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AM–GM INEQUALITY FOR POSITIVE LINEAR MAPS

ILYAS ALI, ABDUL SHAKOOR AND ABDUR REHMAN

(Communicated by J. Mićić Hot)

Abstract. This paper aims to present some operator inequalities for positive linear maps. These
inequalities are refinements of the results presented by Xue in [J. Inequal. Appl. 2017:283,
2017].

1. Introduction

Throughout this article, let we reserve M and m for scalars and I for the identity
operator. Other capital letters are used to denote the general elements of the C∗ -algebra
B(H ) (with units) of all bounded linear operators acting on Hilbert space (H ,〈., .〉) .
Let ‖.‖ denote operator norm. We write A � 0 to means that the operator A is positive.
A positive invertible operator A is denoted as A > 0. A linear map Φ : B(H ) →
B(K ) is called positive if for A � 0 we have Φ(A) � 0 and it is called unital if
Φ(I) = I . Also, if A−B � 0, we mean A � B . For positive operators A and B, the

geometric mean A�B is defined by A�B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

For 0 < m � A,B � M , Tominaga [1] proved that the following operator inequality
holds:

A+B
2

� S(h)A�B, (1.1)

where S(h) = h
1

(h−1)

elogh
1

(h−1)
is called specht’s ratio with h = M

m .

The inequality (1.1) can be regarded as a counterpart of the following well-known
AM-GM inequality

A+B
2

� A�B. (1.2)

Lin [2, (3.3)] observed that

S(h) �
(

M +m

2
√

Mm

)2

� S2(h) (h � 1). (1.3)
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By inequalities (1.1) and (1.3), we can easily obtained the following inequality

A+B
2

�
(

M +m

2
√

Mm

)2

A�B. (1.4)

Because Φ is order preserving then (1.4) implies that

Φ
(

A+B
2

)
�
(

M +m

2
√

Mm

)2

Φ(A�B) . (1.5)

For positive linear map Φ and A,B � 0. Ando [3] has proved the following in-
equality

Φ(A�B) � (Φ(A)�Φ(B)) . (1.6)

Then, by (1.5) and (1.6), we have

Φ
(

A+B
2

)
�
(

M +m

2
√

Mm

)2

(Φ(A) �Φ(B)) . (1.7)

Here, we want to mention that the generalized forms and refinements of some related
inequalities one can see in [4].

It is well known that ts is operator monotone function for 0 � s � 1 and not so
is t2 , see [5]. Lin [2] observed that the inequalities (1.5) and (1.7) can be squared as
follows:

Φ2
(

A+B
2

)
�
((

M +m

2
√

Mm

)2
)2

Φ2 (A�B) , (1.8)

and

Φ2
(

A+B
2

)
�
((

M +m

2
√

Mm

)2
)2

(Φ(A)�Φ(B))2 . (1.9)

Recently, Xue [6] proved that if
√

M
m � 2.314, then the following refinement of

the inequality (1.4) holds:

A+B
2

� M +m

2
√

Mm
A�B. (1.10)

Inspired by Lin idea [2] of squaring, Xue [6] also proved that if
√

M
m � 2.314,

then (
A+B

2

)2

�
(

M +m

2
√

Mm

)2

(A�B)2 , (1.11)
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Φ2
(

A+B
2

)
�
(

M +m

2
√

Mm

)2

Φ2 (A�B) , (1.12)

and

Φ2
(

A+B
2

)
�
(

M +m

2
√

Mm

)2

(Φ(A) �Φ(B))2 . (1.13)

Inequalities (1.12) and (1.13) are refinements of (1.8) and (1.9) respectively.
Moreover, Xue [6] solved Lin conjectured [2]. she proved that if 0 < m � A,B � M

and
√

M
m � 2.314, then

Φ2
(

A+B
2

)
� S2(h)Φ2 (A�B) , (1.14)

and

Φ2
(

A+B
2

)
� S2(h)(Φ(A)�Φ(B))2 . (1.15)

Currently, Xue obtained more generalized and sharper forms of the reverse AM-GM
inequality, for comprehensive study, the reader is referred to [7].

In this paper, in section 2, we will further refine the inequalities (1.10)-(1.15) for

the condition number
√

M
m � 2.314.

2. Main results

We need some useful lemmas to prove our main results of this paper.

LEMMA 2.1.[8]. Let A,B > 0 , then the following norm inequality holds:

‖AB‖ � 1
4
‖A+B‖2. (2.1)

LEMMA 2.2.[9]. If A > 0 and Φ be a positive unital linear map, then

Φ−1(A) � Φ(A−1). (2.2)

Now, we prove the first main result of this paper in the following Theorem.

THEOREM 2.3. Let 0 < m � M and
√

M
m � 2.314 , we have

(1) If m � A,B � M+m
2 , then

(
A+B

2
+

M +m
2

m

(
A−1 +B−1

2
− (A−1�B−1)

))2

�
(

M +m

2
√

mM

)2

(A�B)2 , (2.3)
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(2) If M+m
2 � A,B � M, then

(
A+B

2
+

M +m
2

M

(
A−1 +B−1

2
− (A−1�B−1)

))2

�
(

M +m

2
√

mM

)2

(A�B)2 , (2.4)

(3) If m � A � M+m
2 � B � M, then

(
A+B

2
+

M +m
2

(
mA−1 +MB−1

2
− (mA−1�MB−1)

))2

�
(

M +m

2
√

mM

)2

(A�B)2 , (2.5)

(4) If m � B � M+m
2 � A � M, then

(
A+B

2
+

M +m
2

(
MA−1 +mB−1

2
− (MA−1�mB−1)

))2

�
(

M +m

2
√

mM

)2

(A�B)2 . (2.6)

Proof. The operator inequality (2.3) is equivalent to the following∥∥∥∥
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
(A�B)−1

∥∥∥∥
� M +m

2
√

mM
. (2.7)

By first case m � A,B � M+m
2 , we have

A+
M +m

2
mA−1 � M +m

2
+m, (2.8)

and

B+
M +m

2
mB−1 � M +m

2
+m. (2.9)

Compute∥∥∥∥
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
M +m

2
m(A�B)−1

∥∥∥∥
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� 1
4

∥∥∥∥∥∥
(

A+B
2 + M+m

2 m
(

A−1+B−1

2 − (A−1�B−1)
))

+M+m
2 m(A�B)−1

∥∥∥∥∥∥
2

(by (2.1))

=
1
4

∥∥∥∥∥∥
(

A+B
2 + M+m

2 m
(

A−1+B−1

2 − (A−1�B−1)
))

+M+m
2 m(A−1�B−1)

∥∥∥∥∥∥
2

=
1
4

∥∥∥∥A+B
2

+
M +m

2
m

A−1 +B−1

2

∥∥∥∥
2

� 1
4

(
M +m

2
+m

)2

(by (2.8),(2.9)).

That is, ∥∥∥∥
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
(A�B)−1

∥∥∥∥
�
(

M+m
2 +m

)2
4M+m

2 m
. (2.10)

Since 1 �
√

M
m � 2.314, it follows that

(√
M
m

−1

)2
⎡
⎣(√M

m

)3

− 2M
m

+

√
M
m

−4

⎤
⎦� 0. (2.11)

It is easy to show that
(M+m

2 +m)2

4 M+m
2 m

� M+m
2
√

Mm
is equivalent to (2.11).

Thus, from inequality (2.10), we obtain∥∥∥∥
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
(A�B)−1

∥∥∥∥
� M +m

2
√

Mm
.

By 2nd case M+m
2 � A,B � M , we have

A+
M +m

2
MA−1 � M +m

2
+M, (2.12)

and

B+
M +m

2
MB−1 � M +m

2
+M. (2.13)

Similarly, we obtain∥∥∥∥
(

A+B
2

+
M +m

2
M

(
A−1 +B−1

2
− (A−1�B−1)

))
(A�B)−1

∥∥∥∥
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�
(

M+m
2 +M

)2
4M+m

2 M
�
(

M+m
2 +m

)2
4M+m

2 m
� M +m

2
√

Mm
.

By third case m � A � M+m
2 � B � M , we have

∥∥∥∥
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2
− (mA−1�MB−1)

))
M +m

2

√
mM (A�B)−1

∥∥∥∥
� 1

4

∥∥∥∥∥∥
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1)
))

+M+m
2

√
mM (A�B)−1

∥∥∥∥∥∥
2

(by (2.1))

=
1
4

∥∥∥∥∥∥
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1)
))

+M+m
2 (mA−1�MB−1)

∥∥∥∥∥∥
2

=
1
4

∥∥∥∥A+B
2

+
M +m

2

(
mA−1 +MB−1

2

)∥∥∥∥
� (M +m)2

4
(by (2.8),(2.13)). (2.14)

That is, ∥∥∥∥
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2
− (mA−1�MB−1)

))
(A�B)−1

∥∥∥∥
� (M +m)2

4M+m
2

√
mM

=
M +m

2
√

mM
.

Similarly, by last case m � B � M+m
2 � A � M and by the inequalities (2.1), (2.9) and

(2.12), we have∥∥∥∥
(

A+B
2

+
M +m

2

(
MA−1 +mB−1

2
− (MA−1�mB−1

))
(A�B)−1

∥∥∥∥
� M +m

2
√

mM
.

This completes the proof. �

REMARK 2.4. By inequality (1.2), it is clear that Theorem 2.3 is a refinement of
(1.11).

REMARK 2.5. Since ts is operator monotone function for 0 � s � 1, so, we can
easily obtain refinement of (1.10) by taking power 1

2 both sides of (2.3), (2.4), (2.5)
and (2.6) respectively.

THEOREM 2.6. Let Φ be a positive linear map, 0 < m � M and
√

M
m � 2.314 ,

we have
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(1) If m � A,B � M+m
2 , then

Φ2
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))

�
(

M +m

2
√

mM

)2

Φ2 (A�B) , (2.15)

(2) If M+m
2 � A,B � M, then

Φ2
(

A+B
2

+
M +m

2
M

(
A−1 +B−1

2
− (A−1�B−1)

))

�
(

M +m

2
√

mM

)2

Φ2 (A�B) , (2.16)

(3) If m � A � M+m
2 � B � M, then

Φ2
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2
− (mA−1�MB−1)

))

�
(

M +m

2
√

mM

)2

Φ2 (A�B) , (2.17)

(4) If m � B � M+m
2 � A � M, then

Φ2
(

A+B
2

+
M +m

2

(
MA−1 +mB−1

2
− (MA−1�mB−1)

))

�
(

M +m

2
√

mM

)2

Φ2 (A�B) . (2.18)

Proof. Inequality (2.15) is equivalent to the following∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
Φ−1 (A�B)

∥∥∥∥
�
(

M +m

2
√

mM

)
. (2.19)

First we consider the case m � A,B � M+m
2 and compute

∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
M +m

2
mΦ−1 (A�B)

∥∥∥∥
� 1

4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2 m
(

A−1+B−1

2 − (A−1�B−1)
))

+M+m
2 mΦ−1 (A�B)

∥∥∥∥∥∥
2

(by (2.1))
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� 1
4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2 m
(

A−1+B−1

2 − (A−1�B−1)
))

+M+m
2 mΦ((A�B)−1)

∥∥∥∥∥∥
2

(by (2.2))

=
1
4

∥∥∥∥∥∥Φ

⎛
⎝
(

A+B
2 + M+m

2 m
(

A−1+B−1

2 − (A−1�B−1)
))

+M+m
2 m(A−1�B−1)

⎞
⎠
∥∥∥∥∥∥

2

=
1
4

∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2

))∥∥∥∥
2

� 1
4

(
M +m

2
+m

)2

(by (2.8),(2.9)). (2.20)

That is, ∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
Φ−1 (A�B)

∥∥∥∥
�
(

M+m
2 +m

)2
4M+m

2 m
.

So, by condition 1 �
√

M
m � 2.314 and (2.11), we have

∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
−A−1�B−1

))
Φ−1 (A�B)

∥∥∥∥
�
(

M +m

2
√

mM

)
.

Similarly, by 2nd case M+m
2 � A,B � M and by the inequalities (2.1),(2.2),(2.12),

(2.13),
(M+m

2 +M)2

4 M+m
2 M

� (M+m
2 +m)2

4 M+m
2 m

and (2.11), we have

∥∥∥∥Φ
(

A+B
2

+
M +m

2
M

(
A−1 +B−1

2
−A−1�B−1

))
Φ−1 (A�B)

∥∥∥∥
�
(

M +m

2
√

mM

)
.

Now, consider third case m � A � M+m
2 � B � M and compute∥∥∥∥∥∥

Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

M+m
2

√
mMΦ−1 (A�B)

∥∥∥∥∥∥
� 1

4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

+M+m
2

√
mMΦ−1 (A�B)

∥∥∥∥∥∥
2

(by (2.1))
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� 1
4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

+M+m
2

√
mMΦ((A�B)−1)

∥∥∥∥∥∥
2

(by (2.2))

=
1
4

∥∥∥∥∥∥Φ

⎛
⎝ A+B

2 + M+m
2

(
mA−1+MB−1

2 − (mA−1�MB−1
)

+M+m
2 (mA−1�MB−1)

⎞
⎠
∥∥∥∥∥∥

2

=
1
4

∥∥∥∥Φ
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2

))∥∥∥∥
2

� (M +m)2

4
(by (2.8),(2.13)). (2.21)

That is, ∥∥∥∥Φ
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2
− (mA−1�MB−1

))
Φ−1 (A�B)

∥∥∥∥
� (M +m)2

4M+m
2

√
mM

=
M +m

2
√

mM
.

Similarly, by last case m � B � M+m
2 � A � M and by the inequalities (2.1),(2.2), (2.9)

and (2.12), we have∥∥∥∥Φ
(

A+B
2

+
M +m

2

(
MA−1 +mB−1

2
− (MA−1�mB−1

))
Φ−1 (A�B)

∥∥∥∥
� M +m

2
√

mM
.

This completes the proof. �
REMARK 2.7. Obviously, Theorem 2.6 is refinement of (1.12). By (1.3) and The-

orem 2.6, we obtain the following refinement of the inequality (1.14)

COROLLARY 2.8. Let Φ be a positive linear map, 0 < m � M and
√

M
m � 2.314 ,

we have
(1) If m � A,B � M+m

2 , then

Φ2
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
� S2(h)Φ2 (A�B) ,

(2) If M+m
2 � A,B � M, then

Φ2
(

A+B
2

+
M +m

2
M

(
A−1 +B−1

2
− (A−1�B−1)

))
� S2(h)Φ2 (A�B) ,
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(3) If m � A � M+m
2 � B � M, then

Φ2
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2
− (mA−1�MB−1)

))
� S2(h)Φ2 (A�B) ,

(4) If m � B � M+m
2 � A � M, then

Φ2
(

A+B
2

+
M +m

2

(
MA−1 +mB−1

2
− (MA−1�mB−1)

))
� S2(h)Φ2 (A�B) ,

where S(h) = h
1

h−1

elogh
1

h−1
, h = M

m .

THEOREM 2.9. Let Φ be a positive linear map, 0 < m � M and
√

M
m � 2.314 ,

we have
(1) If m � A,B � M+m

2 , then

Φ2
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))

�
(

M +m

2
√

mM

)2

(Φ(A)�Φ(B))2 , (2.22)

(2) If M+m
2 � A,B � M, then

Φ2
(

A+B
2

+
M +m

2
M

(
A−1 +B−1

2
− (A−1�B−1)

))

�
(

M +m

2
√

mM

)2

(Φ(A)�Φ(B))2 , (2.23)

(3) If m � A � M+m
2 � B � M, then

Φ2
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2
− (mA−1�MB−1)

))

�
(

M +m

2
√

mM

)2

(Φ(A)�Φ(B))2 , (2.24)

(4) If m � B � M+m
2 � A � M, then

Φ2
(

A+B
2

+
M +m

2

(
MA−1 +mB−1

2
− (MA−1�mB−1)

))

�
(

M +m

2
√

mM

)2

(Φ(A)�Φ(B))2 . (2.25)
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Proof. Inequality (2.22) is equivalent to the following∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
(Φ(A)�Φ(B))−1

∥∥∥∥
�
(

M +m

2
√

mM

)
. (2.26)

Compute∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
M +m

2
m(Φ(A)�Φ(B))−1

∥∥∥∥
� 1

4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2 m
(

A−1+B−1

2 − (A−1�B−1)
))

+M+m
2 m(Φ(A)�Φ(B))−1

∥∥∥∥∥∥
2

� 1
4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2 m
(

A−1+B−1

2 − (A−1�B−1)
))

+M+m
2 mΦ−1(A�B)

∥∥∥∥∥∥
2

(by (1.6))

� 1
4

(
M +m

2
+m

)2

(by (2.20))

That is, ∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
(Φ(A)�Φ(B))−1

∥∥∥∥
�
(

M+m
2 +m

)2
4M+m

2 m
. (2.27)

By condition 1 �
√

M
m � 2.314 and (2.11), from (2.27), we have

∥∥∥∥Φ
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
(Φ(A)�Φ(B))−1

∥∥∥∥
�
(

M +m

2
√

mM

)
.

Since
(M+m

2 +M)2

4 M+m
2 M

� (M+m
2 +m)2

4 M+m
2 m

, similarly, we can easily prove the inequality (2.23).

Inequality (2.24) is equivalent to the following∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

(Φ(A)�Φ(B))−1

∥∥∥∥∥∥
� M +m

2
√

mM
. (2.28)
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compute

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

M+m
2

√
mM (Φ(A)�Φ(B))−1

∥∥∥∥∥∥
� 1

4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

+M+m
2

√
mM (Φ(A)�Φ(B))−1

∥∥∥∥∥∥
2

(by (2.1))

� 1
4

∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

+M+m
2

√
mMΦ−1(A�B)

∥∥∥∥∥∥
2

(by (1.6))

� (M +m)2

4
(by (2.21))

That is, ∥∥∥∥∥∥
Φ
(

A+B
2 + M+m

2

(
mA−1+MB−1

2 − (mA−1�MB−1
))

(Φ(A)�Φ(B))−1

∥∥∥∥∥∥
� M +m

2
√

mM
.

So, (2.24) proved.
The process of the proof of inequality (2.25) is similar to that of inequality (2.24).
This completes the proof. �

REMARK 2.10. Obviously, Theorem 2.9 is refinement of (1.13).
By (1.3) and Theorem 2.9, we obtain the following refinement of the inequality

(1.15).

COROLLARY 2.11. Let Φ be a positive linear map, 0 < m � M and
√

M
m �

2.314 , we have
(1) If m � A,B � M+m

2 , then

Φ2
(

A+B
2

+
M +m

2
m

(
A−1 +B−1

2
− (A−1�B−1)

))
� S2(h)(Φ(A)�Φ(B))2 ,

(2) If M+m
2 � A,B � M, then

Φ2
(

A+B
2

+
M +m

2
M

(
A−1 +B−1

2
− (A−1�B−1)

))
� S2(h)(Φ(A)�Φ(B))2 ,
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(3) If m � A � M+m
2 � B � M, then

Φ2
(

A+B
2

+
M +m

2

(
mA−1 +MB−1

2
− (mA−1�MB−1)

))
� S2(h)(Φ(A)�Φ(B))2 ,

(4) If m � B � M+m
2 � A � M, then

Φ2
(

A+B
2

+
M +m

2

(
MA−1 +mB−1

2
− (MA−1�mB−1)

))
� S2(h)(Φ(A)�Φ(B))2 ,

where S(h) = h
1

h−1

elogh
1

h−1
, h = M

m .
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