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HYBRID ZIPF-MANDELBROT LAW

JULIE JAKSETIC, DILDA PECARIC AND JOSIP PECARIC

(Communicated by J. Matkowski)

Abstract. There is a unified approach, maximization of Shannon entropy, that naturally follows
the path of generalization from Zipf’s to hybrid Zipf’s law. Extending this idea we make transi-
tion from Zipf-Mandelbrot to hybrid Zipf-Mandelbrot law. It is interesting that examination of
its densities provides some new insights of Lerch’s transcendent.

1. Introduction

Zipf’s law [1 1] and more generally Zipf-Mandelbrot law [7] are probability distri-
butions with wide spread of applications from language to ecology [4].
For NeN, ¢>0, s>0, ke {1,2,...,N}, Zipf-Mandelbrot law (probability mass
function) is defined with

_ (k+q)
f(kaqus)_ C(N,S,q), (l)
where
N 1 )
N =)y ——
EW50) = X @

NeN,¢g>0,5s>0,ke{l,2,...,N}.
If the total mass of the law is spread over all N, then for, ¢ > 0, s > 1, k € N,
density function of Zipf-Mandelbrot law becomes

1/(k+q)°
k? b = b 3
where N
ZI l+q @

Here, normalization factor {(s,q) we recognize as Hurwitz § function.
If we set ¢ =0 in (1) we get Zipf’s law and in [10] Viesser made transition from Zipf’s
to hybrid Zipf’s law using maximum entropy approach [2, 3].
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2. Shannon entropy and Zipf-Mandelbrot law

Here we extend use the maximum entropy approach in [10] to Zipf’s law in order
to deduce Zipf-Mandelbrot law, i.e. we maximize
— Y pilnp; Q)
i€l
subject to some constraints. Trivial constraint is of course Y, p; = 1.
iel
THEOREM 2.1. Let I = {1,...,N} or  =N. For a given ¢ >0 and x >

a probability distribution, concentrated on 1, that maximizes Shannon entropy under
additional constraint

Y peln(k+q) =% (6)
kel

is Zipf-Mandelbrot law.

Proof. If I ={1,...,N}, in a very standard procedure, we set two Lagrange mul-
tipliers A and s and consider expression

N N
S==Y plnpi—2 <2Pk_ 1) =S (Zpkln(k“l)_x) :
k=1 k=1

k=1

=

Just for convenience we can, of course, replace A «— InA — 1, and now conider

N N
S=— Zpklnpk— (InA —1) (Zpk—l>—s<zpkln(k+q)—x>
=1 k=1 k=1
instead.

From Spk =0, k=1,...,N we deduce

1

P 2y

N
and combining this with Y, py = 1, we have
k=1

N
b= L

k=1
where s > 0, concluding
_(ktq)
C(N,s,q)’
The case I = N is treated in a similar manner with the restriction s > 1 :
_ /(k+q)*
Pk= —F%7
E(s,q)

k=1,...,N.

, ke N.
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REMARK 2.2.

(i) If X is the random variable with values at I and probability law (p;, i € I),
then y from (6) is in fact expectation of the random variable In(X 4 ¢), which
depends on X.

(i) Observe here that for Zipf-Mandelbrot law (3) Shannon entropy (5) can be bounded
from above (see [8]):

oo

S=—-Y flk,q,5)Inf(k.q,s) 2 fk,q,)Ingy, )

k=1

where (g : k € N) is any sequence of positive numbers such that Y, g, = 1.
k=1

3. Hybrid Zipf-Mandelbrot law

The same technique of maximum entropy we apply with one additional constraint.
The derived probability law we will call hybrid Zipf-Mandelbrot law.

THEOREM 3.1. Let I ={1,...,N} or [ =N. Fora given ¢ >0, x >0 and
=0, a probability distribution, concentrated on I, that maximizes Shannon entropy
under additional constraints

Y pelnk+q)=x. D kpr=p
kel kel
is hybrid Zipf-Mandelbrot law:
k

w
(k+q)*@* (s,q,w)’

Pk = kel,

where
k

w
D} (s,q,w) = .
! ,% (k+q)°

Proof. We consider first I = {1,...,N} and then we maximize

N
—Zpklnpk+lnw<2kpk—u> (InA —1) (Zpk—l>

k=1
N
Zpkll’l k+q —X

S’pk:O, k=1,...,N givesus

=

—In py+klnw—In A —sln(k+¢q) =0,
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i.e.

PE= k9
Nk
Using Z pe=1 weget A =73 (kﬁ—q)s and we recognize this as the partial sum of
k=1

Lerch’s transcendent

N
V(s q,w 2

k=1

with w > 0,5 > 0.
In the infinite case I = N we have restrictions either w < 1,5 >0 or w= 1,5 > 1 and

_ i wt
k=1 (k+q)°

we recognize as Lerch’s transcendent that we will denote with ®*(s,q,w). O

Let us denote

Wk

Fu(w, Nk, q,s) = EPEH (S7q7w),k:1,...,N (8)

and

Wk

(k+q)*®*(s,q,w)’
hybrid Zipf-Mandelbrot law on finite and infinite state space, respectively.

fu(w,k,q,s) = )

REMARK 3.2. Some remarks are needed.
(i) Observe that constraint with the u is in fact the expectation of the law.

(i) There is a slight difference between Lerch’s transcendent defined in [1] p. 27 and
with our understanding of Lerch’s transcendent: we don’t have Oth summand.

(iii) We omitted the full bordered Hessian discussion in proofs of Theorems 2.1 and
3.1 as mere standard procedure.

(iv) Observe, further, that for hybrid Zipf-Mandelbrot law (9) Shannon entropy (5)
can be bounded from above (see [8]):

- th(kaqas)lnfh(kaqas) < - th(kang) 1nqk7 (10)

k=1 k=1

where (g : k € N) is any sequence of positive numbers such that Y ¢; = 1.
k=1
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4. Properties of the hybrid Zipf-Mandelbrot law

Now we examine analytical properties of the Lerch’s transcendent and the hybrid
Zipf-Mandelbrot law.

THEOREM 4.1. The functions

W 1/s
s (mfh(W,N’k’q’S)) (11)
and
W 1/s
s <mfh(w,k,q’5)) 12)

are decreasing on (0,00).

Proof. From (8) it follows

1 1 i i(k—i—q)S
S W
fh(W7N7k7Q7S) wk =1 l+6]

1

Wk—Wk+1 1/s 1 N k+q s 1/s
= —— 3w . 13
(=) wwﬁ'??”(i+q) (4

1—

i.e.

The right-hand side of (13) is power mean, which is increasing function on parameter
s. U

Now we recall well-known Lyapunov inequality, for isotonic functionals (for details
see [9, pp. 117] ):for 0 <r<s<t

A(g") <A@ A )T (14)
THEOREM 4.2.

i) For NeN,w>0,g>20,0<r<s<t,

(@ (s,q,w)] ™" < [@x(s,q,w)] " [@x(s,q,w)]" .
ii) ForO<w<1,¢g>20, 1 <r<s<t,

[ (5,4, )] < [ (5,,w)] " [@ (5,4, W)

Proof. 1) We apply (14) to the linear functional

N
A(g) = Y, whe(k)
k=1
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and replace g(k) = ﬁ

ii) Similarly, if we define

then the result follows from (14), if we choose g(k) = ﬁ O

We can now conclude log-convexity of Lerch’s transcendent and log-concavity of hy-
brid Zipf-Mandelbrot law.

COROLLARY 4.3. Let A € (0,1).
i) ForO<r<t, NeN;w>0,g>20,0<r<s<t,
Oy (Ar+ (1= W)t q,w) < [ (g, w)]* [@F (1. q,w)) .
ii) For l<r<t,0<w<1,¢g>20
O (Ar+ (1= A)1,q.w) < [ (r,g,w))* [ (1,9.w)] .
iii) For Ne N, w>0,g>20,0<r<s<t,
(W Nk, A+ (1= 2)0) 7" < (fi(w,Nokigr) ™ (fi(w.N ok g,1) ™.
iv) ForO<w<l1,g20, 1 <r<s<t,

((woksg, Ar+ (1= 2)0) "1 < (filwkogr) ™ (fi(wkgor) "0,

Proof. 1) and ii) follow from Theorem 4.2. iii) and iv) follow from (8) and (9)
respectively. [l

The results in the previous corollary can be extended further to exponential con-
vexity.

DEFINITION 4.4. A function i : I — R is exponentially convex on an open inter-
val I C R if it is continuous and

Z EEh (xl—i—xj) >0

i,j=1

forall n € N and all choices & €R, x;€1,i=1,...,n

THEOREM 4.5. The function s — ®*(s,q,w) is exponentially convex function on

(1,%0).
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Proof. Foragiven n € N let &, €R, s, € (1,%) (m=1,...,n) we have

S +sm L > '
IR LRSI B - S — (15)
Im=1 I,m=1 i=1 (z+q) )
oo n
— Zwi 2 élélzJﬂm (16)
i=1  Im=1 (i+q) 2
=) n 2
:Zwi<z i_) >0. (17)
i=1 m=1 (i+CI) 2

Since the function s — ®*(s,q,w) is continuous function on (1,e0), we conclude its
exponential convexity on (1,e0). [
Using (9) we have also the next corollary.

COROLLARY 4.6. The function s— (fy(w,k,q,s)) " is exponentially convex func-
tion on (1,00).

COROLLARY 4.7. The matrices [(®* (352, q,w ))]zmzl and

[(fh(w k,q*simy) 1:|lm=l are positive semidefinite for all n € N, s1,...,s, in (1,00).

We can deduce exponential convexity for the second parameter in generalized polylog-
arithm function. First, we will prove theorem on integral representation of generalized
polylogarithm function as a variant of Mellin transformation for Hurwitz { function.

LEMMA 4.8. ForO<w<1,4g>0

. w oouS le—(q+1)

Proof. In Gamma function integral we change variable, x = (k+ q)u,

F(S) :/ e_Xxy_ldx: (k+q)5/ e—(k+q)l,{us—ldu7
0 0

hence, ,
= (k+q)°T'(s) = / e My dy. (19)
0

By multiplying both sides of (19) with wX , summing over k € N, and using Beppo-
Levi’s theorem on the right side, we have

D*(s,q,w /0 Zw e Mty dy

k=1

s—1 ,—(g+1)u
— w/ Ldu.
0 1 —we
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THEOREM 4.9. The function q+— ®*(s,q,w) is exponentially convex function on
(0,00).

Proof. ForagivenneN, &, €R, g, € (0,) (m=1,...,n), we have, using (18)

and
S qi+4; 1))
D, &ikjexp <—< o+ ) ) Zém)( ) >0,
ij=1
concluding
2 éiéjq)*(& M,W) 2 0.
ij=1 2
|

n
COROLLARY 4.10. For s > 1, the matrix [(D*( q’w’ w)] - is positive semi
ij=
definite for all n € N, q1,...,qy in (0,0).

COROLLARY 4.11. Forany s > 1, the function
q+— " (s,9,w)
is log-convex on (0,00).

THEOREM 4.12. The function w +— W is exponentially convex on (0,1).

Proof. From L = ["e"dt we have

1 o .
R / etere utdl.
1 —we 0

If we now rewrite (18)

q)*(saqvw) _ 1 /wus—le—(‘l-‘rl)u/Net-‘rwe’”tdtdu,
w I'(s) Jo 0

and use Fubini with

2
7 w,-efut
2 e 2 >0,

i=1

i,j=1

our proof is done. [

COROLLARY 4.13. For any o > 1 the function w — % is exponentially
convex on (0,1).
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Proof. This follows from the fact that, for ¥ > 0, x+ x~7 is exponentially convex
on (0,1) and that product of exponentially convex function (on the same domain) is
again exponentially convex (for details see [5]). O
Let us recall Chebyshev’s inequality (see [9, pp. 197]).

THEOREM 4.14. Let (ay,...,an) and (by,...,by) be two N -tuples of real num-
bers such that

(a,-—aj)(b,-—bj) >0, fori,j=1,....N,

and (wy,...,wy) be a positive n— tuple. Then

N N N N
<2W,‘> ( W,‘Cl,'bi) > (2 W,‘Ll,‘) <Zw,~b,~>. (20)
i=1 i=1 i=1 i=1

REMARK 4.15. The previous theorem can be extended to infinite sequences if we
impose some obvious convergence

(lilwz) (iiwiaibi) > (il w,-a,-> (lilw,-b,). 1)

Let us introduce mean version of Lerch’s transcendent

I 1—
q)*(S;fI:W) = qu)*(saqv W)'

THEOREM 4.16. The mean version of Lerch’s transcendent is log-subadditive,
i.e. for s,r >0

D (s+r,q,w) < D*(s,q,w)D*(r,q,w). (22)

Proof. We apply Chebyshev’s inequality (21) for
k y k s :
a; = ﬂ , bi= .—l—q ,wi=whieN
i+q iI+q

ILCI)* (s+r,q,w) < D*(s,q,w)D" (r,q,w).
—w

i.e.

O

REMARK 4.17. A similar version of the previous theorem can be proved for cut
Lerch’s transcendent ®*y (s, q,w).
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5. Hybrid means

For a fixed p; >0, a; >0, i =1...,N let us define linear functional on C[a,b]
with

n
A(f) =Y pifla),
i=1
where a < minag; < maxa; < b. Then, the next theorem is valid.

THEOREM 5.1. For a continuous function g : [a,b] — R, the function t — A(g")
is exponentially convex on (0,e0) and for positive oy, 0, B1,B2; o1 < 0, Bi < o, o) #

B, oo # Bo, 1 1
g e

A(gh)
Proof. For a fixed n e N, y; e R, t; >0, i = 1,...,n, we define an auxiliary
function

n ti+t;
Y(x)= Y wux 2 .
i.j=1

Since W(x) = (

i

n 1 2
> u,-x§> >0, we have A(W(g)) >0, i.e.
=1
i litty
Z uiujA (g 2 ) >0
i,j=1

concluding exponential convexity of the function 7 — A(g"). Since exponential convex-
ity implies log-convexity (see [5]), (23) follows from [9] pp. 7. U

REMARK 5.2. For fixed r >0, let m = min g'(x), M = max g'(x). Then, from
x€la,b] x€la,b]

A(g'—m)>0and A(M —g") >0 it follows
mA(1) <A(g') < MA(1).

By the mean value theorem it follows that exists & € [a, ] such that

Also, for fixed o, B € (0,00),a # 3, following the very standard technique, we can
also prove that there exists 1 € [a,b] such that

P = : (24)
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Now, if g(n) € [a,b], then the expression

(i) @

stands for the mean and, as (23) shows, these means have monotonicity property.

For fixed, k € N, ¢ > 0, let us take p; = w', a; = ﬁ—} i=1,...,N, g =id. Using
Remark (5.2) and (8), we can define hybrid means
1
(fh(vaakquﬁ)>ﬂ a#ﬁ.
7[\l.’k7 s ) )
H(ap) = NN (26)
eXp | ~ N Eg.) ) va=p.

THEOREM 5.3. For 0 < oy < 0, 0 < By < Bo, a1 # i, 0o # Bo;

H(ou,B1) <H(0g,B2). (27
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