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Abstract. The authors investigate the complete convergence for weighted sums of extended neg-
atively dependent (END) random variables. The main results obtained in the paper extend and
improve the corresponding result of Zarei and Jabbari [Zarei, H., Jabbari, H., 2011. Complete
convergence of weighted sums under negative dependence. Stat. Papers, 52, 413-418].

1. Introduction

The following concept of negatively orthant dependent (NOD) random variables
was introduced by Ebrahimi and Ghosh (1981).

DEFINITION 1.1. The random variables X1, · · · ,Xk are said to be negatively upper
orthant dependent (NUOD) if for all real x1, · · · ,xk ,

P(Xi > xi, i = 1,2, · · · ,k) �
k

∏
i=1

P(Xi > xi),

and negatively lower orthant dependent (NLOD) if

P(Xi � xi, i = 1,2, · · · ,k) �
k

∏
i=1

P(Xi � xi).

Random variables X1, · · · ,Xk are said to be negatively orthant dependent (NOD) if they
are both NUOD and NLOD.

Liu (2009) extended the above NOD dependent structure. She introduced a new
dependent concept of extended negatively dependent (END) random variables.

DEFINITION 1.2. The random variables {Xi, i � 1} are said to be END if for each
n = 1,2, · · · and all x1, · · · ,xn , there exists a constant M > 0 such that both

P(Xi � xi, i = 1,2, · · · ,n) � M
n

∏
i=1

P(Xi � xi)
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and

P(Xi > xi, i = 1,2, · · · ,n) � M
n

∏
i=1

P(Xi > xi),

hold.

Obviously, the notion of NOD random variables is the special case M = 1 for
the notion of END random variables. As stated in Liu (2009), the END structure is
more wide than the NOD structure, because it includes not only some negative de-
pendence structures but also some positive ones. On the other hand, Joag-Dev and
Proschan (1983) mentioned that the negatively associated (NA) dependent structure
must be NOD, but NOD is not necessarily NA. Therefore, we know that NA random
variables are END random variables. Hence it is very interesting to investigate the limit
theory of this wider END random variables.

As we know, since the concept of NOD randomvariables was presented by Ebrahimi
and Ghosh (1981), the limit theorems of NOD random variables have been discussed
by many researchers. Taylor et al. (2002) discussed the strong law of large numbers for
arrays of rowwise NOD random variables, Volodin (2002) studied the Kolmogorov ex-
ponential inequality for NOD random variables, Amini and Bozorgnia (2003), Volodin
et al. (2006), Gan and Chen (2008), Wu (2010), Wu and Zhu (2010), Qiu et al. (2011)
studied the complete convergence for NOD random variables, Mi-Hwa Ko et al. (2005,
2006), Wang et al. (2011), Wu et al. (2013) investigated some strong limit theorems
for sequences of NOD random variables.

On the other hand, as far as we know, some scholars also studied the limiting
behaviour for sequences or arrays of END random variables. The authors can refer the
readers to Chen et al. (2010), Qiu et al. (2013), Wu and Guan (2012), Wang and Wang
(2013), Zhang (2014), Wu et al. (2015) and Shen (2017).

The following concept of the complete convergence was introduced by Hsu and
Robbins (1947). A sequence of random variables {Un,n � 1} is said to converge com-
pletely to a constant θ if for any ε > 0,

∞

∑
n=1

P(|Un−θ |> ε) < ∞.

By the Borel-Cantelli lemma, it is clearly that the above complete convergence result
implies that Un → θ almost surely. Hence, the complete convergence is an important
tool in studying some strong limit convergence of sums of random variables.

Zarei and Jabbari (2011) studied the complete convergence for weighted sums of
NOD random variables and presented the following result.

THEOREM A. Let {Xn,n � 1} be a sequence of NOD and identically distributed
random variables with EX1 = 0 , and let {ank,1 � k � n,n � 1} be an array of real
numbers satisfying

An =
n

∑
k=1

a2
nk � Cn−α , |ank| � CAn (1.1)
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for some 0 < C < ∞ and 0 < α < 1 . If

E|X1|2/α < ∞, (1.2)

then
∞

∑
n=1

P

(∣∣∣∣
n

∑
k=1

ankXk

∣∣∣∣ � ε
)

< ∞ for all ε > 0. (1.3)

In this work, the authors will investigate the complete convergence for weighted
sums of END random variables. We shall extend and improve Theorem A by consid-
ering END instead of NOD, the maximal partial sums instead of the common partial
sums, and obtaining some stronger conclusions under the same or weaker conditions.

Throughout the current paper, C will be used to stand for various positive con-
stants, which may differ from one place to another. The symbol I(A) will be used to
indicate the indicator function of A .

2. Main results

To prove our main results, we need the following important technical lemmas.

LEMMA 2.1. (Liu, 2009) If randomvariables {Xn, n � 1} are END, then { fn(Xn),
n � 1} are still END, where { fn(·), n � 1} are either all monotone increasing or all
monotone decreasing.

LEMMA 2.2. (Shen, 2011) Let {Xn, n � 1} be a sequence of END random vari-
ables with EXn = 0 and E|Xn|p < ∞ for some p � 2 and any n � 1 . Then there exist
positive constants C depending only on p such that for any n � 1 ,

E

∣∣∣∣
n

∑
k=1

Xk

∣∣∣∣
p

� C

{ n

∑
k=1

E|Xk|p +
( n

∑
k=1

EX2
k

)p/2}
.

By a similar way of Stout (1974, Theorem 2.3.1), Zhang (2014) obtained the fol-
lowing lemma, which is very important in the proof of our main results.

LEMMA 2.3. Let {Xn, n � 1} be a sequence of END random variables with
EXn = 0 and E|Xn|p < ∞ for some p � 2 and any n � 1 . Then there exist positive
constants C depending only on p such that for any n � 1 ,

E

{
max

1� j�n

∣∣∣ j

∑
k=1

Xk

∣∣∣
}p

� C logp n

{ n

∑
k=1

E|Xk|p +
( n

∑
k=1

EX2
k

)p/2}
.

Now we state our main results. The proofs will be presented in the next section.
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THEOREM 2.1. Let {Xn,n � 1} be a sequence of END and identically distributed
random variables with EX1 = 0 , and let {ank,1 � k � n,n � 1} be an array of real
numbers satisfying

n

∑
k=1

a2
nk = O(n−α) (2.1)

and
max

1�k�n
|ank| = O(n−α) (2.2)

for some 1/p � α < 1 and p � 2 . If

E|X1|p < ∞, (2.3)

then
∞

∑
n=1

nα p−2P

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ � ε
)

< ∞ for all ε > 0. (2.4)

Letting p = 2/α in Theorem 2.1, we obtain the following conclusion.

COROLLARY 2.1. Let {Xn,n � 1} be a sequence of END and identically dis-
tributed random variables with EX1 = 0 , and let {ank,1 � k � n,n � 1} be an array
of real numbers satisfying (2.1) and (2.2) for some 0 < α < 1 . If (1.2) holds, then

∞

∑
n=1

P

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ � ε
)

< ∞ for all ε > 0. (2.5)

REMARK 2.1. Since NOD implies END and (2.5) is more stronger than (1.3),
Corollary 2.1 extends and improves Theorem A.

For the case 1/p � α < 2/p , we can remove the condition (2.2) of Theorem 2.1
and obtain the following theorem.

THEOREM 2.2. Let {Xn,n � 1} be a sequence of END and identically distributed
random variables with EX1 = 0 , and let {ank,1 � k � n,n � 1} be an array of real
numbers satisfying (2.1) for some 1/p � α < 2/p and p � 2 . Then (2.3) implies (2.4).

Letting p = 1/α in Theorem 2.2, we obtain the following strong convergence
result.

COROLLARY 2.2. Let {Xn,n � 1} be a sequence of END and identically dis-
tributed random variables with EX1 = 0 , and let {ank,1 � k � n,n � 1} be an array
of real numbers satisfying (2.1) for some 0 < α � 1/2 . If

E|X1|1/α < ∞, (2.6)

then
∞

∑
n=1

n−1P

(
max
1� j�n

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ � ε
)

< ∞ for all ε > 0. (2.7)
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Moreover, we have
n

∑
k=1

ankXk → 0 a.s. (2.8)

REMARK 2.2. By Theorem A and the Borel-Cantelli lemma, one get directly
(2.8). However, the moment conditon (1.2) is stronger than (2.6). In addition, we
remove the condition |ank| � Cn−α of (1.1) in Theorem A. Therefore, to some extent,
Corollary 2.2 improves Theorem A.

3. The proofs

Proof of Theorem 2.1. If 1 � α p � 2, we take β > max{α, 1−α
p−1 } . If α p > 2, we

take max{α, 1−α
p−1 } < β < α + α(1−α)

α p−2 . Fixed n � 1, let

Ynk = −nβ I(Xk < −nβ )+XkI(|Xk| � nβ )+nβ I(Xk > nβ ),

Znk = (Xk +nβ )I(Xk < −nβ )+ (Xk −nβ )I(Xk > nβ ).

Then Ynk +Znk = Xk , and {Ynk,k � 1,n � 1} and {Znk,k � 1,n � 1} are both END by
Lemma 2.1. Then

∞

∑
n=1

nα p−2P

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ � ε
)

�
∞

∑
n=1

nα p−2
n

∑
i=1

P
(|Xk| > nβ )

+
∞

∑
n=1

nα p−2P

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ankYnk

∣∣∣∣ � ε
)

= : I1 + I2.

For I1 , from (2.3) and β > α , we can gat

I1 � C
∞

∑
n=1

nα p−1P
(|X1| > nβ )

� C
∞

∑
n=1

n−1−(β−α)pE|X1|pI
(|X1| > nβ)

< ∞.

Next we prove I2 < ∞ . We first prove that

max
1� j�n

∣∣∣∣
j

∑
k=1

ankEYnk

∣∣∣∣ → 0 as n → ∞. (3.1)

By (2.1) and Hölder inequality, we obtain

n

∑
k=1

|ank| �
( n

∑
k=1

a2
nk

)1/2( n

∑
k=1

1

)1/2

� Cn(1−α)/2. (3.2)
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Then from EX1 = 0, |Znk| � |Xk|I(|Xk| > nβ ) and β > 1−α
p−1 , we have

max
1� j�n

∣∣∣∣
j

∑
k=1

ankEYnk

∣∣∣∣ = max
1� j�n

∣∣∣∣
j

∑
k=1

ankEZnk

∣∣∣∣
�

n

∑
k=1

|ank|E|Xk|I(|Xk| > nβ )

� n−β (p−1)
n

∑
k=1

|ank|E|Xk|pI(|Xk| > nβ )

� Cn−β (p−1)+(1−α)/2E|X1|pI(|X1| > nβ ) → 0 as n → ∞.

Therefore, while n is sufficiently large, we obtain max1� j�n
∣∣∑ j

k=1 ankEYnk

∣∣ � ε/2.

Hence, for max{p, 2(α p−1)
α } < q < p + 1−α

β−α , by the Markov inequality and Lemma
2.3, we have

I2 �
∞

∑
n=1

nα p−2P

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ank(Ynk −EYnk)
∣∣∣∣ � ε/2

)

� C
∞

∑
n=1

nα p−2E

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ank(Ynk −EYnk)
∣∣∣∣
)q

� C
∞

∑
n=1

nα p−2 logq n
n

∑
k=1

|ank|qE|Ynk −EYnk|q

+C
∞

∑
n=1

nα p−2 logq n

( n

∑
k=1

a2
nkE(Ynk −EYnk)2

)q/2

= : I3 + I4.

We first show I3 < ∞ . Note that

I3 � C
∞

∑
n=1

nα p−2 logq n
n

∑
k=1

|ank|qE|Ynk|q

= C
∞

∑
n=1

nα p−2 logq n
n

∑
k=1

|ank|qE|Xk|qI(|Xk| � nβ )

+C
∞

∑
n=1

nα p−2+βq logq n
n

∑
k=1

|ank|qP(|Xk| > nβ )

= : I′3 + I′′3 .

We have by (2.1), (2.2), (2.3) and α p−1+ βq−β p−αq+α < 0 that

I′′3 � C
∞

∑
n=1

nα p−2+βq−β p logq n
n

∑
k=1

|ank|qE|Xk|p

� C
∞

∑
n=1

nα p−2+βq−β p logq n
(

max
1�k�n

|ank|
)q−2

n

∑
k=1

a2
nk
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� C
∞

∑
n=1

nα p−2+βq−β p−αq+α logq n < ∞.

By q > p and similar argument as in the proof of I′′3 < ∞ , we obtain

I′3 � C
∞

∑
n=1

nα p−2+βq−β p logq n
n

∑
k=1

|ank|qE|Xk|pI(|Xk| � nβ )

� C
∞

∑
n=1

nα p−2+βq−β p−αq+α logq n < ∞.

Then we prove that I4 < ∞ . We can find that

I4 � C
∞

∑
n=1

nα p−2 logq n

( n

∑
k=1

a2
nkEY 2

nk

)q/2

� C
∞

∑
n=1

nα p−2 logq n

( n

∑
k=1

a2
nkEX2

k I(|Xk| � nβ )
)q/2

+C
∞

∑
n=1

nα p−2 logq n

( n

∑
k=1

a2
nkn

2βP(|Xk| > nβ )
)q/2

= : I′4 + I′′4 .

By (2.1), (2.3) and q > 2(α p−1)/α , we have

I′4 � C
∞

∑
n=1

nα p−2 logq n

( n

∑
k=1

a2
nk

)q/2(
EX2

1 I(|X1| � nβ )
)q/2

� C
∞

∑
n=1

nα p−2−αq/2 logq n < ∞

and

I′′4 � C
∞

∑
n=1

nα p−2 logq n

( n

∑
k=1

a2
nkn

2β P(|X1| > nβ )
)q/2

� C
∞

∑
n=1

nα p−2−(p−2)βq/2 logq n

( n

∑
k=1

a2
nk

)q/2(
E|X1|pI(|X1| � nβ )

)q/2

� C
∞

∑
n=1

nα p−2−αq/2−(p−2)βq/2logq n < ∞.

The proof is completed. �



258 Y. WU, M. ZHAI AND J. PENG

Proof of Theorem 2.2. We take β > max{α, 1−α
p−1 } and max{p,

2(α p−1)
α } < q <

(β−α)p+1
β−α/2 . Following the notations and the methods of the proof in Theorem 2.1, I1 <

∞ , (3.1) and I4 < ∞ hold. So we only need to show I′3 < ∞ and I′′3 < ∞ .

Elementary Jensen’s inequality and (2.1) imply that for any 0 < 2 < q ,

n

∑
k=1

|ank|q �
( n

∑
k=1

a2
nk

)q/2

� Cn−
αq
2 . (3.3)

Then by q > p , (2.3), (3.3) and (β −α/2)q− (β −α)p < 1, we have

I′3 � C
∞

∑
n=1

nα p−2+βq−β p logq n
n

∑
k=1

|ank|qE|Xk|pI(|Xk| � nβ )

� C
∞

∑
n=1

nα p−2+βq−β p−αq/2 logq n < ∞

and

I′′3 � C
∞

∑
n=1

nα p−2+βq−β p logq n
n

∑
k=1

|ank|qE|Xk|p

� C
∞

∑
n=1

nα p−2+βq−β p−αq/2logq n < ∞.

The proof is completed. �

Proof of Corollary 2.2. Take p = 1/α in Theorem 2.2, one can get directly (2.7).
Then we only need to show (2.8). It follows from (2.7) that

∞ >
∞

∑
n=1

n−1P

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ � ε
)

=
∞

∑
m=0

2m+1−1

∑
n=2m

n−1P

(
max

1� j�n

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ � ε
)

� 1
2

∞

∑
m=1

P

(
max

1� j�2m

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ � ε
)

.

By the Borel-Cantelli Lemma, we have

lim
m→∞

max
1� j�2m

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ = 0 a.s. (3.4)

For all given positive integers n , there exists a positive integer m0 such that 2m0−1 �
n < 2m0 . We obtain by (3.4) that∣∣∣∣

n

∑
k=1

ankXk

∣∣∣∣ � max
2m0−1�n<2m0

∣∣∣∣
n

∑
k=1

ankXk

∣∣∣∣
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� max
1� j<2m0

∣∣∣∣
j

∑
k=1

ankXk

∣∣∣∣ → 0 a.s. as m0 → ∞.

The proof is completed. �

Competing interests. The authors declare that they have no competing interests.

Authors contributions. All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

Acknowledgement. The authors are very grateful to the referee and the editor
for the careful reading, valuable suggestions and comments, which enabled them to
greatly improve the paper. The research of Y. Wu was partially supported by the Nat-
ural Science Foundation of Anhui Province (1708085MA04), the Key Program in the
Young Talent Support Plan in Universities of Anhui Province (gxyqZD2016316) and
the Key NSF of Anhui Educational Committee (KJ2018A0428). The research of M.
Zhai was partially supported by the key project of Anhui Province academic talents
(JXBJZD2016082) and the research project of Chuzhou University (KJZ14).

RE F ER EN C ES

[1] EBRAHIMI, N., GHOSH, M., Multivariate negative dependence, Commun. Stat., Theory Methods, 10
(1981), 307–337.

[2] LIU, L., Precise large deviations for dependent random variables with heavy tails, Statist. Probab.
Lett., 79 (2009), 1290–1298.

[3] JOAG-DEV, K., PROSCHAN, F., Negative association of random variables with applications, Ann.
Stat., 11 (1983), 286–295.

[4] TAYLOR, R. L., PATTERSON, R. F., BOZORGNIA, A., A strong law of large numbers for arrays of
rowwise negatively dependent random variables, Stochastic Anal. Appl. 20 (2002), 643–656.

[5] VOLODIN, A., On the Kolmogorov exponential inequality for negatively dependent random variables,
Pakistan J. Stat. 18 (2002), 249–253.

[6] AMINI, D. M., BOZORGNIA, A., Complete convergence for negatively dependent random variables,
J. Appl. Math. Stochastic Anal., 16 (2003) 121–126.

[7] VOLODIN, A., CABRERA, M. O., HU, T. C., Convergence rate of the dependent bootstrapped means,
Theory Probab. Appl. 50 (2006), 337–346.

[8] GAN, S. X., CHEN, P. Y., Strong convergence rate of weighted sums for NOD sequences, Acta Math.
Sci., Ser. A, 28 (2008), 283–290 (in Chinese).

[9] WU, Q. Y., Complete convergence for negatively dependent sequences of random variables, J. Inequal.
Appl., (2010) doi:10.1155/2010/507293.

[10] WU, Y. F., ZHU, D. J., Convergence properties of partial sums for arrays of rowwise negatively
orthant dependent random variables, J. Korean Stat. Soc., 39 (2010), 189–197.

[11] QIU, D. H., CHAN, K. C., ANTONINI, R. G., VOLODIN, A., On the strong rates of convergence for
arrays of rowwise negatively dependent random variables, Stochastic Anal. Appl., 29 (2011), 375–
385.

[12] KO, M. H., KIM, T. S., Almost sure convergence for weighted sums of negatively orthant dependent
random variables, J. Korean Math. Soc., 42 (2005), 949–957.

[13] KO, M. H., HAN, K. H., KIM, T. S., Strong laws of large numbers for weighted sums of negatively
dependent random variables, J. Korean Math. Soc., 43 (2006), 1325–1338.

[14] WANG, X. J., HU, S. H., VOLODIN, A., Strong limit theorems for weighted sums of NOD sequence
and exponential inequalities, Bull. Korean Math. Soc., 48 (2011), 923–938.



260 Y. WU, M. ZHAI AND J. PENG
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