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ON AN EQUIVALENT PROPERTY OF A REVERSE
HILBERT-TYPE INTEGRAL INEQUALITY RELATED
TO THE EXTENDED HURWITZ-ZETA FUNCTION

MICHAEL TH. RASSIAS AND BICHENG YANG

(Communicated by J. Pecari¢)

Abstract. We study some equivalent conditions of a reverse Hilbert-type integral inequality with
a particular non-homogeneous kernel and a best possible constant factor related to the extended
Hurwitz-zeta function. Some equivalent conditions of a reverse Hilbert-type integral inequality
with the particular homogeneous kernel are deduced. We also consider some particular cases.

1. Introduction

In 1925, Hardy [3] proved the following extension of Hilbert’s integral inequality
(cf. [4]):
For p > 1,%—1—}1 =1, f(x),g(y) =0,

O</ fP(x)dx < oo and 0</ gI(y)dy < oo,
0 0

the following Hardy-Hilbert inequality holds true:

[ [ 228

< % (/wa”(x)dx)% (/Owgq(y)dy)é, (1.1)

with the best possible constant factor W .
For p = g = 2, the inequality (1.1) reduces to Hilbert’s integral inequality, which is
important in mathematical analysis and its applications (cf. [5], [6]).
In 1934, Hardy et al. extended the inequality (1.1) as follows:
Ifp>1, % + é =1,k (x,y) is a nonnegative homogeneous function of degree —1, such

that . .
kp:/ ket (1, D du € R, = (0,00), (1.2)
0
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then we have the following Hardy-Hilbert-type integral inequality with the best possible

constant kp,:
/ / ki(x,y)f(x)g(y)dxdy

<k ( / pr(x)dx) : ( / °Qg%y)dy) g (1.3)

forO<p<1, 11_7 + é = 1, the reverse of (1.3) follows (cf. [5], Theorem 319, Theorem
336). A Hilbert-type integral inequality with the non-homogeneous kernel was proved:
If0<p<l,t4+1=1hu)>0, ¢(0) =[5 h(u)u®'duc Ry, then

//h g(y)dxdy
<¢(%>(/O 2P (x) ) (/ ¢ dy) 7 (1.4)

with the best possible constant factor (b(};) (cf. [5], Theorem 350).
In 1998, by introducing an independent parameter A >0, Yang proved an exten-
sion of Hilbert’s integral inequality with the kernel Gt 7 (cf. [7], [8]). In 2004, by

introducing another pair of conjugate exponents (r,s), Yang [9] proved the following
extension of inequality (1.1):
IfA>0,pr>1, +L=1+{=1 f(x),80) >0, satisfying

s

0</O°°x1’ 1P (x)dx < oo

and
0</y -5~ U(y)dy < o,

// x’“—f—AdXdy

T Y AT Pl (1-2)1 q
<7Lsin(rc/r) [/o > fp(x)dx] [/0 ¥ gly)dy| , (1.5

with the best possible constant factor W In 2005, an extension of (1.1) with the

then

kernel +y) —— and two pairs of conjugate exponents was proved in [10]. Krni¢ et al.

[12]-[18] provided some extensions and particular cases of (1.1), (1.3) and (1.5) with
multi-parameters.

In 2009, Yang showed the following extension of (1.3) and (1.5) (cf. [19], [21]):
If 41 +2A; =A € R=(—e0,), kj(x,y) is a non-negative homogeneous function of
degree —A, satisfying

ko (e, uy) = w™ ey (x, ) (u, %,y > 0),
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and
k(M:/ oy (u, D du € R,
0

then for p > 1,%4—5 =1, we have
| [ et r@eodsay
1

1
k(?u)[ /O x”“‘l”‘lf”(x)dx]p UO Y Tea(yyay| (1.6)

with the best possible constant factor k(A;).

For 0 < p < 1,% + é = 1, the reverse of (1.6) follows. Additionally, the following
extension of (1.4) was proved:

For p > 1,%4—%: 1, we have

//hxy g(v)dxdy
<¢(c>(/0 A ) ) (/ ya=o)= )dy)é, (1.7)

with the best possible constant factor ¢ (o).
ForO0<p<1, }—) + é = 1, the reverse of (1.7) follows (cf. [20]).

Some equivalent inequalities of (1.6) are obtained in [21] . In 2013, Yang [20]
studied as well the equivalency of (1.6) and (1.7). In 2017, in [22] and [23] some
equivalent condition between a Hilbert-type integral inequality and the related parame-
ters were investigated. For other closely related results the reader is also referred to [1],
(21, [11], [23].

In this paper, by the use of techniques of real analysis and weight functions,
we consider some equivalent conditions of a reverse of (1.7) in the particular kernel
H(xy) =e " csch(xy) where 0 < p < 1, with the best possible constant factor related
to the extended Hurwitz-zeta function. Some equivalent conditions of the reverse of
(1.6) for the particular kernel

ko(x,y) = e~/ csch()
y

are deduced. We also consider some particular cases as corollaries.

2. An example and two lemmas

EXAMPLE 2.1. Setting
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where, csch(u) is the hyperbolic cosecant function (cf. [25] ), we obtain

Qe 0w
—ouxy _
e csch(xy) = pes gl
De—0x/y
e~y csch( )= —————
y ex/v — e*x/y

and for ¢ > —1,0 > 1,
K(o,a) ::/ e “csch(u)u® du
2401 7ocu 2uS e~ (o+1)u
—/ —/ ———du
Cet—e 1—e2
_ 2/ 41 e—(2k+a+1)udu

_ 22/001467167(2k+a+1)udu'
k=00

Setting v = (2k+ ot + 1)u in the above integral, we obtain

oo

bl 1
K(o,o) = 2176/ vlemvayy ——
(0,) 0 kz{) (k+ &tlyo

= 2T(0)¢(0, “ ) e R, @.1)

where,

(o) := /0 TV e v (6> 0)

is the Gamma function, and

oo

{(o,b):=

k=0

1
k+b)° (Rec > 1,b>0)

is the extended Hurwitz-zeta function.
For 0 < b < 1,{(0,b) is the Hurwitz-zeta function, and

o)== 3 15

HMX

is the Riemann-zeta function (cf. [26], [24]).
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In particular, for o = 0, we find

K(0.0) =2 T(0)¢(0,5)=2"T(0) T 1
o (k+3)°
=1
zzr(o)gm
w1
—2I(o [Zk——z ]

=2TI'(o) <1 - 2%) {(o).

Setting & := "T’l >0, we find 0+ 8 > G—“T’l = GTH > 1, and for o > —1,
we have
K(o+ 80, 00) < oo
In the sequel we shall always assume that

1 1 o—1
0<p<l(g<0), —+—:1,a>—1,a>1,60:T>OandmeR.
P q

For n € N={1,2,---}, we define the following two expressions:

w /ol

I ::/ (/ e‘m’csch(xy)xmrpl"ldx) o=~ Ldy, (2.2)
1 \Jo
1 oo 1

b ::/ (/ e‘m’csch(xy)xcplnldx) yorta gy, (2.3)
0o \J1

Setting u = xy in (2.2) and (2.3), we have

oo [y ool .
L = / l/ e “csch(u) <E> " Yo a gy
1 0 y y

o y
— y(m*f’)*%*l (/ e csch(u)u6+1’l”1du> dy, 2.4)
1 0
L[ e u\® L
b :/ / e~ *csch(u) (—) —du|y* e dy
0 y y y
1 oo
— / y(61—0)+$—1 (/ e_omcsch(u)uc_l’lﬂ_ldu> dy (25)
0 y

LEMMA 2.2. If there exists a constant M > 0, such that for any non-negative
measurable functions f(x) and g(y) in (0,e0), the following inequality

I:= /Om /Om e~ " csch(xy) f(x)g(y)dxdy

5 o q
>MUO x”“")lf”(X)dX]p[/o yq“"')lgq(y)dy} (2.6)
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holds true, then we have 61 = ©.

Proof. 1If o1 > o, then for n > &Lp(n € N,0 < p < 1), we set the following two
functions:

0,0<x<1

Jalx) : = {x"plnl,xE 1’

0'1+L71
L)y 0<y<l
&nly) { 0,y>1

We find

1
Jy = [/0 xl’(lo)lf}f(x)dxil ! |:/O yq(lcl)ng(y)dy} a4
1 1
= / X ndx / yrdy| =n.
1 0

By (2.5), we have
L < /y"1 +“1dy/ “csch(u G_I’L"_ldu
o—-L_1
=—7 /e “esch(u)u® r du
G—G+— 0

1
+/ " csch(u P_"_ldu)

P (/Ole “csch(u)u® %~ 1du+/ csch(u)u"_ldu>
|
(K(G—50»05)+K(07O‘)),

N

N

0o — O
and then by (2.6), it follows that

1
01 —O0

2 hL= / / e~ “Yesch(xy) f (x)gn(v)dxdy > MJ, = Mn. 2.7
0o Jo

(K(0 — b, 0) +K(0,x))

By (2.7), in view of 01 — 0 >0, 0 < K(6 — 89, 0) + K(0,0) < oo, for n — oo, we
deduce that
1
0o —O

(K(o—p,0) +K(0,0)) > oo,

0 >

which is a contradiction.
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If o1 <o, thenforne N,n > $7 we set the following two functions:

o+L -1
s x ' 0<x<1
n(x) = ’ =
Jal) { 0,x>1
@0 0,0<y<1
R R

‘We obtain

By (2.4), we have

I </ ylo1=0)— 1dy/ o csch(u ‘Hﬁ*ldu
1
1 1
- (/ e~ csch(u)u® ridu
o—-o+1\Jo

1
+/ % esch(u lmldu)

N

1
o—0

N

, (K(o,0) + K(0+ 60,00)),

and then by (2.6), it follows that

6—101 (K(o,a)+K(o+ &, ))

21 =/ / e~ csch(xy) f (x)@n(y)dxdy = MJ, = Mn.
o Jo

By (2.8), for n — oo, we get that

1

5 (K(0)+K(0+ &) > =

oo >

which is a contradiction.
Hence, we conclude that o1 = ©.
The lemma is proved. [J
For 01 = 0, by Lemma 1, we still have

1
(/ e csch(u)u®~ 1du+/ csch(u)u‘”‘so_ldu)
0 —01 \Jo

321

(2.8)
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LEMMA 2.3. If there exists a constant M > 0, such that for any non-negative
measurable functions f(x) and g(y) in (0,e0), the following inequality

Fim [ e eschluy) (g dudy

>M|:/O p(l1—0)-1 } |:/ylcr )dyq (2.9)

holds true, then we have M < K(0, o).

Proof. For o1 = o, in view of (2.6), we have
nM = sz 12

Then we can apply (2.5) as follows:

1 1
M=-MJ, <-Ih
n n

Lba (e o-L_1
—/ yn / e “cesch(u)u” P du | dy
nJjo y

1

+/ “csch(u G_PL"_ldu

= —/ ( ynldy) ”csch(u)ugfﬁfldu

—-L_
+/ " csch(u rdu
</ csch(u)u® 1du+/ esch(u)u®'du. (2.10)
0
For {
n> ne€N),
5o|q|( )
we have |
e~ esch(u)u® o < e ™ esch(u)u® 0 <u< 1)
and

1
/ e % csch(u)u® % 'du < K(6 — &, ar) < oo.
0

Therefore by (2.10) and Lebesgue’s control convergence theorem (cf. [28]), we find

1
M < lim [/ e~ *cesch(u)u du+/ o esch(u)u®du
n—o | Jo
! -1
= [ lime *csch(u)u du+/ @ esch(u)u®~du = K(o).
0 n—eo

The lemma is proved. [
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3. Main results

THEOREM 3.1. Assuming that M > 0, the following conditions (i)-(iv) are equiv-
alent:

(i) For any f(x) > 0, satisfying

O</0 xPU=0)=1 P () dx < oo,

we have the following inequality:

o . p o4
= [/ yrort (/ e"‘”csch(xy)f(x)dx) dy]
0 0
M p(1 P ’ . 1
> [ /O x P (x)d ] (3.1)
(ii) For any g(y) > 0, satisfying
0< / y11=00)=16d(y)dy < oo,

we have the following inequality:

o o q
L:= [/ x90-1 (/ w‘%sch(xy)g(y)dy) dx] !
0
1
> M [ / ya(l=o1)= )dy] . (3.2)
(iii) For any f(x) > 0, satisfying
O</ xPU=O)=1 P () dx < oo,
0
and g(y) > 0, satisfying

O</y 9(1=01)=1 44 () gy < oo,

we have the following inequality:

1= [ ] e eschin)f(wg(rdxdy

>M[/O w(1-0)-1 ] [/ yi=00-1ga(yyqy | " (3.3)

(iv) oy =0, and M < K(0,q).
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Proof. (i) = (iii). By the reverse Holder inequality (cf. [27]), we have

1= /0 ) (yol_% /0 e csch(xy)f(x)dx) (y%_("g(y)) dy
[ [t my. (3.4)

Then by (3.1), we have (3.3).
(ii) = (iii). Again by the reverse Holder inequality, we have

I= /Om (yé"’f(x)) (xgé /Omeaxycsch(xy)g(y)dy) dx

1
> [ / xp(lc)lfp(x)dx]pL. (3.5)
0
Then by (3.2), we have (3.3).

(iii) = (iv). By Lemma 1 and Lemma 2, we have 01 = 0, and M < K(0, ).
(iv) = (i). Setting u = xy, we obtain the following weight function: For y > 0,

o(o,y) =y / ~® esch(xy)x® tdx
- / o csch(u)u® L du = K (0, ). (3.6)

By the reverse Holder inequality with weight and (3.6), we have

( /O " e csch(xy) f(x)dx)

7 om0 och ylo=1/p x(0-V/a !
= /0 e csch(xy) x(o'_l)/qf(x) ylo=1/p dx

o—1

p

o Y P
> [ e eseh(ay) 2 7 (o

- xo-1 r/q
—auxy -t
X [/0 e csch(xy)y(gl)q/pdx}

_ (1-0)-1]17"' [* _a ol

= [0(emy =] [ e eseh(ay) 2 7 (1)

— -1, —po+1 —0x; G

= (K(o ey [ (o) L a6

If (3.7) takes the form of equality for a y € (0, o), then there exist constants A and
B, such that they are not all zero, and

o—1 o—1

y p .
y(o— lp/qf (x) = y(O'*l)LI/P a.e.inRy
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(cf. [27]). We suppose that A # 0 (otherwise B =A = 0). It follows that
_ o B .
1P (x) = yaU G)E a.e.inRy,
which contradicts the fact that
O</x1’ P (x)dx < oo
0

Hence, the middle of (3.7) takes the form of strict inequality.
For 01 = 0, by (3.7) with the above result and Fubini’s theorem, we have

J> (K(o %1 [/ / ~%%¥csch(xy) :01 fp( )dxdy} :

= (K(a,a))% {/Ow [/Owe""”’csch(xy)x(o#)(;_l)dy} f”(x)dx}’)

1

= (K(o,)) q[/ w(0,x)xP1=0) 1 pP (x )dx}l

= K(c,0) {/wal’(lg)lfp(x)dx} " (3.8)

Since
0<M<K(o,a),

(3.1) follows.
(iv) = (ii). Similarly to “(iv) = (i)”, we obtain (3.2).
Therefore, the conditions (i), (ii), (iii) and (iv) are equivalent. [J
For 01 = o, we obtain the following theorem:

THEOREM 3.2. Assuming that M > 0, the following conditions (i)-(iv) are equiv-
alent:

(i) For any f(x) > 0, satisfying
O</ xPU=O)=1 P () dx < oo,
0

we have the following inequality:

“ ot (7 e eseh(u) fw)dx ) dy]”
), /o

>M[/O #1=0)-1¢p(1)q F. (3.9)
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(ii) For any g(y) > 0, satisfying

O</y (1=0)=144(y)dy < oo,

we have the following inequality:

o o a T
[/ x90-1 (/ eax»"csch(xy)g(y)dy) dx}
0 0
1
>MU yi(1=0)- )dyr. (3.10)
(iii) For any f(x) > 0, satisfying
p(1 P =)
0< [ ar1-otpr(ar < .

and g(y) > 0, satisfying

O</y (1=0)=1g9(})dy < oo,

we have the following inequality:

| [ e eesehans)g(y)axay

>M[/O xP1-0)= } U ya(1-0)- )dy . (3.11)

(iv) M < K(o,0).
Moreover, if Condition (iv) follows, then the constant factor

M=K(c,a)=2""°T(c){(o, aT—H)

in (3.9), (3.10) and (3.11) is the best possible.

Proof. For 61 = o in Theorem 1, we can prove that the conditions (i), (ii), (iii)
and (iv) in Theorem 2 are equivalent. If there exists a constant M > K (o, o), such that
(3.11) is valid, then in view of M < K(0,ar), we can conclude that the constant factor
M =K(o,a) in (3.11) is the best possible.

The constant factor K(o, ) in (3.9) ((3.10)) is still the best possible. Otherwise,
by (3.4) ((3.5)) (for 61 = 0), we can conclude that the constant factor M = K(o, @) in
(3.11) is not the best possible.

The theorem is proved. [
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4. Some particular cases

In particular, for ¢ = %(> 1) in Theorem 2, we obtain the following corollary:

COROLLARY 4.1. Assuming that M > 0, the following conditions (i)-(iv) are
equivalent:

(i) For any f(x) > 0, satisfying
0< / xP72fP (x)dx < oo,
0
we have the following inequality:

{/Ow </O°° ooy csch(xy)f(x)dx)pdy} %

> M ( /O 2 fl’(x)dx> " 4.1)

(ii) For any g(y) > 0, satisfying

0< / gl(y)dy < oo,
0

we have the following inequality:

uquz </O°° emcsch(xy)g(y)dy) qu} !

> M ( / °Qg‘f(y)dy) " “2)

(iii) For any f(x) > 0, satisfying
0< / xP72fP (x)dx < oo,
0

and g(y) > 0, satisfying
0< / g'(y)dy <o,
0

we have the following inequality:

/ON /O'X’ oY csch(xy)f(x)g(y)dxdy

>M (/()wxp2f”(X)dX)% (/Owgq(y)dy> % ; 4.3)
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(iv) The following inequality holds:
1
M<K(—,a).
p
Moreover, if Condition (iv) follows, then the constant factor
1
M=K(=,a)=2T(-)(=,——)
in (4.1), (4.2) and (4.3) is the best possible.

Setting
1 1.1
v V) =8y

in Theorem 1-2, then replacing ¥ (G(Y)) by y (g(y)), we have

y:

COROLLARY 4.2. Assuming that M > 0, the following Conditions (i)-(iv) are
equivalent:

(i) For any f(x) > 0, satisfying
O</ xPU=O)=1 P () dx < oo,
0

we have the following inequality:

([ e
>M[/O°°xp (o ] (4.4)

(ii) For any g(y) > 0, satisfying

O</y 9(1+01) =164 (3) dy < oo,

we have the following inequality:

[/waqc—l (/0""6% CSCh(;—C)g(y)dyycix] ;

>M [/Owy"(”"”‘lgq(y)dy] : (4.5)

Q=

(iii) For any f(x) > 0, satisfying

0< / xPU=O) =L £P (x)dx < oo,
0
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and g(y) > 0, satisfying

O</y 9(1+01) =164 (3) gy < oo,

we have the following inequality:

/ / e csch ) f(x)g(y)dxdy

l
>M[/O xP(1-0)-1 ] [/ ylHo)=lea(yygy | (4.6)

(iv) oy=0,and M < K(0, ).
Moreover, if Condition (iv) follows, then the constant factor
o+1

M=K(c,a)=2""°T(c){(o, 5

)

in (4.4), (4.5) and (4.6) is the best possible.

In particular, for ¢ = (> 1) in Corollary 2, we obtain the following corollary:

<=

COROLLARY 4.3. Assuming that M > 0, the following conditions (i)-(iv) are
equivalent:

(i) For any f(x) > 0, satisfying

0< / xP72fP (x)dx < oo,
0

the following inequality holds true

[/ow% (/ K CSCh(;)f(x)dx)pdy} ’
> M (/Omxp—ZfP (X)dx) , .

(ii) For any g(y) > 0, satisfying

==

0</y‘1’1 y)dy < oo,

the following inequality holds true
1
°° 2 < ox X d q
[/ X1~ (/ e csch(- )g(y)dy) dx]
0 y
>M[/y‘11 y] . 4.8)
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(iii) For any f(x) > 0, satisfying
0< /wapﬁfp(x)dx < oo,
and g(y) > 0, satisfying
0< / yHalg y)dy < oo,
we have that the following inequality holds true

/ / e csch ) f(x)g(y)dxdy

>M [/Omxpzfp(x)dx] p [/Owyz(ql)gq(y)dy} ’ (4.9)

(iv) The following inequality holds
1
M<K(—, ).
p
Moreover, if Condition (iv) follows, then the constant factor
1
M=K(-,0)=2T(=){(=,——)
in (4.7), (4.8) and (4.9) is the best possible.
For a = 0 in Theorem 1, Theorem 2 and Corollary 2, we have the following two

corollaries:

COROLLARY 4.4. Assuming that M > 0, the following conditions (i)-(iv) are
equivalent:

(i) For any f(x) > 0, satisfying
0< / xPU=O) 1P (x)dx < oo,
0

the following inequality holds true

o o o1y
{/ yPor-1 (/ csch(xy)f(x)dx) dy]
0 0
1
p(1 P !
>M[/Ox 1P (x)d ] . (4.10)
(ii) For any g(y) > 0, satisfying

O</y 9(1=01)=1 44 () gy < oo,
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the following inequality holds true

{ /O ot ( /O ) Csch(xy)g(y)dy)qu} é

1
>MU ya(1=01)= )dy} ) 4.11)
(iii) For any f(x) > 0, satisfying
O</0 xPU=O=1 P () dx < oo,
and g(y) > 0, satisfying
0< / Y=g (y)dy < oo,

the following inequality holds true

/ / csch(xy)f(x)g(y)dxdy
1 1
M © pli=o)—1gp dxl” © =011, avl’ 4.12
) JP(x)dx Y gy)dy| . (4.12)
(iv) The following holds true o] = ¢, and
M < K(0,0).

Moreover, if Condition (iv) is satisfied, then the constant factor

1

M =K(0,0)=2I(0) (1 — 2—6> {(o)

in (4.10), (4.11) and (4.12) is the best possible.

COROLLARY 4.5. Assuming that M > 0, the following Conditions (i)-(iv) are
equivalent:

(i) For any f(x) > 0, satisfying
0< / xPU=O) =L £P (x)dx < oo,
0

the following inequality holds true

U Jpoi- 1(/0 esch(X)f(x )dx)pdyr

X
y
-~ M [/0 (1= ] (4.13)
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(ii) For any g(y) > 0, satisfying

O</y 9(1400)=1 64 (1) gy < oo,

the following inequality holds true

[ /O "o ( /O i Csch(;—c)g(y)dyydx] 5

1

>M [/O yq(”"”‘lgq(y)dy] "

(iii) For any f(x) > 0, satisfying

0< / xPU=O) 1P (x)dx < oo,
0

and g(y) > 0, satisfying

O</y 9(1401)=1 64 (1) gy < oo,

we have that the following inequality holds true

/ / csch X)g(y)dxdy

1
M [/o xp(lc)lfp(x)dx] ! [/0 y’i(”"')lg‘f(y)dy] !

(iv) The following holds true ;1 = ¢, and

M < K(0,0).

Moreover, if Condition (iv) is satisfied, then the constant factor

1

M =K(o0,0)=2T(0) (1 - —) ¢(o)

20’
in (4.13), (4.14) and (4.15) is the best possible.

(4.14)

(4.15)
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