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INEQUALITIES ARISING FROM GENERALIZED EULER–TYPE

CONSTANTS MOTIVATED BY LIMIT SUMMABILITY OF FUNCTIONS

MOHAMMAD HADI EGHTESADI FARD AND M. H. HOOSHMAND

Abstract. Limit summability of real functions was introduced by M.H. Hooshmand in 2001. In
order to study derivation of the limit summand function, he has introduced a functional sequence
corresponding to a given function f with Df ⊇ N

∗ that is related to the Euler-type constants. In
the way, we prove two main criteria for its convergence together with an extensive inequality be-
tween the limit summand function and the generalized Euler-type constants. The main inequality
is also extended whenever f is a convex or concave function. Among other things, we obtain
some inequalities for many special functions such as the gamma, digamma and zeta functions.
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