From the previous section, for positive numbers a, b with b

a ∈ [m,M] ⊂ (0,∞)
and ν ∈ [0,1] we can state the following scalar inequalities

δν (m,M)a � (1−ν)a+ νb−a1−νbν � Δν (m,M)a, (3.3)

where Δν (m,M) and δν (m,M) are defined by (2.2) and (2.3) respectively.
We also have the scalar inequalities

r×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1−√

M
)2

a if M < 1,

0 if m � 1 � M,

(
√

m−1)2 a if 1 < m,

(3.4)

� (1−ν)a+ νb−a1−νbν

� R×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−√
m)2 a if M < 1,

max
{
(1−√

m)2
,
(√

M−1
)2}

a if m � 1 � M,

(√
M−1

)2
a if 1 < m,

,
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⎪⎪⎪⎪⎩

[S (Mr)−1]Mνa if M < 1,

0 if m � 1 � M,

[S (mr)−1]mνa if 1 < m

(3.5)

� (1−ν)a+ νb−a1−νbν

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[S (m)−1]mνa if M < 1,

max{[S (m)−1]mν , [S (M)−1]Mν}a if m � 1 � M,

[S (M)−1]Mνa if 1 < m

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Kr (M)−1]Mνa if M < 1,

0 if m � 1 � M,

[Kr (m)−1]mνa if 1 < m

(3.6)

� (1−ν)a+ νb−a1−νbν

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
KR (m)−1

]
mνa if M < 1,

max
{[

KR (m)−1
]
mν ,

[
KR (M)−1

]
Mν}a if m � 1 � M,

[
KR (M)−1

]
Mνa if 1 < m,

where r = min{1−ν,ν} and R = max{1−ν,ν} .

THEOREM 4. Let P and operator such that

zI � P � ZI (3.7)

for some constants Z > z > 0.
Then for any x ∈ H with ‖x‖ = 1 we have

0 � 1−
〈
Pλ x,x

〉
〈Px,x〉λ � max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
, (3.8)

where λ ∈ [0,1] and the function fλ : [0,∞) → [0,∞) is defined by

fλ (t) = 1−λ + λ t− tλ . (3.9)
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Proof. If u,v ∈ [z,Z] then u
v ∈ [ z

Z , Z
z

]
and by (3.3) we have

0 � (1−λ )v+ λu− v1−λuλ � max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v

for any λ ∈ [0,1] .
Fix v ∈ [z,Z] , then by using the functional calculus for the operator P with zI �

P � ZI we have

0 � (1−λ )vI + λP− v1−λPλ � max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v (3.10)

for any λ ∈ [0,1] .
The inequality (3.10) implies that

0 � (1−λ )v+ λ 〈Px,x〉− v1−λ
〈
Pλ x,x

〉
� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v, (3.11)

for any x ∈ H with ‖x‖ = 1, for any λ ∈ [0,1] and for any v ∈ [z,Z] .
If we take in (3.11) v = 〈Px,x〉 ∈ [z,Z] , for x ∈ H with ‖x‖ = 1, then we have

0 � 〈Px,x〉− 〈Px,x〉1−λ
〈
Pλ x,x

〉
� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
〈Px,x〉 ,

which, by division with 〈Px,x〉1−λ > 0 produces

0 � 〈Px,x〉λ −
〈
Pλ x,x

〉
� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
〈Px,x〉λ

that is equivalent to the desired result (3.8). �

REMARK 5. If 1 < Z
z � λ

1
λ−1 with λ ∈ (0,1) then by Remark 1 we have that

max
{

fλ
(

z
Z

)
, fλ
(

Z
z

)}
� 1−λ and by (3.8) we get

λ 〈Px,x〉λ �
〈
Pλ x,x

〉(
� 〈Px,x〉λ

)
(3.12)

for any x ∈ H with ‖x‖ = 1.

COROLLARY 5. With the assumptions of Theorem 4 and if T = max{λ ,1−λ}
for λ ∈ (0,1) , then we have

0 � 1−
〈
Pλ x,x

〉
〈Px,x〉λ �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T
(√

Z
z −1

)2
,

[
S
(

Z
z

)−1
](

Z
z

)λ
,

[
KT
(

Z
z

)−1
](

Z
z

)λ

for any x ∈ H with ‖x‖ = 1.
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We have:

THEOREM 5. Let A and B be two positive invertible operators, p, q > 1 with
1
p + 1

q = 1 and m, M > 0 such that

mpBq � Ap � MpBq. (3.13)

Then we have

0 � 1−
〈
Bq�1/pA

px,x
〉

〈Apx,x〉1/p 〈Bqx,x〉1/q
� max

{
f 1

p

((m
M

)p)
, f 1

p

((
M
m

)p)}
, (3.14)

where the function f 1
p

: [0,∞) → [0,∞) is defined by (3.9) for λ = 1
p .

Proof. From the inequality (3.8) for x = y
‖y‖ , y �= 0 we have

0 � 1−
〈
Pλ y,y

〉
〈y,y〉1−λ 〈Py,y〉λ � max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
, (3.15)

provided that P satisfy the condition (3.7).
Now, from (3.13) by multiplying both sides with B− q

2 we have mpI � B− q
2 ApB− q

2 �
MpI.

By writing the inequality (3.15) for P = B− q
2 ApB− q

2 , z = mp, Z = Mp, λ = 1
p

and y = B
q
2 x, with x ∈ H , x �= 0, we have

0 � 1−

〈(
B− q

2 ApB− q
2

) 1
p
B

q
2 x,B

q
2 x

〉
〈
B

q
2 x,B

q
2 x
〉 1

q
〈(

B− q
2 ApB− q

2

)
B

q
2 x,B

q
2 x
〉 1

p

� max

{
f 1

p

((m
M

)p)
, f 1

p

((
M
m

)p)}

that is equivalent to

0 � 1−

〈
B

q
2

(
B− q

2 ApB− q
2

) 1
p
B

q
2 x,x

〉

〈Bqx,x〉 1
q 〈Apx,x〉 1

p

� max

{
f 1

p

((m
M

)p)
, f 1

p

((
M
m

)p)}

with x ∈ H , x �= 0.

This is equivalent to the desired result (3.14). �
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COROLLARY 6. With the assumptions of Theorem 5 we have for x ∈ H, x �= 0,
that

0 � 1−
〈
Bq�1/pA

px,x
〉

〈Apx,x〉1/p 〈Bqx,x〉1/q
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Tp,q

((
M
m

) p
2 −1

)2
,

[
S
((

M
m

)p)−1
]

M
m ,

[
KTp,q

((
M
m

)p)−1
]

M
m ,

where Tp,q = max
{

1
p , 1

q

}
.

4. Trace Inequalities

In the general case of Hilbert spaces (H;〈·, ·〉) , if {ei}i∈I is an orthonormal basis
of H, we say that a bounded linear operator A ∈ B (H) is trace class provided

‖A‖1 := ∑
i∈I

〈|A|ei,ei〉 < ∞. (4.1)

The definition of ‖A‖1 does not depend on the choice of the orthonormal basis {ei}i∈I .
We denote by B1 (H) the set of trace class operators in B (H) .

The following properties are also well known:
(i) We have

‖A‖1 = ‖A∗‖1

for any A ∈ B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) , i.e.

B (H)B1 (H)B (H) ⊆ B1 (H) ;

(iii) (B1 (H) ,‖·‖1) is a Banach space.
We define the trace of a trace class operator A ∈ B1 (H) to be

tr(A) := ∑
i∈I

〈Aei,ei〉 , (4.2)

where {ei}i∈I is an orthonormal basis of H. Note that this coincides with the usual def-
inition of the trace if H is finite-dimensional. We observe that the series (4.2) converges
absolutely and it is independent from the choice of basis.

The following results collect some properties of the trace:
(i) If A ∈ B1 (H) then A∗ ∈ B1 (H) and

tr(A∗) = tr(A); (4.3)

(ii) If A ∈ B1 (H) and T ∈ B (H) , then AT, TA ∈ B1 (H) and

tr(AT ) = tr(TA) and |tr(AT )| � ‖A‖1 ‖T‖ ; (4.4)

(iii) tr(·) is a bounded linear functional on B1 (H) with ‖tr‖ = 1;
(iv) B f in (H) , the space of operators of finite rank, is a dense subspace of B1 (H) .
We have the following trace inequality:
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THEOREM 6. Let C be an operator with the property that

zI � C � ZI (4.5)

for some constants z, Z with Z > z > 0 and P ∈ B1 (H) , P � 0 with tr(P) > 0. Then
for any λ ∈ [0,1] we have

0 � 1− tr
(
PCλ )

tr1−λ (P) trλ (PC)
� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
(4.6)

and the function fλ is defined by (3.9).

Proof. As in the proof of Theorem 4, we have

0 � (1−λ )vI + λC− v1−λCλ � max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v

for any λ ∈ [0,1] .
This inequality implies that

0 � (1−λ )v〈x,x〉+ λ 〈Cx,x〉− v1−λ
〈
Cλ x,x

〉
(4.7)

� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v〈x,x〉 ,

for any x ∈ H, for any λ ∈ [0,1] and for any v ∈ [z,Z] .
Now, if we take in (4.7) x = P1/2e, where e ∈ H, then

0 � (1−λ )v〈Pe,e〉+ λ
〈
P1/2CP1/2e,e

〉
− v1−λ

〈
P1/2Cλ P1/2e,e

〉
(4.8)

� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v〈Pe,e〉 ,

for any e ∈ H.
Let {ei}i∈I be an orthonormal basis of H. If we take in (4.8) e = ei, i ∈ I and by

summing over i ∈ I, then we get

0 � (1−λ )v∑
i∈I

〈Pei,ei〉+ λ ∑
i∈I

〈
P1/2CP1/2ei,ei

〉
(4.9)

− v1−λ ∑
i∈I

〈
P1/2Cλ P1/2ei,ei

〉

� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v∑

i∈I

〈Pei,ei〉 ,

and by the properties of trace we have

0 � (1−λ )vtr(P)+ λ tr(PC)− v1−λ tr
(
PCλ

)
� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
vtr(P) ,
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for any λ ∈ [0,1] and for any v ∈ [z,Z] .
This inequality can be written as

0 � (1−λ )v+ λ
tr(PC)
tr(P)

− v1−λ tr
(
PCλ )

tr(P)
(4.10)

� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
v,

for any λ ∈ [0,1] and for any v ∈ [z,Z] .
Now, if we take in (4.10) v = tr(PC)

tr(P) ∈ [z,Z] , then we get

0 � (1−λ )
tr(PC)
tr(P)

+ λ
tr(PC)
tr(P)

−
(

tr(PC)
tr(P)

)1−λ tr
(
PCλ)

tr(P)

� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
tr(PC)
tr(P)

,

namely

0 � tr(PC)
tr(P)

−
(

tr(PC)
tr(P)

)1−λ tr
(
PCλ )

tr(P)

� max

{
fλ
( z

Z

)
, fλ

(
Z
z

)}
tr(PC)
tr(P)

,

and by multiplying with tr(P)
tr(PC) > 0 we get the desired result (4.6). �

In particular, we have:

COROLLARY 7. With the assumptions of Theorem 6 and if T = max{λ ,1−λ}
for λ ∈ (0,1) , then we have

0 � 1− tr
(
PCλ)

tr1−λ (P) trλ (PC)
�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T
(√

Z
z −1

)2
,

[
S
(

Z
z

)−1
](

Z
z

)λ
,

[
KT
(

Z
z

)−1
](

Z
z

)λ
.

(4.11)

The following reverse of Hölder’s trace inequality may be stated:

THEOREM 7. Let A and B be two positive invertible operators, p, q > 1 with
1
p + 1

q = 1 and m, M > 0 such that

mpBq � Ap � MpBq. (4.12)

If Bq ∈ B1 (H) , then

0 � 1− tr
(
Bq�1/pA

p
)

tr1/p (Ap) tr1/q (Bq)
� max

{
f 1

p

((m
M

)p)
, f 1

p

((
M
m

)p)}
. (4.13)
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Proof. Now, from (4.12) by multiplying both sides with B− q
2 we have mpI �

B− q
2 ApB− q

2 � MpI. By writing the inequality (4.6) for C = B− q
2 ApB− q

2 , z = mp, Z =
Mp, λ = 1

p and P = Bq we get the desired result (4.13). �
Finally, we have

COROLLARY 8. With the assumptions of Theorem 7 and if Tp,q = max
{

1
p , 1

q

}
,

then we have

0 � 1− tr
(
Bq�1/pA

p
)

tr1/p (Ap) tr1/q (Bq)
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Tp,q

((
M
m

) p
2 −1

)2
,

[
S
((

M
m

)p)−1
]

M
m ,

[
KTp,q

((
M
m

)p)−1
]

M
m .

(4.14)

5. Other Upper and Lower Bounds

In [1] we proved the following reverses of Young’s inequality

0 � (1−ν)a+ νb−a1−νbν � ν (1−ν)(a−b)(lna− lnb) (5.1)

and

1 � (1−ν)a+ νb
a1−νbν � exp

[
4ν (1−ν)

(
K
(a

b

)
−1
)]

, (5.2)

for any a, b > 0 and ν ∈ [0,1] , where K is Kantorovich’s constant defined by (1.5).
The inequality (5.2) is equivalent to

0 � (1−ν)a+ νb−a1−νbν (5.3)

�
(
exp
[
4ν (1−ν)

(
K
(a

b

)
−1
)]

−1
)

a1−νbν

for any a, b > 0 and ν ∈ [0,1] .
Therefore, by (2.2), (5.1) and (5.3) we have

Δν (m,M) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fν (m) if M < 1,

max{ fν (m) , fν (M)} if m � 1 � M,

fν (M) if 1 < m

(5.4)

� ν (1−ν)×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(m−1)lnm if M < 1,

max{(m−1)lnm,(M−1) lnM} if m � 1 � M,

(M−1) lnM if 1 < m,
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and

Δν (m,M) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(exp [4ν (1−ν)(K (m)−1)]−1)mν if M < 1,

max{(exp [4ν (1−ν)(K (m)−1)]−1)mν ,
(exp [4ν (1−ν)(K (M)−1)]−1)Mν} if m � 1 � M,

(exp [4ν (1−ν)(K (M)−1)]−1)Mν if 1 < m.

(5.5)

In [2] we also obtained the following refinements and reverses of Young’s inequal-
ity

1
2

ν (1−ν)(lna− lnb)2 min{a,b} � (1−ν)a+ νb−a1−νbν (5.6)

� 1
2

ν (1−ν)(lna− lnb)2 max{a,b}

and

exp

[
1
2

ν (1−ν)
(

1− min{a,b}
max{a,b}

)2
]

(5.7)

� (1−ν)a+ νb
a1−νbν

�exp

[
1
2

ν (1−ν)
(

max{a,b}
min{a,b} −1

)2
]

for any a, b > 0 and ν ∈ [0,1] .
The inequality (5.7) is equivalent to(

exp

[
1
2

ν (1−ν)
(

1− min{a,b}
max{a,b}

)2
]
−1

)
a1−νbν (5.8)

�(1−ν)a+ νb−a1−νbν

�
(

exp

[
1
2

ν (1−ν)
(

max{a,b}
min{a,b} −1

)2
]
−1

)
a1−νbν

for any a, b > 0 and ν ∈ [0,1] .
Therefore, by (5.6) and (5.8) we have the upper bounds

Δν (m,M) � 1
2

ν (1−ν)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(lnm)2 if M < 1,

max
{

(lnm)2 ,(lnM)2 M
}

if m � 1 � M,

(lnM)2 M if 1 < m

(5.9)
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and

Δν (m,M) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
exp
[

1
2 ν (1−ν)

( 1
m −1

)2]−1
)

mν if M < 1,

max
{(

exp
[

1
2ν (1−ν)

( 1
m −1

)2]−1
)

mν ,(
exp
[

1
2 ν (1−ν)(M−1)2

]
−1
)

Mν
}

if m � 1 � M,

(
exp
[

1
2 ν (1−ν)(M−1)2

]
−1
)

Mν if 1 < m.

(5.10)

From (2.3), (5.6) and (5.8) we have the lower bounds

δν (m,M) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fν (M) if M < 1,

0 if m � 1 � M,

fν (m) if 1 < m.

(5.11)

� 1
2

ν (1−ν)×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(lnM)2 M if M < 1,

0 if m � 1 � M,

(lnm)2 if 1 < m

and

δν (m,M) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
exp
[

1
2 ν (1−ν)(1−M)2

]
−1
)

Mν if M < 1,

0 if m � 1 � M,

(
exp
[

1
2 ν (1−ν)

(
1− 1

m

)2]−1
)

mν if 1 < m.

(5.12)

Assume that A, B are positive invertible operators and the constants M > m > 0
are such that mA � B � MA. If we use the second inequality in (2.5), then we have the
following upper bounds for the difference A∇νB−A�νB :

A∇νB−A�νB (5.13)

�ν (1−ν)×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[(m−1)lnm]A if M < 1,

max{(m−1) lnm,(M−1) lnM}A
if m � 1 � M,

[(M−1) lnM]A if 1 < m,
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A∇νB−A�νB (5.14)

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(exp [4ν (1−ν)(K (m)−1)]−1)Amν if M < 1,

max{(exp [4ν (1−ν)(K (m)−1)]−1)mν ,
(exp [4ν (1−ν)(K (M)−1)]−1)Mν}A if m � 1 � M,

(exp [4ν (1−ν)(K (M)−1)]−1)AMν if 1 < m,

A∇νB−A�νB (5.15)

�1
2

ν (1−ν)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
(lnm)2

]
A if M < 1,

max
{
(lnm)2 ,(lnM)2 M

}
A if m � 1 � M,

[
(lnM)2 M

]
A if 1 < m

and

A∇νB−A�νB (5.16)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
exp
[

1
2 ν (1−ν)

( 1
m −1

)2]−1
)

Amν if M < 1,

max
{(

exp
[

1
2 ν (1−ν)

( 1
m −1

)2]−1
)

mν ,(
exp
[

1
2 ν (1−ν)(M−1)2

]
−1
)

Mν
}

A if m � 1 � M,

(
exp
[

1
2 ν (1−ν)(M−1)2

]
−1
)

AMν if 1 < m.

If we use the first inequality in (2.5), then we have the following lower bounds for
the difference A∇νB−A�νB :

A∇νB−A�νB (5.17)

�1
2

ν (1−ν)×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
(lnM)2 M

]
Aif M < 1,

0 if m � 1 � M,

[
(lnm)2

]
A if 1 < m
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and

A∇νB−A�νB (5.18)

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
exp
[

1
2 ν (1−ν)(1−M)2

]
−1
)

AMν if M < 1,

0 if m � 1 � M,

(
exp
[

1
2 ν (1−ν)

(
1− 1

m

)2]−1
)

Amν if 1 < m.

The interested reader may state other inequalities by using Theorems 4-7, however
the details are nor presented here.
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