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Abstract. Limit summability of real functions was introduced by M.H. Hooshmand in 2001. In
order to study derivation of the limit summand function, he has introduced a functional sequence
corresponding to a given function f with Df ⊇ N∗ that is related to the Euler-type constants. In
the way, we prove two main criteria for its convergence together with an extensive inequality be-
tween the limit summand function and the generalized Euler-type constants. The main inequality
is also extended whenever f is a convex or concave function. Among other things, we obtain
some inequalities for many special functions such as the gamma, digamma and zeta functions.

1. Introduction and preliminaries

One of the most famous and useful mathematical constants is Euler-Mascheroni con-
stant, denoted by γ , which was introduced in 18th century (see for example [2]). A
type of generalized Euler constants was studied in [8]. On the other hand, in 1997, R.J.
Webster [9] studied Γ-type functions which satisfy the functional equations f (x+1) =
g(x) f (x) ( x > 0 ), and the Boher-Mollerup Theorem (see [1]) was generalized in the
paper. However, in 2001 ([3]), M.H. Hooshmand introduced a new concept entitled
limit summability of functions, and their summand functions for each function were
defined on a subset of R or C containing all natural numbers, and he showed that Γ-
type functions can be considered as a sub-topic thereof. Both in the paper and in [4],
some related theorems such as the Bohr-Mollerup and a main theorem of [9] were gen-
eralized desirably, and some uniqueness conditions of the limit summand functions and
their connections to the functional equations

λ (x) = f (x)+ λ (x−1),

φ(x) = f (x)φ(x−1),

were studied. We also mention that in 2010, Muller and Schleicher ([7]) used a similar
functional sequence for a type of fractional sums while they were not aware of the
limit summability topic. Recently, analytic summability of functions is introduced and
studied by the second author in [5].
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1.1. Limit summability of real and complex functions.

Let N∗ denote the set of all positive integers and put N = N∗ ∪{0} . In this paper,
we assume that f : Df → C , where Df ⊆ C is the domain of f and in the real case, we
replace C with R . The summand set of Df is defined by

Σ f = {x : x+N
∗ ⊆ Df }.

Hence x∈Σ f if and only if {x+1,x+2, · · ·,x+n, · · ·}⊆Df . If N∗ ⊆Df , the following
functional sequences were considered in [3]

Rn( f ,x) = Rn(x) = f (n)− f (x+n),

fσn(x) = x f (n)+
n

∑
k=1

Rk(x); x ∈ Σ f , n ∈ N
∗.

Recall from [3] that a function f is limit summable at x0 ∈ Σ f (resp. on S ⊆ Σ f ) if
the functional sequence fσn(x) is convergent at x0 (resp. on S ). The function f is
called uniformly summable on S ⊆ Σ f if fσn(x) is uniformly convergent on S . The
limit function of fσn(x) (resp. Rn( f ,x)) is denoted by fσ (x) or σ( f (x)) if x ∈ Df

(resp. R( f ,x) or R(x) ) and it is called the limit summand function of f . Note that the
domain of fσ is

Dfσ = {x ∈ Σ f : f is limit summable at x}.
It is important to know that Σ f ∩Df = Σ f + 1 = {x + 1 : x ∈ Σ f } , fσ (0) = 0 (thus
0 ∈ Dfσ ), and fσ (−1) = − f (0) if 0 ∈ Df . Also, 1 ∈ Dfσ if and only if Rn(1) is
convergent, and if and only if Df ∩Dfσ = Dfσ + 1. A necessary condition for limit
summability of f at x is

lim
n→∞

Rn(x) := lim
n→∞

(Rn(x)− xRn−1(1)) = 0.

If R(1) = 0, then

fσ (x) = f (x)+ fσ (x−1); x ∈ Dfσ +1, (1)

fσ (m) =
m

∑
j=1

f ( j); m ∈ N
∗. (2)

It is proved that the following conditions are equivalent and every function satisfying
one of them is called limit summable
a) Df ⊆ Dfσ , R(1) = 0;
b) Dfσ = Σ f , Df ⊆ Df −1, R(1) = 0;
c) fσ (x) = f (x)+ fσ (x−1) , for all x ∈ Df .
Hence, if f is limit summable, then λ = fσ satisfies the difference functional equation

λ (x) = f (x)+ λ (x−1); x ∈ Df , (3)

thus fσ also is a solution of the difference functional equation g(x + 1)− g(x) =
F(x) , where F(x) = f (x+ 1) . If f is a real function with the domain Df = [1,+∞) ,
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then Σ f = [0,+∞) , and by applying Theorem 3.3 of [4], we conclude that f is limit
summable if and only if it is so on (0,1) and R(f,1)=0. One of the most important cri-
teria for limit summability was introduced in [4] stating that convexity or concavity of
f together with boundedness of Rn( f ,1) imply limit summability of f . The following
theorem is one of the results there.

THEOREM A ([4]). Suppose that f : [1,+∞) → R is a real function for which
Rn(1) is bounded. Then
a) if f is convex or concave on Df = [1,+∞) from a number on, then f is uniformly
summable on every bounded subset of Σ f = [0,+∞) .
b) if f is convex on [1,+∞) , then

fσ (x) � (x+1) f (1)− f (x+1); x ∈ [1,+∞).

Another important criteria of [4] (Theorem 3.1) implies the next result for limit
summability of a monotone function.

COROLLARY B ([4]). Let f : [1,+∞) → R be a real function such that the se-
quence fn is bounded. If f is monotonic on [1,+∞) from a number on, then f is
absolutely and uniformly limit summable on every bounded subset of [0,+∞) .

2. Derivative of limit summand functions and its induced Euler-type constants.

In order to study the derivative of the summand function fσ , Hooshmand faced
the following functional sequence leading him to a generalization of the Euler-type
constants. If f is differentiable on Σ f , then we put

fσ ′
n
(x) := ( fσn(x))

′ = f (n)−
n

∑
k=1

f ′(x+ k),

and denote its limit function by fσ ′(x) (if it exists). Since logσ ′(0) = −γ , we also use
−γn( f ,x) , −γn( f ) for denoting fσ ′

n
(x) , fσ ′

n
(0) ; respectively.

EXAMPLE 2.1. The real function f (x) = − logx has the convergent functional
sequence fσ ′

n
(x) and we conclude that

γ(− log,x) = logσ ′(x) = lim
n→∞

(logn−
n

∑
k=1

1
k+ x

)

= −γ +
∞

∑
k=1

x
k(k+ x)

= ψ(x+1) =
1
x

+
Γ′(x)
Γ(x)

=
1
x

+ ψ(x),

for all x > 0, where ψ denotes the digamma function.
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In the topic of limit summand functions, Hooshmand observed that

fσ (m)
m

=
f (1)+ f (2)+ · · ·+ f (m)

m
,

for every m ∈ N∗ (if Rn( f ,1) is convergent), hence he introduced the “limit summand
average“ of f defined by

fσ̃ (x) =

⎧⎨
⎩

1
x fσ (x), x 
= 0

lim
x→0

fσ (x)
x

, x = 0.

Note that the domain of fσ̃ is equal to Dfσ or Dfσ \ {0} . The following theorem
not only gives a criterion for convergence of γn( f ,x) , but also provides an important
inequality among γ( f ,x) , fσ̃ (x) and γ( f ) for x ∈ (0,1] , which has many important
applications.

THEOREM 2.2. If f : [1,+∞) → R has monotonic derivative and R( f ,1) = 0 ,
then fσ ′

n
(x) is convergent on [0,+∞) and fσ ′(x) , fσ̃ (x) satisfy the inequalities

− γ( f ,1) � fσ ′(x) � fσ̃ (x) � −γ( f ); 0 < x � 1, (4)

if f ′ is increasing (note that here f ′(1) is the same as f ′+(1) , and for the case f ′ is
decreasing, the above inequalities should be reversed). Moreover, fσ ′(x) is a solution
of the functional equation

χ(x) = f ′(x)+ χ(x−1); x > 1. (5)

Proof. Let f ′ be increasing (proof of decreasing case is similar). First note that
the conditions imply f ′(x) → 0 as x → +∞ and f is decreasing on [1,+∞) , hence
f (x) � f (1) on it. Then fix a 0 < x < 1. For every k ∈ N∗ , k < k + x < k +1 and by
applying the mean value theorem (M.V.T) on [k,k+ x] , there is an xk ∈ (k,k+ x) such
that

−Rk(x) = f (k+ x)− f (k) = f ′(xk)x.

Therefore,

fσn(x) = x f (n)−
n

∑
k=1

f ′(xk)x = x( f (n)−
n

∑
k=1

f ′(xk)).

On the other hand, since f ′ is increasing on [1,+∞) , for k ∈ N

f ′(k) � f ′(xk) � f ′(x+ k) � f ′(k+1).

By using the equality and inequality above, we conclude that

− γn( f ,1) � fσ ′
n
(x) � fσ̃n(x) � −γn( f ); n = 1,2,3, ... (6)

Also, since the function f is convex on [1,+∞) , then

f (n+h)− f (n)
h

� f (n+1)− f (n) � f (n+1+h)− f (n+1)
h

,
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where 0 < h < 1, n∈N∗ and the convexity is considered on ([n,n+h,n+1,n+1+h]) .
By letting h → 0+ , we will have

f ′(n) � −Rn(1) � f ′(n+1)

and for each n ∈ N∗ we will obtain the inequalities

Rn( f ′,1) � −Rn(1)− f ′(n+1) � 0. (7)

Now, the identity

fσ ′
n
(x)− fσ ′

n+1
(x) = Rn(1)+ f ′(n+1+ x) ; x � 0 (8)

together with (7) imply that

fσ ′
n+1

(x)− fσ ′
n
(x) � −Rn(1)− f ′(n+1) � 0 ; x � 0,

which means that the sequence fσ ′
n
(x) = −γn( f ,x) is decreasing, for all x � 0. Also,

putting x = 0 in (8) and by using (7), we obtain

Rn( f ′,1) � −γn+1( f )+ γn( f ) � 0 (9)

Note that the inequalities of (6) and (9) with the identity

−γn( f ,1) = f ′(1)− f ′(n+1)− γn( f ); n = 1,2,3, ...

imply the following inequalities.

f ′(1)− f ′(n+1)− γn+1( f ) � f ′(1)− f ′(n+1)− γn( f ) = −γ( f ,1)
f ′(1)+Rn(1)− γn+1( f ) � fσ ′

n
(x) � fσ̃n(x) � −γn( f ) ; 0 < x � 1.

(10)

Now, since fσ̃n(x) = 1
x fσn(x) is convergent (Theorem 3.3 of ([4]), which means

fσ̃n(x)→ fσ (x) as n→∞), then fσ ′
n
(x) becomes convergent to fσ ′(x) for all 0 < x � 1.

So
− γ( f ,1) = f ′(1)− γ( f ) � fσ ′(x) � fσ̃ (x) � −γ( f ) ; 0 < x � 1 (11)

Now, according to the sequence fσ ′
n
(x) that is convergence on (0,1] , and by using

identity
fσ ′

n
(x)− fσ ′

n
(x−1) = f ′(x)− f ′(x+n)

and also considering the property f ′(x) → 0 as x → +∞ , we conclude that

fσ ′(x) = f ′(x)+ fσ ′(x−1); 1 < x � 2.

By continuation of the above identity, we obtain

fσ ′(x) = f ′(x)+ f ′(x−1)+ · · ·+ f ′(x−m+1)+ fσ ′(x−m); m < x � m+1. (12)

Thus

fσ ′(x) = −γ( f ,{x})+
[x]−1

∑
j=0

f ′(x− j), (13)

so fσ ′
n
(x) is convergent on (0,+∞) and the equation 5 holds for x > 1.

�
Note that one can extend the inequality 4 for all x > 0, as follows.
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COROLLARY 2.3. If the conditions of Theorem 2.2 hold, then

f ′(1)− γ( f )+
[x]−1

∑
j=0

f ′(x− j) � fσ ′({x})+
[x]−1

∑
j=0

f ′(x− j)

� fσ̃ ({x})+
[x]−1

∑
j=0

f ′(x− j) � −γ( f )+
[x]−1

∑
j=0

f ′(x− j); x > 0,

for the case f ′ is increasing.

REMARK 2.4. Note that the inequality 4 is also true for x = 0 if and only if
fσ̃ (0) = fσ ′(0) . Hence the next question arises.

QUESTION. Is it true that fσ̃ (0) = fσ ′(0)? If no, what are some sufficient (or
necessary) conditions for the equality?

Now, we replace the condition Rn( f ,1)→ 0 by the assumption that Rn( f ,1) is bounded
and generalize Theorem 2.2 and its inequality as follows.

COROLLARY 2.5. Assume that f : [1,+∞) → R is a function with monotonic
derivative and Rn( f ,1) is bounded. Then
a) fσ ′

n
(x) is convergent, for each x � 0 , and fσ ′(x) satisfies the following inequalities

f ′(1)+R(1)− γ( f ) � fσ ′(x) � fσ̃ (x) � −γ( f ); 0 < x � 1, (14)

if f ′ is increasing, and

− γ( f ) � fσ̃ (x) � fσ ′(x) � f ′(1)+R(1)− γ( f ); 0 < x � 1, (15)

if f ′ is decreasing.
b) fσ ′(x) satisfies the following functional equation

χ(x) = R(1)+ f ′(x)+ χ(x−1); x > 1 (16)

Proof. Since Rn( f ,1) is monotonic (because of convexity), Rn(1) is convergent.
By putting g(x) := f (x)+R(1)x we get

g′(x) = f ′(x)+R(1), gσn(x) = fσn(x).

Hence g (instead of f ) satisfies the conditions of Theorem 2.2 and so

f ′(1)+R(1)− γ( f ) � fσ ′(x) � fσ̃ (x) � −γ( f ); 0 < x � 1

if f ′ is increasing, and analogously for the decreasing case.
For the both cases, we have fσ ′(x) = g′(x)+ fσ ′(x−1) (since gσ ′(x) = fσ ′(x)). Thus

fσ ′(x) = f ′(x)+ fσ ′(x−1)+R(1); x > 1.

Note that if f ′ is decreasing, then − f is increasing and all steps of Theorem 2.2 are
confirmed. Hence the proof is complete. �
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EXAMPLE 2.6. Consider the real function f (x) = tan−1 x (with domain R). By
applying Theorem A and 2.2, we conclude that f is limit summable on R (since f is
concave), fσ ′

n
(x) is convergent, for all x � 0, and

fσ ′(x) =
π
2
−

∞

∑
k=1

1
1+(x+ k)2 ,

−γ( f ) =
π
2
−

∞

∑
k=1

1
k2 +1

=
π
2
− 1

2
(π coth(π)−1),

−γ( f ,1) = f ′(1)− γ( f ) =
π +2

2
− 1

2
π coth(π),

fσ̃ (x) =
π
2

+
1
x

∞

∑
k=1

(tan−1(k)− tan−1(x+ k)).

Thus the inequalities 4 hold and so

1
2
(π coth(π)−2) �

∞

∑
k=1

1
1+(x+ k)2 � 1

x

∞

∑
k=1

(tan−1(x+ k)− tan−1(k))

� 1
2
(π coth(π)−1) ; 0 < x � 1.

2.1. Connections and relations to some generalized Euler constants.

In [8], J. Sandor proved the existence of some type of Euler-type constants for
a function F : [1,+∞) → R with certain properties. We show that Theorem 2.2 has
relationships to one of his main theorem, and it is concluded from our result (for the
special case x = 0). Let An and Bn be two sequences which corresponded to the
integrable function F : [1,+∞) → R as follows

An = An(F) =
n

∑
i=1

F(i)−
∫ n+1

1
F(x)dx, Bn = Bn(F) =

n+1

∑
i=1

F(i)−
∫ n+1

1
F(x)dx (n � 1).

The common limit of these sequences is the well-known Euler-Mascheroni constant
γ = γ f := limAn = limBn = 0.577215664... , if F(x) = 1/x.

THEOREM C (J. sandor [8]). Let F : [1,∞) → R be a strictly positive and strictly
decreasing and continuous function. Then (An ) is a strictly increasing and convergent
sequence. The sequence (Bn ) is strictly decreasing and convergent, too. By assuming
that

lim
x→∞

F(x) = 0,

the two sequences will have the same limit.

We now want to investigate the relationship between the issues raised in the article
and the above theorem. For this purpose, let f : [1,∞)→R and F be the initial function
of f . Then a simple calculation shows that

Bn−1( f ) = γn(F)+F(1) =
n

∑
k=1

F ′(k)−F(n)+F(1). (17)
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Thus, γn(F) is converge if and only if Bn( f ) is so, and B( f ) = γ(F)+F(1) . Now, we
state the following claim that says the Sandor’s theorem is a result of Theorem 2.2 (but
the converse is not true, clearly).

CLAIM. Theorem C is a result of Theorem 2.2 (for the special case x = 0 ).

For proving the claim, suppose that f : [1,∞) → R satisfies the conditions of The-
orem C (here f plays the role of F in the theorem). Hence f is continuous and it has
primary function F (on [1,+∞)). We claim that F satisfies the conditions of Theorem
2.2. For this order, it is enough to show that R(F,1) = 0. Since f = F ′ is a decreasing
function and according to the M.V.T, we conclude that

F(n)−F(n+1) = F ′(cn) = f (cn), for some cn ∈ (n.n+1).

Hence
lim
n→∞

(F(n)−F(n+1)) = lim
n→∞

f (cn) = 0,

since limt→∞ f (t) = 0. Therefore, Theorem 2.2 implies that the functional sequence
γn(F,x) is convergent for all x � 0, in particular, γn(F) is so. However, (17) together
with limt→∞ f (t) = 0 guarantee that γ f = γ(F)+F(1) .

Now, we extend some of the pervious results for convex and concave functions.
By f ′+ (resp. f ′− ) we mean the right (resp. left) derivative function of f , and when we
use f ′± in a relation it means that it is satisfied for both functions f ′+ and f ′− .
Now, if f is right/left differentiable on Σ f (e.g., if f is convex or concave), then we
put

fσ ′
n±

(x) := ( fσn(x))
′
± = f (n)−

n

∑
k=1

f ′±(x+ k),

and denote its limit function by fσ ′±(x) (if it exists). Followed by the previous notation,
we use −γn±( f ,x) , −γn±( f ) for denoting fσ ′

n± (x) , fσ ′
n± (0) respectively. Note that if

f ′+ = f ′− (i.e., f is differentiable), then

fσ ′
n± (x) = fσ ′

n
(x) = −γn±( f ,x) = −γn( f ,x),

and
fσ ′±(x) = fσ ′(x) = −γ±( f ,x) = −γ( f ,x),

if they are convergent.

THEOREM 2.7. Let δ < 1 and f : (δ ,+∞)→R be a convex function and R( f ,1)=
0 . Then
a) fσ ′

n±
(x) is convergent, for all x � 0 , and the following inequalities hold

− γ+( f ,1) � −γ−( f ,1) � fσ ′
+
(x) � fσ ′−(x) � fσ̃ (x) � −γ+( f ) � −γ−( f ); 0 < x � 1.

(18)
b) The function fσ ′±(x) is a solution of

χ(x) = f ′±(x)+ χ(x−1). (19)
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Proof. Fix 0 < x < 1 and consider k < k+ x < k+1, for all k ∈ N∗ . By applying
the M.V.T for convex functions on [k,k+ x] , there exists an xk ∈ (k,k+ x) such that

f ′−(xk) � f (x+ k)− f (k)
x

� f ′+(xk).

Hence
−x f ′+(xk) � f (k)− f (x+ k) � −x f ′−(xk).

Thus

f (n)−
n

∑
k=1

f ′+(xk) � fσ n(x)
x

� f (n)−
n

∑
k=1

f ′−(xk). (20)

Since f is convex, f ′+ , f ′− are increasing, f ′− � f ′+ and so

f ′−(k) � f ′+(k) � f ′−(xk) � f ′+(xk) � f ′−(x+ k) � f ′+(x+ k) � f ′−(k+1) � f ′+(k+1).

Therefore,

f (n)−
n

∑
k=1

f ′+(k+1) � f (n)−
n

∑
k=1

f ′−(k+1) � f (n)−
n

∑
k=1

f ′+(x+ k)

� f (n)−
n

∑
k=1

f ′−(x+ k) � f (n)−
n

∑
k=1

f ′+(xk) � f (n)−
n

∑
k=1

f ′−(xk)

� f (n)−
n

∑
k=1

f ′+(k) � f (n)−
n

∑
k=1

f ′−(k).

Now by using (20) and the above inequalities, we obtain

− γn+( f ,1) � −γn−( f ,1) � fσ ′
n+

(x) � fσ ′
n− (x) � fσ̃n(x) � −γn+( f ) � −γn−( f ). (21)

On the other hand, by applying the convexity of f on [n,n+h,n+1,n+1+h] , where
0 < h < 1, we drive

f (n+h)− f (n)
h

� f (n+1)− f (n) � f (n+1+h)− f (n+1)
h

.

Then by letting h −→ 0+ , we get

f ′+(n) � −Rn(1) � f ′+(n+1). (22)

In a similar way, if −1 < h < 0, then by using the convexity on [n+h,n,n+1+h,n+
1] , we conclude that

f ′−(n) � −Rn(1) � f ′−(n+1). (23)

Thereafter, by using (22) and (23), we obtain

f ′−(n) � f ′+(n) � −Rn(1) � f ′−(n+1) � f ′+(n+1). (24)
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Therefore, we get the inequalities

Rn( f ′±,1) � −Rn( f ,1)− f ′±(n+1) � 0. (25)

Now, by using a method similar to the proof of (8) and (9) of Theorem 2.2, we find
that the sequence fσ ′

n±
(x) =−γn±( f ,x) is increasing, for all x � 0. Also, putting x = 0

and x = 1 in the equation, we obtain

Rn( f ′±,1) � −γn+1±( f )+ γn±( f ) � 0, (26)

and the identities

fσ ′
n±

(x)− fσ ′
n±

(x−1) = f ′±(x)− f ′±(x+n) , −γn±( f ,1) = f ′±(1)− f ′±(n+1)− γn±( f ).

Hence, by letting n → ∞ in (21) we arrive at

f ′+(1)− γ+( f ) = −γ+( f ,1) � f ′−(1)− γ−( f ) = −γ−( f ,1) � fσ ′
+
(x) � fσ ′−(x) � fσ̃ (x)

� −γ+( f ) � −γ−( f ),

for all 0 < x � 1. Now, we can complete the proof in a similar way to the proof of
Theorem 2.2. �

NOTE. If f : [1,+∞) → R satisfies the conditions of the above theorem, then the
results are valid for f ′+ .

COROLLARY 2.8. Let δ < 1 and f : (δ ,+∞)→R be a convex (concave) function
and Rn( f ,1) be bounded. Then
a) fσ ′

n± (x) is convergent, for each x � 0 , and fσ ′±(x) satisfies the following inequalities

f ′±(1)+R(1)− γ±( f ) � fσ ′±(x) � fσ̃ (x) � −γ±( f ); 0 < x � 1, (27)

if f is convex, and

− γ±( f ) � fσ̃ (x) � fσ ′±(x) � f ′±(1)+R(1)− γ±( f ); 0 < x � 1, (28)

if f is concave.
b) The function fσ ′±(x) is a solution of the functional equation

χ(x) = f ′±(x)+R( f ,1)+ χ(x−1). (29)

Proof. This is similar to the proof of Corollary 2.5, by putting g(x) := f (x) +
R(1)x . �
In the following example we give a function f that does not satisfy the conditions of
Theorem 2.2, but it agrees with the conditions of Theorem 2.7
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EXAMPLE 2.9. Define the function f : ( 1
2 ,+∞) → R by

f (x) =

{
logx; x � 2
2
3x+ log2− 4

3 ; 1
2 < x � 2

.

This function is concave and we obtain

−γn+( f ) = f (n)− ( f ′+(1)+ f ′+(2)+ · · ·+ f ′+(n)) = (logn−
n

∑
k=1

1
k
)− 5

3
,

so

−γ+( f ) = −γ − 5
3
.

Also,

fσ ′
n+

(x) = (logn−
n

∑
k=1

1
x+ k

)− 1
x+1

− 2
3
; x >

1
2

thus

fσ ′
+
(x) = ψ(x+1)− 1

x+1
− 2

3
.

On the other hand
fσ (x) = logΓ(x+1)+ log(x+1).

Now, Theorem 2.7 implies

−γ+( f ) � fσ̃ (x) � fσ ′
+
(x) � −γ+( f ,1) ⇒

−γ − 5
3

� logΓ(x+1)
x

+
log(x+1)

x
� ψ(x+1)− 1

x+1
− 2

3
� ψ(1)− 1

6
= −γ − 1

6
.

Analogously,

−γ−( f ) = −γ − 17
6

,

fσ ′−(x) = ψ(x+1)− 1
x+1

− 2
3
,

fσ̃ (x) =
logΓ(x+1)

x
+

log(x+1)
x

,

hence

−γ − 17
6

� logΓ(x+1)
x

+
log(x+1)

x
� ψ(x+1)− 1

x+1
− 2

3
� −γ − 1

6
; 0 < x � 1

EXAMPLE 2.10. Define the function f : ( 1
2 ,+∞) → R by

f (x) =

{
−√

x−1; x � 2

−x+1; 1
2 < x � 2

.
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This function is convex and we obtain

1− 1
2

∞

∑
k=1

2
√

k+1− (
√

k−√
k−1)√

k+1(
√

k+
√

k−1)
� 1− 1

2

∞

∑
k=1

2
√

k+ x− (
√

k−√
k−1)√

k+ x(
√

k+
√

k−1)

� lim
n→∞

(−√
n−1+

n

∑
k=1

1√
x+ k−1+

√
k−1

) � 1+
1
2

ζ (
1
2
); 0 < x � 1.

REMARK 2.11. Let an be a sequence of real numbers such that
(i) an is increasing,
(ii) an <

an−1+an+1
2 (i.e., an is a strictly convex sequence),

(iii) limn→∞(an+1−an) = 0.
Then, putting f (x) = (an+1 − an)(x− n)+ an for all n ∈ N and n � x < n + 1, we
see that f : [0,+∞) → R is a convex function such that it is not differentiable at the
natural numbers. Hence, we can not apply Theorem 2.2, but by using Theorem 2.7,
we conclude that f is limit summable and fσn(x) is convergent and the inequality 18
holds (of course, the inequality obtained from 18 is obvious for this case). Since the set
of sequences an which satisfy the three above conditions are infinite, hence there exist
infinity many sequences an which satisfy the conditions of Theorem 2.7, although they
do not satisfy the conditions of Theorem 2.2.
.

3. Some other inequalities

In Theorem 4.2 of [6] A. Laforgia and P. Natalini gave an inequality about the
Gamma function. Here, we conclude it as an example of the topic.

EXAMPLE 3.1. From Theorem A and Example 2.1, we conclude that

logσ (x) = logΓ(x+1) , logσ ′(x) = −γ(log,x) = ψ(x+1), γ = γ(log,0),

and by using the inequality, we obtain

−1+ γ � γ(log,x) � − logΓ(x+1)
x

� γ; 0 < x � 1,

e−γx � Γ(x+1) � exψ(x+1) � e(1−γ)x. (30)

That gives the inequality in Theorem 4.2 of [6].

The first part of the next example gives some inequalities for the zeta function and
ζ (s,x) whenever s > 1 and 0 < x � 1.

EXAMPLE 3.2. Let r be a fixed real number and put f (x) = xr . We use Theorem
2.2 again, and arrive at some inequalities (as some applications of the topic) by using
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the following cases.
Case 1. If r < 0, then f ′ < 0, f ′′ > 0 on (0,+∞) ( f (n) → 0, R(1) = 0) and we have

fσ ′
n
(0) = nr −

n

∑
k=1

rkr−1,

thus

γ( f ) = − fσ ′(0) = r
∞

∑
k=1

1
k1−r = rζ (1− r) = 2(2π)−rΓ(r+1)cos(

πr
2

)ζ (r).

By applying the inequality, we find

rζ (1− r) � 1
x

∞

∑
n=1

1
(n+ x)−r −

1
n− r

� r(ζ (1− r,x)− 1
x1−r ) � rζ (1− r)− r,

whenever 0 < x � 1.
Case 2. If r = −1, then we get

−γ( f ) = lim
x→∞

(
1
n

+
n

∑
k=1

1
k2 ) =

∞

∑
k=1

1
k2 =

π2

6
.

Therefore,

r+
π2

6
�

∞

∑
n=1

1
(n+ x)2 �

∞

∑
n=1

1
n2 +nx

� π2

6
; 0 < x � 1.

Case 3. If 0 < r < 1, then we have R( f ,1) = 0, and so

fσ ′
n
(x) = nr −

n

∑
k=1

r(x+ k)r−1 = 1− r(x+1)r−1−
∞

∑
k=2

((k−1)r − kr − r(x+ k)r−1),

−γ( f ) = 1− r−
∞

∑
k=2

((k−1)r − kr − rkr−1).

Hence

1−
∞

∑
n=2

((n−1)r−nr − rnr−1) � 1− r(x+1)r−1−
∞

∑
n=2

((n−1)r−nr − r(x+n)r−1)

�1
x

∞

∑
n=1

((1+ x)nr− (n+ x)r− x(n−1)r) � 1− r−
∞

∑
n=2

((n−1)r−nr − rnr−1),

whenever 0 < x � 1.
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