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Abstract. Let A denote the family of all functions that are analytic in the unit disk D := {z :
|z| < 1} and satisfy f (0) = 0 = f ′(0)− 1 . Let S be the set of all functions f ∈ A that are
univalent in D . In this paper the sharp upper bounds of |a3 −a2| and |a4 −a3| for the functions
f (z) = z+∑∞

n=2 anzn being in several subclasses of S are presented.

1. Introduction

Let A denote the family of all functions that are analytic in the unit disk D :=
{z : |z| < 1} and satisfy f (0) = 0 = f ′(0)−1. Let S be the set of all functions f ∈ A
that are univalent in D . Let S∗ and K denote the subclasses of S consisting of starlike
functions and convex functions, respectively. If f (z) = z+∑∞

n=2 anzn ∈ S then |an|� n
and strict inequality holds for all n unless f is the Koebe function or one of its rotation.
This is the famous conjecture of Bieberbach, first proposed by Bieberbach[2] in 1916
and finally proved by de Branges[1] in 1984. After Bieberbach conjecture was put
forward, another coefficient problem which has attracted considerable attention is to
estimate ||an+1| − |an|| , the difference of the moduli of successive coefficients of a
function f ∈ S . Indeed, Hayman[4] proved ||an+1|− |an|| � A for f ∈ S , where A � 1
is an absolute constant. Pommerenke[17] conjecture that ||an+1|− |an|| � 1 for f ∈ S∗
which was proved by Leung[6]. Z. Ye also estimated the difference of the moduli of
successive coefficients of certain univalent functions[21, 22]. In addition to studying
the bounds of ||an+1|− |an|| , some scholars are also interested in studying the bounds
of |an+1 − an| . Robertson[18] proved that |an+1 − an| � 2n+1

3 |a2 − 1| for all f ∈ K .
Recently, M. Li and T. Sugawa[7] estimated the bounds of |a3−a2| and |a4−a3| for
f ∈ K(p) , where K(p) = { f : f ∈ K, f ′′(0) = p,0 � p � 2} .

In the present paper the upper bounds of |a3−a2| and |a4 −a3| for f belonging
to various subclasses of S are studied.
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2. Preliminaries

Let P denote the class of all functions p(z) analytic and having positive real part
on D , with the form

P(z) = 1+
∞

∑
n=1

pnz
n.

It is known that |pn| � 2 for p ∈ P and n = 1,2, · · ·[2].
In the course of the subsequent discussion, we need to make use of the following

lemmas.

LEMMA 1. Let −2 � p1 � 2 and p2, p3 ∈ C. There exists a function P ∈P with

P(z) = 1+ p1z+ p2z
2 + p3z

3 + ... (1)

if and only if
2p2 = p2

1 + x(4− p2
1) (2)

and
4p3 = p3

1 +2(4− p2
1)p1x− (4− p2

1)p1x
2 +2(4− p2

1)(1−|x|2)y (3)

for some x,y ∈ C with |x| � 1 and |y| � 1 .

Lemma 1 is due to Libera and Złotkiewicz[8], one can also find it in [7].

LEMMA 2. For given real numbers a,b,c, let

Y (a,b,c) = maxz∈D

(|a+bz+ cz2|+1−|z|2) . (4)

If a � 0 and c � 0 , then

Y (a,b,c) =

{
a+ |b|+ c, |b| � 2(1− c)

1+a+ b2

4(1−c) , |b| < 2(1− c)

The maximum in the definition of Y (a,b,c) is attained at z = ±1 in the first case
according as b = ±|b|.
Lemma 2 is due to R. Ohno and T. Sugawa[14], one can also find it in [7].

3. Main Results

Let G denote the class functions f from A satisfying the conditions

Re

(
1+

z f ′′(z)
f ′(z)

)
<

3
2
, z ∈ D,

It is known that G ⊂ S and | 12 f ′′(0)| = |a2| � 1
2 for f = z+∑∞

n=2 anzn ∈ G [19, 15, 10,
5]. Now, let

G (p) = { f ∈ G , f ′′(0) = p},
where p is a given number satisfying −1 � p � 1.
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THEOREM 1. Let 0 � p � 1 and let f (z) = z+ a2z2 + a3z3 + ... be in the class
G (p) . Then the next sharp inequalities hold:

|a3−a2| � 1
6
(−p2 +3p+1) (5)

|a4−a3| � 1
24

(1− p2)(3p+4) (6)

Proof. Since

Re

(
1+

z f ′′(z)
f ′(z)

)
<

3
2
, z ∈ D,

it is follows that

Re

(
1−2

z f ′′(z)
f ′(z)

)
> 0, z ∈ D.

We can put

1−2
z f ′′(z)
f ′(z)

= P(z),

where P is given by (1) and satisfy ReP(z) > 0,z ∈ D . From the last relation we have

f ′(z)−2z f ′′(z) = P(z) f ′(z). (7)

By using the Taylor representations for the functions f and P and comparing the coef-
ficients of zn (n = 1,2,3) in both sides of (7), we obtain

a2 = − p1

4
, a3 = − 1

12
p2 − 1

6
a2p1, a4 = − 1

24
p3− 1

8
a3p1− 1

12
a2p2. (8)

Since, 2a2 = f ′′(0) = p , we have p1 = −4a2 = −2p by (8). In view of these facts and
Lemma 1, we have

p2 = 2(p2 +(1− p2)x),

p3 = −2p3−4(1− p2)px+2(1− p2)px2 +2(1− p2)(1−|x|2)y, (9)

where x,y ∈ C with |x| � 1 and |y| � 1.
From the relations (8) and (9) and by some simple calculations, we have

|a3−a2| =
∣∣∣∣−1

6
(1− p2)x− 1

2
p

∣∣∣∣
� 1

6
(1− p2)+

1
2

p =
1
6
(−p2 +3p+1),

where equality occurs if x = 1. Also, we have

|a4−a3| =
∣∣∣∣− 1

12
(1− p2)(1−|x|2)y+[

1
24

(1− p2)p+
1
6
(1− p2)]x− 1

12
(1− p2)px2

∣∣∣∣
� 1

12
(1− p2)

(
1−|x|2 + |− 1

2
(p+4)x+ px2|

)

� 1
12

(1− p2)Y (a,b,c),
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where Y (a,b,c) is given in (4) and with

a = 0, b = −1
2
(p+4), c = p.

Since 0 � p � 1, we have that |b| � 2(1− c) . Then by using Lemma 2 we get

Y (a,b,c) =
3
2

p+2.

Therefore

|a4−a3| � 1
12

(1− p2)Y (a,b,c) =
1
24

(1− p2)(3p+4)

The equality holds for x = −1.

If we denote by

G + =
⋃

0�p�1

Gp = { f : f ∈ G , f ′′(0) � 0},

then by using (5) and (6) and a simple calculation, we easily get

sup f∈G + |a3( f )−a2( f )| = 1
2

and

sup f∈G + |a4( f )−a3( f )| = 260+43
√

43
2916

= 0.1858...

where an( f )(n = 2,3,4) are the Taylor coefficients of f (z) . �
As usual, let U denote the set of all f ∈ A satisfying the condition∣∣∣∣∣

(
z

f (z)

)2

f ′(z)−1

∣∣∣∣∣< 1

for z ∈ D. It is known that U ⊂ S [16]. In recent years, the properties of U were
studied in detail[11, 12, 13, 3]. Let

Up = { f ∈ U , f ′′(0) = p},
where p is a given number with −4 � p � 4 (Noticing that for f ∈ U , we have
| 12 f ′′(0)| = |a2( f )| � 2).

THEOREM 2. Let 0 � p � 4 and let f (z) = z+ a2z2 + a3z3 + ... be in the class
Up . Then we have the following sharp inequalities :

|a3−a2| �
{

1+ p
4 (2− p), 0 � p � 2

1+ p
4 (p−2), 2 � p � 4.

(10)

|a4−a3| �
{ 1

4(−p3 +6p2−8p+8), 0 � p � 2
1
8 (p3−2p2 +8p−8), 2 � p � 4.

(11)
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Proof. If f ∈ U , then∣∣∣∣∣
(

z
f (z)

)2

f ′(z)−1

∣∣∣∣∣< 1, |z| < 1.

It is equivalent to

Re

(
2

(
f (z)
z

)2 1
f ′(z)

−1

)
> 0, z ∈ D.

So, we can put

2

(
f (z)
z

)2 1
f ′(z)

−1 = P(z),

where P is given by (1) and satisfy ReP(z) > 0,z ∈ D . From the last relation we have

2

(
f (z)
z

)2

− f ′(z) = P(z) f ′(z). (12)

By using the relation (12) and the Taylor expansions of functions f and P , we obtain

p1 = 0, a3 = a2
2−

1
2

p2, a4 = −1
4

p3− 1
2
a2p2 +a2a3. (13)

Since 2a2 = p , we have a2 = p
2 . Also, since p1 = 0, it follows from Lemma 1 that

p2 = 2x, p3 = 2(1−|x|2)y (14)

for some x,y ∈ C with |x| � 1 and |y| � 1.
By using the all previous facts, we obtain that

a3 =
1
4

p2− x, a4 =
1
8

p3− px− 1
2
(1−|x|2)y.

Now, we have

|a3−a2| =
∣∣∣∣−x+

1
4

p2− p
2

∣∣∣∣� 1+
p
4
|p−2|,

or equivalently,

|a3−a2| �
{

1+ p
4 (2− p), 0 � p � 2

1+ p
4 (p−2), 2 � p � 4.

Also we have

|a4−a3| =
∣∣∣∣18 p3− px− 1

2
(1−|x|2)y− 1

4
p2 + x

∣∣∣∣
� 1

2

(
1−|x|2 +

∣∣∣∣14 p2(p−2)+2(1− p)x
∣∣∣∣
)

� 1
2
Y (a,b,c),
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where Y (a,b,c) is given in (4). Since∣∣∣∣14 p2(p−2)+2(1− p)x
∣∣∣∣=
∣∣∣∣14 p2(2− p)+2(p−1)x

∣∣∣∣,
we can put a = 1

4 p2(2− p), b = 2(p− 1), c = 0 in case 0 � p � 2 and a = 1
4 p2(p−

2), b = 2(1− p), c = 0 in case 2 � p � 4. We have that |b| � 2(1− c) in the first case
and |b| � 2(1− c) in the second case. By Lemma 2 we have

Y (a,b,c) =

{
1+ 1

4 p2(2− p)+ 4(p−1)2
4 , 0 � p � 2

1
4 p2(p−2)+2(p−1), 2 � p � 4

and therefore

|a4−a3| �
{ 1

4(−p3 +6p2−8p+8), 0 � p � 2
1
8 (p3−2p2 +8p−8), 2 � p � 4.

Now, let
U + =

⋃
0�p�4

Up = { f : f ∈ U , f ′′(0) � 0}.

Then, in view of (10) and (11), we easily get

sup f∈U + |a3( f )−a2( f )| = 3

and
sup f∈U + |a4( f )−a3( f )| = 7.

�
For a long time, the research on Bazilevic functions has attracted the attention

of many scholars[20, 9, 23]. R.Singh[20] considered a subclass B1(α) of Bazilevic
functions. f ∈ B1(α) if f ∈ A and

Re

{(
f (z)
z

)α−1

f ′(z)

}
> 0,z ∈ D, α � 0.

It is well-known that B1(α)(α � 0) is the subclass of S .
For α = 1 we have the class R defined by the condition

Re{ f ′(z)} > 0, z ∈ D.

Further, let denote by B(2) and B(3) the classes given from B1(α) for α = 2 and
α = 3, i.e. the classes of A satisfying the next conditions

Re

{
f (z) f ′(z)

z

}
> 0, z ∈ D

and

Re

{(
f (z)
z

)2

f ′(z)

}
> 0, z ∈ D,
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respectively. Also, let
Rp = { f ∈ R, f ′′(0) = p},

B
(2)
p = { f ∈ B2, f ′′(0) = p},

B
(3)
p = { f ∈ B3, f ′′(0) = p}.

THEOREM 3. Let 0 � p � 2 and let f (z) = z+ a2z2 + a3z3 + ... be in the class
Rp . Then we have the next sharp inequalities:

|a3−a2| � 1
6
(4+3p−2p2). (15)

|a4−a3| �
{ 1

18 (13−4p), 0 � p � 5
3

1
12(−3p3 +4p2 +9p−8), 5

3 � p � 2.
(16)

Proof. Since f ∈ Rp , we can put

f ′(z) = P(z), (17)

where P is given by (1) with ReP(z) > 0,z ∈ D . By using the Taylor representations
for the functions f and P and comparing the coefficients of zn(n = 1,2,3) in both sides
of (17), we obtain

a2 =
1
2

p1, a3 =
1
3

p2, a4 =
1
4

p3. (18)

Since 2a2 = f ′′(0) = p , it follows from (18) that p1 = 2a2 = p and |p| � 2. By using
Lemma 1, we have

p2 = 1
2 [p2 +(4− p2)x],

p3 = 1
4 [p3 +2(4− p2)px− (4− p2)px2 +2(4− p2)(1−|x|2)y] (19)

for some x,y ∈ C with |x| � 1 and |y| � 1.
Combining (18) with (19), we obtain

|a3−a2| =
∣∣∣∣16 (4− p2)x− p

6
(3− p)

∣∣∣∣
� 1

6
(4− p2)+

p
6
(3− p)

=
1
6
(4+3p−2p2)

where equality occurs if x = −1. Similarly, we have

|a4−a3|
=
∣∣∣∣ 1
16

[p3 +2(4− p2)px− (4− p2)px2 +2(4− p2)(1−|x|2)y]− 1
6
[p2 +(4− p2)x]

∣∣∣∣
� 1

8
(4− p2)

[
1−|x|2 +

∣∣∣∣ p2(8/3− p)
2(4− p2)

+ (4/3− p)x+
p
2

x2

∣∣∣∣
]

� 1
8
(4− p2)Y (a,b,c),
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where Y (a,b,c) is given in (4) with

a =
p2(8/3− p)
2(4− p2)

, b = 4/3− p, c =
1
2

p,

(for p = 2, we have directly that |a4−a3| = 1
6 ).

Noticing that for p ∈ [0,2] , |b| � 2(1− c) is equivalent 0 � p � 5
3 , by Lemma 2 we

have

Y (a,b,c) =

⎧⎨
⎩

1+ p2(8/3−p)
2(4−p2) + (4/3−p)2

4(1−p/2) , 0 � p � 5
3

p2(8/3−p)
2(4−p2) + p− 4

3 + 1
2 p, 5

3 � p < 2.

Hence

|a4−a3| �
{ 1

18(13−4p), 0 � p � 5
3

1
12 (−3p3 +4p2 +9p−8), 5

3 � p � 2.

If we denote by

R+ =
⋃

0�p�2

Rp = { f : f ∈ R, f ′′(0) � 0},

then in view of (15) and (16), we easily get

sup f∈R+ |a3( f )−a2( f )| = 41
48

and

sup f∈R+ |a4( f )−a3( f )| = 13
18

.

�

THEOREM 4. Let 0 � p � 4
3 and let f (z) = z+ a2z2 + a3z3 + ... be in the class

B2
p . Then we have the next sharp inequalities:

|a3−a2| � 1
16

(−7p2 +8p+8),0 � p � 4
3
. (20)

|a4−a3| �
{ 1

2560(−85p3−400p2−260p+1424), 0 � p � 6
5

1
80 (−5p3−10p2−4p+40), 6

5 � p � 4
3 .

(21)

Proof. From the definition of the class B2
p , we can put

f (z) f ′(z)
z

= P(z), (22)
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where ReP(z) > 0,z∈D , and P is given by (1). By using the Taylor representations for
the functions f and P and comparing the coefficients of zn(n = 1,2,3) in both sides of
(22), we obtain

a2 =
1
3

p1, a3 =
1
4

p2− 1
2
a2

2, a4 =
1
5

p3−a2a3. (23)

Since 2a2 = f ′′(0) = p and |p1| � 2, it follows from (23) that p1 = 3a2 = 3
2 p and

|p| � 4
3 . In view of these facts and Lemma 1, we have

p2 = 9
8 (p2 +( 16

9 − p2)x),
p3 = 9

32

(
3p3 +6( 16

9 − p2)px−3( 16
9 − p2)px2 +4( 16

9 − p2)(1−|x|2)y) (24)

for some x,y ∈ C with |x| � 1 and |y| � 1.
Combining (23) with (24), we obtain

|a3−a2| =
∣∣∣∣ 9
32

(
16
9

− p2)x+
5
32

p2− p
2

∣∣∣∣
� 9

32
(
16
9

− p2)+
5
32

p

∣∣∣∣p− 16
5

∣∣∣∣
=

1
16

(−7p2 +8p+8),

where equality occurs if x = −1. Similarly, we have

|a4−a3| =
∣∣∣∣ 29
320

p3− 5
32

p2 +(
16
9

− p2)[
63
320

px− 27
160

px2 +
9
40

(1−|x|2)y− 9
32

x]
∣∣∣∣

� 16−9p2

40

[
1−|x|2 +

∣∣∣∣ p2(50−29p)
8(16−9p2)

+
1
8
(10−7p)x+

3
4

px2

∣∣∣∣
]

� 16−9p2

40
Y (a,b,c),

where Y (a,b,c) is given in (4) with

a =
p2(50−29p)
8(16−9p2)

, b =
1
8
(10−7p), c =

3
4

p.

(for p = 4
3 , we have directly that |a4−a3| = 17

270 ).
Since p ∈ [0,4/3] , |b| � 2(1− c) is equivalent to 0 � p � 6

5 , by Lemma 2, we have

Y (a,b,c) =

⎧⎨
⎩

1+ p2(50−29p)
8(16−9p2) + (10−7p)2

64(4−3p) , 0 � p � 6
5

p2(50−29p)
8(16−9p2) + 1

8 (10−7p)+ 3
4 p, 6

5 � p < 4
3 .

Therefore

|a4−a3| �
{ 1

2560(−85p3−400p2−260p+1424), 0 � p � 6
5

1
80 (−5p3−10p2−4p+40), 6

5 � p � 4
3 .
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Let
B(2)+ =

⋃
0�p� 4

3

B
(2)
p = { f : f ∈ B(2), f ′′(0) � 0}.

Then by using (20) and (21) we easily get

sup f∈B(2)+ |a3( f )−a2( f )| = 9
14

= 0.64...

and

sup f∈B(2)+ |a4( f )−a3( f )| = 1424
2560

= 0.556...

�

THEOREM 5. Let 0 � p � 1 and let f (z) = z+ a2z2 + a3z3 + ... be in the class
B3

p . Then we have the next sharp inequalities:

|a3−a2| � 1
20

(−11p2 +10p+8). (25)

|a4−a3| �
{ 1

600(−53p3−174p2−24p+272), 0 � p � 2
3

1
120(−25p3−30p2 +8p+48), 2

3 � p � 1.
(26)

Proof. The hypothesis f ∈ B3
p implies that there exists a function P , defined by

(1) and satisfying ReP(z) > 0,z ∈ D , such that(
f (z)
z

)2

f ′(z) = P(z). (27)

By using the Taylor representations for the functions f and P and comparing the coef-
ficients of zn(n = 1,2,3) in both sides of (27), we obtain

a2 =
1
4

p1, a3 =
1
5

p2−a2
2, a4 =

1
6

p3−2a2a3− 1
3
a3

2. (28)

Since 2a2 = f ′′(0) = p and |p1|� 2, by (28) we have p1 = 4a2 = 2p and |p| � 1. By
using these facts and Lemma 1, we get

p2 = 2[p2 +(1− p2)x],

p3 = 2p3 +4(1− p2)px−2(1− p2)px2 +2(1− p2)(1−|x|2)y (29)

for some x,y ∈ C with |x| � 1 and |y| � 1.
Combining (28) with (29), we obtain

|a3−a2| =
∣∣∣∣25 (1− p2)x− 3

20
p(10/3− p)

∣∣∣∣
� 1

20
(−11p2 +10p+8),
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where equality occurs if x = −1. Similarly, we also have

|a4−a3| =
∣∣∣∣16 p3−2a2a3− 1

3
a3

2−a3

∣∣∣∣
� 1

3
(1− p2)

[
1−|x|2 +

∣∣∣∣18p2−17p3

40(1− p2)
+

2
5
(3−2p)x+ px2

∣∣∣∣
]

� 1
3
(1− p2)Y (a,b,c),

where Y (a,b,c) is given in (4) with

a =
18p2−17p3

40(1− p2)
, b =

2
5
(3−2p), c = p.

(for p = 1 we have directly that |a4−a3| = 1
120 ).

Since for p ∈ [0,1] , |b| � 2(1− c) is equivalent to 0 � p � 2
3 , by using Lemma 2 we

have

Y (a,b,c) =

⎧⎨
⎩

1+ p2(18−17p)
40(1−p2) + (3−2p)2

25(1−p) , 0 � p � 2
3

p2(18−17p)
40(1−p2) + 1

5 p+ 6
5 , 2

3 � p < 1.

And therefore

|a4−a3| �
{ 1

600(−53p3−174p2−24p+272), 0 � p � 2
3

1
120(−25p3−30p2 +8p+48), 2

3 � p � 1.

Let
B(3)+ =

⋃
0�p�1

B
(3)
p = { f : f ∈ B(3), f ′′(0) � 0}..

In view of (25) and (26), we easily get

sup f∈B(3)+ |a3( f )−a2( f )| = 113
220

= 0.5136...

and

sup f∈B(3)+ |a4( f )−a3( f )| = 34
75

= 0.4533.

�
In [24] the authors introduced the class Ω which consists of all functions f ∈ A

satisfying

|z f ′(z)− f (z)| < 1
2
,(|z| < 1).

It is proved that Ω ⊂ S∗ . Now, let

Ωp = { f : f ∈ Ω, f ′′(0) = p},

where |p| � 1 (Noting that |an| � 1
2(n−1) when f (z) = z+ ∑∞

n=2 anzn ∈ Ω[24]).
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THEOREM 6. Let 0 � p � 1 and let f (z) = z+ a2z2 + a3z3 + ... be in the class
Ωp . Then we have the following sharp inequalities:

|a3−a2| � 1
4

+
1
2

p− 1
4

p2,0 � p � 1. (30)

|a4−a3| �
{ 1

96(−16p2 +9p+25), 0 � p � 1
4

1
12(−2p3−3p2 +2p+3), 1

4 � p � 1.
(31)

Proof. By the definition of Ω , f ∈ Ω if and only if there exists a function P(z)
defined by (1) with ReP(z) > 0,z ∈ D , such that

2[P(z)+1][z f ′(z)− f (z)] = z[P(z)−1] (32)

By using the Taylor representations for the functions f and P and comparing the coef-
ficients of zn(n = 2,3,4) in both sides of (32), we obtain

a2 =
1
4

p1, a3 =
1
8

p2− 1
4
a2p1, a4 =

1
12

p3− 1
3
a3p1− 1

6
a2p2. (33)

Since 2a2 = f ′′(0) = p and |p1| � 2, by (33) we have p1 = 4a2 = 2p and |p| � 1. In
view of these facts and Lemma 1, we get

p2 = 2[p2 +(1− p2)x],

p3 = 2p3 +4(1− p2)px−2(1− p2)px2 +2(1− p2)(1−|x|2)y (34)

for some x,y ∈ C with |x| � 1 and |y| � 1.
Combining (33) with (34), we obtain

|a3−a2| =
∣∣∣∣14(1− p2)x− 1

2
p

∣∣∣∣
� 1

4
+

1
2

p− 1
4

p2,

where equality occurs if x = −1. Similarly, we also have

|a4−a3| =
∣∣∣∣16 (1− p2)(1−|x|2)y− 1

6
(1− p2)px2− 1

4
(1− p2)x

∣∣∣∣
� 1

6
(1− p2)

[
1−|x|2 +

∣∣∣∣32x+ px2

∣∣∣∣
]

� 1
6
(1− p2)Y (a,b,c),

where Y (a,b,c) is given in (4) with

a = 0, b =
3
2
, c = p.
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Since for p ∈ [0,1] , |b| � 2(1− c) is equivalent to 0 � p � 1
4 , by using Lemma 2 we

have

Y (a,b,c) =

{
1+ 9

16(1−p) , 0 � p � 1
4

3
2 + p, 1

4 � p � 1.

And therefore

|a4−a3| �
{ 1

96(−16p2 +9p+25), 0 � p � 1
4

1
12 (−2p3−3p2 +2p+3), 1

4 � p � 1.

Let
Ω+ =

⋃
0�p�1

Ωp = { f : f ∈ Ω, f ′′(0) � 0}.

In view of (30) and (31), we easily get

sup f∈Ω+ |a3( f )−a2( f )| = 1
2

and

sup f∈Ω+ |a4( f )−a3( f )| = 27+7
√

21
216

= 0.2735...

�
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[20] SINGH, R., On Bazilevič functions, Proc. Amer. Math. Soc., 1973, 38: 261–271.
[21] YE, Z., On successive coefficients of odd univalent functions, Proc. Amer. Math. Soc., 2005, 133(11):

3355–3360.
[22] YE, Z., On the successive coefficients of close-to-convex functions, J. Math. Anal. Appl., 2003, 283:

689–695.
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