
Journal of

Mathematical

Inequalities

Volume 13, Number 2 (2019), 335–349 doi:10.7153/jmi-13-24

LAWS OF LARGE NUMBERS WITH INFINITE MEAN
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(Communicated by Z. S. Szewczak)

Abstract. In this paper, we study the weak law and strong law of large numbers based on ρ̃ -

mixing random variables with infinite mean. If the random variables satisfy the Pareto type

distributions, then some weak laws of large numbers are presented. If the random variables

satisfy the two tailed Pareto distribution and asymmetrical Cauchy distribution, the strong laws

of large numbers are also obtained. Furthermore, we do some simulations for the laws of large

numbers for two tailed Pareto distribution and asymmetrical Cauchy distribution.

1. Introduction

In this paper, we are interested in the studying the weak law and strong law of

large numbers for weighted random variables with infinite mean. When the random

variables have the finite means, the ordinary laws of large numbers are formulated by

the sample average. We can see many books such as Chow and Teicher [12] and Gut

[14]. But if the means are infinite, some devices are needed. We will consider some

cases of Pareto and Cauchy distributions whose means are infinite.

Let a random variable X to be a two tailed Pareto distribution whose density is

f (x) =







q

x2 , if x 6 −1,

0, if −1 < x < 1,
p

x2 , if x > 1,
(1)

where p + q = 1. Adler [6] considered independent and identically distributed ( i.i.d.)
random variables satisfying (1) and obtained the strong law of large numbers for them.

Base on the Pareto distribution, for 0 < α 6 1, Nakata [19] considered a random

variable X satisfying tail probability

P(|X | > x) ≍ x−α , (2)

i.e.

0 < liminf
x→∞

xα P(|X | > x) 6 limsup
x→∞

xα P(|X | > x) < ∞.
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Then Nakata [19] obtained the weak law of large numbers for weighted indepen-

dent random variables satisfying (2).

Let a random variable X to be an asymmetrical Cauchy random variables with a

slight twist, i.e. the density is

f (x) =

{

p

π(1+x2)
, if x > 0,

q

π(1+x2)
, if x < 0,

(3)

where p + q = 2. If p = q = 1, then we get the usual Cauchy distribution. Adler [5]

obtained the strong law of large numbers for the i.i.d. asymmetrical Cauchy random

variables satisfying (3).

If a random variable X satisfies (1), (2) or (3), then it can be checked that E|X | =
∞ .

Inspired by the papers above, we will investigate the weak and strong law of large

numbers for the weighted dependent random variables based on the Pareto random

variable and asymmetrical Cauchy random variable.

Let {Xn,n > 1} be a sequence of random variables and write FS = σ(Xi, i ∈ S ⊂
N) . Given σ -algebras B,R in F , denote

ρ(B,R) = sup
X∈L2(B),Y∈L2(R)

|EXY −EXEY |

(Var(X)Var(Y ))1/2
.

Define the

ρ̃(k) = sup{ρ(FS,FT )},

where S,T ⊂ N , are finite subsets such that dist(S,T ) > k , k > 0.

DEFINITION 1.1. A sequence of random variables {Xn,n > 1} is said to be a

ρ̃ -mixing sequence if there exists k ∈ N such that ρ̃(k) < 1 .

The concept of ρ̃ -mixing random variables dates back at least to 1972 (see Stein

[20, page 398]). Bradley [9] systematically studied the properties of ρ̃ -mixing random

variables and obtained the central limit theorem. There are many examples such as

moving average process and Markov chain that can structure ρ̃ -mixing random vari-

ables (see Bradley [10]). Much more works of ρ̃ -mixing random variables, one can

refer to An and Yuan [8], Gan [13], Kuczmaszewska [15], Li et al. [16], Sung [21],

Utev and Peligrad [22], Wang et al. [23, 25], Wang et al. [24] and so on. On the

other hand, for the more research of laws of large numbers for i.i.d. random variables

with infinite mean, we can refer to works of Adler [3-7], Matsumoto and Nakata [17],

Nakata [18, 19] and the references therein.

Through out the paper, denote C,C1,C2, . . . , to be some positive constants inde-

pendent on n . Let logx = log(max(x,e)) and I(A) be the indicator function of A . For

simplicity, → means convergence as n → ∞ ,
P

−→ means convergence in probability,
a.s.
−→ means almost surely convergence and X

d
= Y means that X and Y have the same

distribution.
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2. Some lemmas

LEMMA 2.1 (Adler and Rosalsky [1, Lemma 1] and Adler et al. [2, Lemma

3]). Let {Xn,n > 1} be a sequence of random variables, which is stochastically domi-

nated by a random variable X , i.e.

sup
n>1

P(|Xn| > x) 6 CP(|X | > x), for all x > 0.

Then, for any α > 0 and β > 0 , the following two statements hold:

E[|Xn|
α I(|Xn| 6 β )] 6 C1{E[|X |αI(|X | 6 β )]+ β αP(|X | > β )},

E[|Xn|
α I(|Xn| > β )] 6 C2E[|X |α I(|X | > β )],

where C1 and C2 are positive constants independent on n.

LEMMA 2.2. Let 0 < α 6 1 and {Xn,n > 1} be a sequence of random variables,

which is stochastically dominated by a random variable X satisfying

limsup
x→∞

xα P(|X | > x) < ∞. (4)

Moreover, let {an} and {bn} be the sequences of positive constants satisfying that

n

∑
j=1

aα
j = o(bα

n ). (5)

Then we have
n

∑
j=1

P
(

|X j| >
bn

a j

)

→ 0. (6)

In addition, for 1 6 j 6 n, denote

Xn j = −
bn

a j

I
(

X j < −
bn

a j

)

+ X jI
(

|X j| 6
bn

a j

)

+
bn

a j

I
(

X j >
bn

a j

)

. (7)

Then for some 0 < α 6 1 and p > 1 , there is a positive C1 such that

E|Xn j|
p 6 C1

(bn

a j

)p−α
, 1 6 j 6 n. (8)

Similarly, for 0 < α < 1 , there is a positive C2 such that

E|Xn j| 6 C2

(bn

a j

)1−α
, 1 6 j 6 n. (9)

Proof. Obviously, for 0 < α 6 1 and any 1 6 j 6 n , by the nonnegativity and (5),

it follows

0 6

(a j

bn

)α
6

n

∑
j=1

(a j

bn

)α
→ 0,
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which implies that for any j = 1,2, . . . ,n ,

((a j

bn

)α)1/α
=

a j

bn

→ 0.

Consequently, by stochastic domination, (4) and (5), there exist a positive constant C

such that

n

∑
j=1

P
(

|X j| >
bn

a j

)

6 C1

n

∑
j=1

P
(

|X | >
bn

a j

)

6 C2b−α
n

n

∑
j=1

aα
j → 0,

i.e. (6) holds true. On the other hand, for some 0 < α 6 1 and p > 1, by Lemma 2.1

and (4), there exists a integer n0 large enough that for all integer n > n0 ,

E|Xn j|
p

6 C1

((bn

a j

)p

P(|X |>
bn

a j

)+ E
(

|X |pI(|X | 6
bn

a j

)
))

6 C2

((bn

a j

)p(bn

a j

)−α
+

∫ n0

0
P(|X |p > t)dt +

∫ (bn/a j)
p

n0

P(|X |p > t)dt
)

6 C2

((bn

a j

)p(bn

a j

)−α
+C3 +C4

∫ (bn/a j)
p

n0

t−α/pdt
)

6 C5

(bn

a j

)p−α
, 1 6 j 6 n.

So (8) holds for some 0 < α 6 1 and p > 1.

Similarly, for p = 1 and 0 < α < 1, by by stochastic domination, Lemma 2.1 and

(4), we obtain that

E|Xn j| 6 C1

(bn

a j

P(|X | >
bn

a j

)+ E

(

|X |I(|X | 6
bn

a j

)
))

6 C2

(bn

a j

)1−α
, 1 6 j 6 n.

Thus, (9) holds true. �

REMARK 2.1. Let 0 < α 6 1 and {Xn,n > 1} be a independent sequence of

random variables satisfying P(|Xn| > x) ≍ x−α for n > 1 and limsup
x→∞

sup
n>1

xα P(|Xn| >

x) < ∞ . In addition, assume that (5) holds true. Then Nakata [19] obtain (6) for the

independent case (see Lemma 2.2 of Nakata [19]). In order to investigate the weak law

of dependent case, we combine stochastic domination with (4), and obtain (6) in this

paper.

LEMMA 2.3 (Utev and Peligrad [22], Theorem 2.1). For a positive integer n0 > 1

and positive real numbers p > 2 and 0 6 r < 1 , there is a positive constant C =
C(p,n0,r) such that if {Xn,n > 1} is a sequence of ρ̃ -mixing random variables with

ρ̃(n0) 6 r , EXn = 0 and E|Xn|
p < ∞ , n > 1 , then

E

(

max
16k6n

∣

∣

∣

k

∑
i=1

Xi

∣

∣

∣

p)

6 C

{ n

∑
i=1

E|Xi|
p +

( n

∑
i=1

EX2
i

)p/2}

, n > 1.
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REMARK 2.2. In Lemma 2.3, the mixing coefficient ρ̃(n) needs a only condition

that there exist a positive integer n0 > 1 such that ρ̃(n0) 6 r , where 0 6 r < 1. It is

a weak condition. In other words, we don’t need the mixing coefficient ρ̃(n) satisfies

ρ̃(n) → 0 as n → ∞ , which is quite different from other mixing sequences such as ρ -

mixing, ϕ -mixing and α -mixing. For more details, one can refer to a survey of basic

properties of mixing conditions by Bradley [11].

Applying Lemma 2.3, one can easily obtain the convergence theorem for ρ̃ -

mixing sequence. So we omit its proof.

COROLLARY 2.1. (Wu and Jiang [26]) Let {Xn,n > 1} be a sequence of ρ̃ -

mixing random variables with n0 > 1 , 0 6 r < 1 , ρ̃(n0) 6 r . If

∞

∑
n=1

EX2
n < ∞

then ∑∞
n=1(Xn −EXn) converges almost surely.

LEMMA 2.4. (Adler [5, Lemma 1.1]).

lim
x→∞

π −2arctanx

x−1
= 2.

3. Weak law of large numbers

In this section, we study the weak law of large numbers for Pareto type distri-

butions. First, we consider the case satisfying (4) in Section 2. The similar case is

discussed in Nakata [19].

THEOREM 3.1. For n0 > 1 , 0 6 r < 1 and ρ̃(n0) 6 r , let {Xn,n > 1} be a se-

quence of ρ̃ -mixing random variables, which is stochastically dominated by a random

variable X satisfying (4). Suppose that {an} and {bn} are two sequences of positive

constants satisfying (5). Then we have that

1

bn

n

∑
j=1

a j(X j −EXn j)
P

−→ 0, (10)

where Xn j is defined in (7). In particular, if there exists a constant A such that

1

bn

n

∑
j=1

a jE
(

X jI
(

|X j| 6
bn

a j

))

→ A, (11)

then it follows

1

bn

n

∑
j=1

a jX j
P

−→ A. (12)
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Proof. To prove (10), we need to show that

1

bn

n

∑
j=1

a j(X j −Xn j)
P

−→ 0, (13)

1

bn

n

∑
j=1

a j(Xn j −EXn j)
P

−→ 0. (14)

For every ε > 0, by (6), it yields

P
( 1

bn

∣

∣

∣

n

∑
j=1

a j(X j −Xn j)
∣

∣

∣
> ε

)

6 P
(

n
⋃

j=1

(X j 6= Xn j)
)

6

n

∑
j=1

P(|X j| > bn/a j) → 0. (15)

So (13) is proved.

In addition, for some p > 2, by Markov’s inequality, (5) and (8) and Lemma 2.3,

it can be argued that for every ε > 0,

P
( 1

bn

∣

∣

∣

n

∑
j=1

a j(Xn j −EXn j)
∣

∣

∣
> ε

)

6
1

b
p
nε p

E
(

max
16k6n

∣

∣

∣

k

∑
j=1

a j(Xn j −EXn j)
∣

∣

∣

p)

6
C1

b
p
nε p

[( n

∑
j=1

a2
jE|Xn j|

2
)

p
2
+

n

∑
j=1

a
p
j E|Xn j|

p
]

6
C2

b
p
nε p

[( n

∑
j=1

a2
j(

bn

a j

)2−α
)

p
2
+

n

∑
j=1

a
p
j (

bn

a j

)p−α
]

=
C2

ε p

[( n

∑
j=1

aα
j

bα
n

)

p
2
+

n

∑
j=1

aα
j

bα
n

]

6
C3

ε p

n

∑
j=1

aα
j

bα
n

→ 0, (16)

by the fact that
( n

∑
j=1

aα
j

bα
n

)

p
2

6 C
n

∑
j=1

aα
j

bα
n
→ 0 for some p > 2. Thus, (14) follows from

(16). Consequently, by (13) and (14), (10) holds true.

Furthermore, by (6) and (7), it has

1

bn

∣

∣

∣

n

∑
j=1

a j

[

EXn j −E
(

X jI
(

|X j| 6
bn

a j

))]∣

∣

∣
6 C

n

∑
j=1

P(|X j| > bn/a j) → 0. (17)

Therefore, (12) follows from (10), (11) and (17). �

The following is a corollary of Theorem 3.1 for the case of 0 < α < 1.

COROLLARY 3.1. For n0 > 1 , 0 6 r < 1 and ρ̃(n0) 6 r , let {Xn,n > 1} be a se-

quence of ρ̃ -mixing random variables, which is stochastically dominated by a random

variable X with satisfying (4) for 0 < α < 1 . Suppose that {an} and {bn} are two

sequences of positive constants satisfying (5). Then it has

1

bn

n

∑
j=1

a jX j
P

−→ 0. (18)
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Proof. For 0 < α < 1, by (5) and (9), we obtain

1

bn

∣

∣

∣

n

∑
j=1

a jEXn j

∣

∣

∣
6

1

bn

n

∑
j=1

a j|EXn j| 6
C1

bn

n

∑
j=1

a j

(bn

a j

)1−α
= C1

n

∑
j=1

aα
j

bα
n

→ 0.

Therefore, we apply Theorem 3.1 with A = 0 and obtain (18) immediately. �

Second, we consider the Pareto-Zipf distributions for the case α = 1 in Theorem

3.1, which was discussed in Adler [7] and Nakata [19].

THEOREM 3.2. For n0 > 1 , 0 6 r < 1 and ρ̃(n0) 6 r , let {Xn,n > 1} be a

nonnegative sequence of ρ̃ -mixing random variables whose distributions are defined

by P(Xn = 0) = 1− 1
cn

for n > 1 and the tail probability

P(Xn > x) = (x + cn)
−1 for x > 0 and n > 1, (19)

where {cn} is a positive constant sequence with cn > 1 and

Cn :=
n

∑
j=1

1

c j

→ ∞. (20)

Then we have
n

∑
j=1

c−1
j X j

Cn logCn

P
−→ 1. (21)

Proof. By (19), it is easy to see that

sup
n>1

P(Xn > x) 6
1

x
, for all x > 0.

So there exists a random variable X whose distribution satisfies (4) with α = 1, and

{Xn,n > 1} is stochastically dominated by X . By taking an = c−1
n and bn = Cn logCn ,

we have that (5) holds with α = 1, in view of (20). Therefore, as an application of

Theorem 3.1, it is sufficient to show A = 1 in (11). It can be checked by (19) that for

any j > 1,

E
(

X jI
(

X j 6 bnc j

))

=

∫ bnc j

0
P(X j > t)dt =

∫ bnc j

0

1

t + c j

dt ∼ logbn.

Moreover, by (20), it can be checked that

1

bn

n

∑
j=1

c−1
j =

Cn

Cn logCn

→ 0,

and
1

bn

n

∑
j=1

c−1
j logbn =

Cn log(Cn logCn)

Cn logCn

→ 1,
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which yields

b−1
n

n

∑
j=1

c−1
j E

(

X jI

(

X j 6 bnc j

))

∼
1

bn

n

∑
j=1

c−1
j logbn → 1.

Applying Theorem 3.1, we obtain (21) immediately. �

If we choose cn = n , then an = 1/n and bn = logn loglogn . We have a corollary

of Theorem 3.2, which was obtained by Nakata [19]) for independent case.

COROLLARY 3.2. Let the conditions of Theorem 3.2 hold with cn = n, n > 1 .

Then for all γ > −1 and real δ , we have

n

∑
j=1

j−1(log j)γ (log log j)δ X j

(logn)γ+1(loglogn)δ+1

P
−→

1

γ + 1
. (22)

Proof. Combining our Theorem 3.2 with the proof of Theorem 3.2 in Nakata [19],

one can easily obtain (22). �

4. Strong law of large numbers

In this section, we consider the strong law of large numbers for the cases of two

tailed Pareto distribution with (1) and asymmetrical Cauchy distribution with (3).

First, we discussed the case of two tailed Pareto distribution which was discussed

in Adler [6].

THEOREM 4.1. For n0 > 1 , 0 6 r < 1 and ρ̃(n0) 6 r , let {Xn,n > 1} be a

sequence of ρ̃ -mixing random variables with the same distributions from a two tailed

Pareto distribution by (1). Then for all β > 0 we have

1

logβ n

n

∑
j=1

logβ−2 j

j
X j

a.s.
−→

p−q

β
. (23)

Proof. Let a j = logβ−2 j
j

, b j = logβ j and c j =
b j

a j
= j log2 j . For j > 1, denote

X̃ j = −c jI(X j < −c j)+ X jI(|X j| 6 c j)+ c jI(X j > c j).

We can make the following decomposition

1

bn

n

∑
j=1

a jX j =
1

bn

n

∑
j=1

a j[X̃ j −EX̃ j]

+
1

bn

n

∑
j=1

a j[c jI(X j < −c j)+ X jI(|X j| > c j)− c jI(X j > c j)]

+
1

bn

n

∑
j=1

a j[−c jP(X j < −c j)+ EX jI(|X j| 6 c j)+ c jP(X j > c j)]

=: I1 + I2 + I3. (24)
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It can be seen that {[X̃ j −EX̃ j], j > 1} and {X̌ j = 1
c j

[X̃ j −EX̃ j], j > 1} are also mean

zero sequences of ρ̃ -mixing random variables. Obviously, by (1), it holds

∞

∑
j=1

P(|X j| > c j) =
∞

∑
j=1

(

∫ −c j

−∞
qx−2dx +

∫ ∞

c j

px−2dx

)

=
∞

∑
j=1

p + q

c j

=
∞

∑
j=1

1

c j

=
∞

∑
j=1

1

j log2 j
< ∞, (25)

(or see Adler [6]). Similarly, it follows from (1), (25) and the condition of same distri-

bution that

∞

∑
j=1

EX̌2
j 6 C1

∞

∑
j=1

1

c2
j

EX2
1 I(|X1| 6 c j)+C2

∞

∑
j=1

P(|X1| > c j)

= C1

∞

∑
j=1

1

c2
j

(

∫ −1

−c j

qdx +

∫ c j

1
pdx

)

+C2

∞

∑
j=1

P(|X1| > c j)

= C1

∞

∑
j=1

1

c2
j

[q(c j −1)+ p(c j−1)]+C2

∞

∑
j=1

P(|X1| > c j)

= C1

∞

∑
j=1

c j −1

c2
j

+C2

∞

∑
j=1

1

c j

6 C3

∞

∑
j=1

1

c j

= C3

∞

∑
j=1

1

j log2 j
< ∞. (26)

Consequently, by Corollary 2.1 and (26), we have that

∞

∑
j=1

X̌ j =
∞

∑
j=1

a j

b j

[X̃ j −EX̃ j] converges, a.s.

Combining Kronecker’s lemma with bn → ∞ , we obtain that

I1 =
1

bn

n

∑
j=1

a j[X̃ j −EX̃ j]
a.s.
−→ 0. (27)

Combining (25) with Borel-Cantelli lemma, we obtain that

|I2| 6
2

bn

n

∑
j=1

a j|X j|I(|X j| > c j)
a.s.
−→ 0. (28)
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For some positive integer n0 and integer n > n0 , by (1), it can be seen that

H :=
1

bn

∣

∣

∣

n

∑
j=1

a j[−c jP(X j < −c j)+ c jP(X j > c j)]
∣

∣

∣

6

n0

∑
j=1

b j

bn

P(|X j| > c j)+
n

∑
j=n0+1

b j

bn

P(|X j| > c j)

=
1

logβ n

n0

∑
j=1

1

j log2−β j
+

1

logβ n

n

∑
j=n0+1

1

j log2−β j

=: H1 + H2. (29)

Obviously, for any β > 0,

H1 → 0. (30)

Meanwhile, for 0 < β < 1, it can be argued that

H2 =
1

logβ n

n

∑
j=n0+1

1

j log2−β j
6

1

logβ n

∞

∑
j=n0+1

1

j log2−β j
→ 0. (31)

For β = 1, we have

H2 =
1

logn

n

∑
j=n0+1

1

j log j
∼

loglogn

logn
→ 0. (32)

Otherwise, for β > 1,

H2 =
1

logβ n

n

∑
j=n0+1

1

j log2−β j
∼

logβ−1 n

logβ n
→ 0. (33)

Thus, by (29)-(33), we obtain that

H → 0. (34)

Moreover, it follows from (1) that

EXnI(|Xn| 6 cn) =

∫ −1

−cn

qx−1dx +

∫ cn

1
px−1dx

= −q logcn + p logcn = (p−q) logcn ∼ (p−q) logn,

(or see Adler [6]). Thus,

n

∑
j=1

a j

bn

EX jI(|X j| 6 c j) ∼
p−q

logβ n

n

∑
j=1

logβ−1 j

j
→

p−q

β
. (35)

Consequently, together (34) with (35), it holds

I3 →
p−q

β
. (36)

Last, by (24), (27), (28) and (36), we immediately establish (23). �

Second, similar to Theorem 4.1, we consider the case of asymmetrical Cauchy

random variables with a slight twist (3), which was discussed in Adler [5]).
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THEOREM 4.2. For n0 > 1 , 0 6 r < 1 and ρ̃(n0) 6 r , let {Xn,n > 1} be a

sequence of ρ̃ -mixing random variables with the same distributions from an asymmet-

rical Cauchy random variables by a slight twist (3). Then for all β > 0 we have

1

logβ n

n

∑
j=1

logβ−2 j

j
X j

a.s.
−→

p−q

πβ
. (37)

Proof. We use the same notation such as a j , b j , c j , X̃ j , X̌ j , etc, in the proof of

Theorem 4.1. Together with the proof of (25), (3) and Lemma 2.4, it yields

∞

∑
j=1

P(|X j| > c j) =
∞

∑
j=1

(

∫ −c j

−∞

q

π(1 + x2)
dx +

∫ ∞

c j

p

π(1 + x2)
dx

)

=
1

π

∞

∑
j=1

(

−qarctanc j +
qπ

2
+

pπ

2
− parctanc j

)

6 C
∞

∑
j=1

1

c j

= C
∞

∑
j=1

1

j log2 j
< ∞, (38)

(or see Adler [5]). Similar to the proof of (26), by (3) and (38), we establish that

∞

∑
j=1

EX̌2
j 6 C1

∞

∑
j=1

1

c2
j

EX2
1 I(|X1| 6 c j)+C2

∞

∑
j=1

P(|X1| > c j)

= C1

∞

∑
j=1

1

c2
j

(

∫ 0

−c j

qx2

π(1 + x2)
dx +

∫ c j

0

px2

π(1 + x2)
dx

)

+C2

∞

∑
j=1

P(|X1| > c j)

6 C3

∞

∑
j=1

1

c2
j

(

∫ 0

−c j

dx +
∫ c j

0
dx

)

+C2

∞

∑
j=1

P(|X1| > c j)

6 C4

∞

∑
j=1

1

c j

= C4

∞

∑
j=1

1

j log2 j
< ∞. (39)

By the proofs of (29) and (38), we have

H :=
1

bn

∣

∣

∣

n

∑
j=1

a j[−c jP(X j < −c j)+ c jP(X j > c j)]
∣

∣

∣

6
C

logβ n

n0

∑
j=1

1

j log2−β j
+

C

logβ n

n

∑
j=n0+1

1

j log2−β j
→ 0. (40)

Moreover, by (3), we obtain that

EXnI(|Xn| 6 cn) =

∫ 0

−cn

qx

π(1 + x2)
dx +

∫ cn

0

px

π(1 + x2)
dx

=
1

2π
[−q log(1 + c2

n)+ p log(1 + c2
n)]

=
p−q

2π
log(1 + c2

n)

∼
p−q

π
logcn ∼

p−q

π
logn,
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(or see Adler [5]). Then,

n

∑
j=1

a j

bn
EX jI(|X j| 6 c j) ∼

p−q

π logβ n

n

∑
j=1

logβ−1 j

j
→

p−q

πβ
. (41)

Combining the proof of Theorem 4.1 with (38)-(41), we obtain (37) immediately. �

5. Simulation

It is known that if Y
d
= U(0,1) , then for any given distribution F(x) , x ∈ R , the

random variable X = F−1(Y ) ∼ F(x) , where F−1(u) = inf{x : F(x) > u} , u ∈ (0,1) .

So we use this method to generate a random variable of two tailed Pareto distribution

or asymmetrical Cauchy distribution. In view of the infinite mean, we use the truncated

method in the practical simulation. For example, let ε be a small positive constant and

M be a large positive constant. For u ∈ (0,1) , if u < ε , then x = −M ; if u > 1− ε ,

then x = M .

By (1), it can be seen that the two tailed Pareto distribution is

F(x) =







− q
x
, if x 6 −1,

q, if −1 < x < 1,
1− p

x
, if x > 1.

where p + q = 1 and p,q > 0. Now, let us give the algorithm of generation of two

tailed Pareto distribution. Let ε = 10−1000 , M = 21000 . For given p > 0 and q > 0 with

p + q = 1, we generate a uniform random variable U(0,1) . If u 6 ε , then x = −M ; if

ε < u < q , then x =−q/u ; if u = q , then x =−1; if q < u < 1−ε , then x = p/(1−u) ;

if 1− ε 6 u 6 1, then x = M . Let

Tn =
1

logβ n

n

∑
j=1

logβ−2 j

j
X j −

p−q

β
. (42)

It is difficult to plot some box plots for Tn in one frame since the variation ranges of

occurrence values of random variable X are very big. So we take the following Table 1

for Tn in (42), by repeating the experiments 1000 times. Mean, Var, Min, Max, Q(1) ,

me and Q(3) stand for mean, variance, minimal, maximal, quantile( 1
4

), median and

quantile( 3
4

) for Tn , respectively.

Table 1: Two tailed Pareto distribution for Tn

p q β n Mean Var Min Max Q(1) me Q(3)

0.6 0.4 4 1000 0.0721 1.4685 -25.3069 17.6390 -0.0338 0.0319 0.1212

0.6 0.4 4 2000 -0.1991 217.6026 -639.2232 109.9941 -0.0386 0.0274 0.1106

0.6 0.4 4 5000 0.1452 18.5986 -165.0443 166.5787 -0.0413 0.0290 0.1163

0.6 0.4 4 10000 0.1234 22.3713 -188.4595 247.6981 -0.0376 0.0294 0.1152

0.6 0.4 6 1000 -0.0708 14.2040 -326.9453 55.4108 -0.0330 -0.0313 -0.0270

0.6 0.4 6 2000 -0.0070 0.2811 -6.1186 33.0231 -0.0330 -0.0313 -0.0268

0.6 0.4 6 5000 0.0128 7.0626 -217.9158 108.2512 -0.0328 -0.0296 0.0163

0.6 0.4 6 10000 0.0682 13.6881 -108.0921 295.1316 -0.0252 0.0154 0.0677

0.7 0.3 6 1000 0.0125 17.1299 -11.1316 405.8907 -0.0629 -0.0614 -0.0576

0.7 0.3 6 2000 -0.0209 0.4749 -26.6703 37.8729 -0.0628 -0.0610 -0.0526

0.7 0.3 6 5000 0.0436 3.3402 -112.0727 75.6017 -0.0622 -0.0540 0.0317

0.7 0.3 6 10000 0.0121 88.9769 -868.6450 235.4846 -0.0079 0.0302 0.0912

0.7 0.3 8 1000 0.0315 2.2334 -41.0813 18.1388 -0.0099 0.0187 0.0595

0.7 0.3 8 2000 0.0818 1.3361 -7.9868 45.8754 -0.0065 0.0225 0.0707

0.7 0.3 8 5000 0.0540 1.3777 -52.1305 22.5732 -0.0088 0.0200 0.0651

0.7 0.3 8 10000 0.0918 1.3389 -17.7700 53.0901 -0.0073 0.0210 0.0662
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On the one hand, by the Table 1, it can be found that the mean of Tn does not

decrease to zero as sample n increases by 1000, 2000, 5000 and 10000, and the variance

of Tn performs an increasing trend as the sample n increases. So one should not use

the mean of Tn to estimate Tn since it is not robust. On the other hand, compared to

mean, by the Table 1, it can be seen that the median me of Tn has a good performance

since it is close to zero.

Meanwhile, by (3), it can be seen that the asymmetrical Cauchy distribution is

F(x) =

{

q
2
+ q

π arctanx, if x < 0,
q
2
+ p

π arctanx, if x > 0,

where p + q = 2 and p,q > 0. So, similar to the algorithm of two tailed Pareto dis-

tribution, we give the algorithm of generation of asymmetrical Cauchy distribution.

Let ε = 10−1000 , M = 21000 . For given p > 0 and q > 0 with p + q = 2, we gen-

erate a uniform random variable U(0,1) . If u 6 ε , then x = −M ; if ε < u 6 q/2,

then x = tan((u − q/2)π/q) ; if q/2 < u < 1 − ε , then x = tan((u − q/2)π/p) ; if

1− ε 6 u 6 1, then x = M . Let

T̃n =
1

logβ n

n

∑
j=1

logβ−2 j

j
X j −

p−q

πβ
(43)

Similar to Table 1, we obtain the following Table 2 for asymmetrical Cauchy distribu-

tion of T̃n in (43), by repeating the experiments 1000 times.

Table 2: Asymmetrical Cauchy distribution for T̃n

p q β n Mean Var Min Max Q(1) me Q(3)

p q β n Mean Var Min Max Q(1) me Q(3)

1.1 0.9 4 1000 -0.1277 41.7066 -201.4230 23.1959 -0.0361 0.0083 0.0588

1.1 0.9 4 2000 0.0106 4.4502 -75.5523 44.9267 -0.0363 0.0081 0.0602

1.1 0.9 4 5000 0.0324 1.7688 -43.9488 36.9070 -0.0382 0.0082 0.0615

1.1 0.9 4 10000 -0.0545 23.6353 -297.5537 98.9471 -0.0373 0.0075 0.0597

1.1 0.9 6 1000 -0.0071 2.5193 -47.6440 10.5151 -0.0242 0.0035 0.0335

1.1 0.9 6 2000 -0.0833 6.8506 -99.9745 5.3900 -0.0231 0.0035 0.0344

1.1 0.9 6 5000 0.1140 27.4555 -18.7877 358.7516 -0.0241 0.0031 0.0339

1.1 0.9 6 10000 -0.0545 2.8957 -138.2517 48.9460 -0.0235 0.0033 0.0343

1.5 0.5 4 1000 0.0759 10.8746 -90.9387 35.8580 -0.0040 0.0394 0.1084

1.5 0.5 4 2000 0.1515 2.7080 -13.4087 63.9893 -0.0019 0.0382 0.1091

1.5 0.5 4 5000 0.1232 1.9087 -55.6143 30.1641 -0.0015 0.0380 0.1062

1.5 0.5 4 10000 0.2015 14.0169 -23.1490 300.1361 0.0006 0.0412 0.1152

1.5 0.5 6 1000 0.1741 4.1107 -6.5125 55.2070 -0.0019 0.0214 0.0658

1.5 0.5 6 2000 -0.0646 32.7001 -252.6613 16.4857 -0.0035 0.0206 0.0643

1.5 0.5 6 5000 0.1535 11.1481 -6.4231 164.8726 -0.0047 0.0199 0.0615

1.5 0.5 6 10000 0.0989 2.0673 -52.0123 81.6424 -0.0037 0.0210 0.0618

Similar to Table 1, for the case of asymmetrical Cauchy distribution, by Table 2,

it also can be found that the mean and variance of T̃n in (43) are not robust, but the

median me of T̃n has a good performance closing to zero.

6. Conclusion

In this paper, we combine the properties of ρ̃ -mixing such as moment inequalities

and convergence theorem with the properties of Pareto type distributions and asymmet-

rical Cauchy distribution, we obtain the weak laws and strong laws for the weighted

sums of ρ̃ -mixing random variables with infinite mean (see our results in Sections 3

and 4). So our Theorem 3.1, Corollary 3.1, Theorem 3.2 and Corollary 3.2 are ex-

tended the Theorem 2.1, Corollary 2.1, Theorem 3.1 and Theorem 3.2 of Nakata [19]
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for independent case to dependent one, respectively. Meanwhile, our Theorem 4.1 and

Theorem 4.2 extend Theorem 2.1 of Adler [6]) and Theorem 2.1 of Adler [5]) for in-

dependent case to dependent one, respectively. Since ρ̃(n)-mixing is quite different

from other mixing sequences such as ρ -mixing and α -mixing (see our Remark 2.2 an

a survey of basic properties of mixing conditions by Bradley [11]), the results obtained

by this paper are interesting. In addition, we do some simulations of the laws of large

numbers for the tailed Pareto distributions and asymmetrical Cauchy distributions. By

Tables 1 and 2, it can be found that the mean and variance of sums are not robust but the

median has good performance of robust. It can be explained that the occurrence values

of random variable with infinite mean sometimes take some big positive or negative

values, which does not lead to be robust. But the median avoids this problem and is

robust.
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