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MONOTONICITY AND INEQUALITIES INVOLVING

THE INCOMPLETE GAMMA FUNCTION

HUI-LIN LV, ZHEN-HANG YANG AND SHENZHOU ZHENG

(Communicated by G. Nemes)

Abstract. In this paper, by observing the monotonicity of three ratios involving the integral func-
tion

∫ x
0 e−t p dt for p,x > 0 , we offer some new sharp bounds for the incomplete gamma function,

which greatly improve and extend some known results. Also, as by-products, we unexpectedly
obtain two power series representations for the incomplete gamma function.

1. Introduction

The incomplete gamma function is given by

Γ(a,x) =
∫ ∞

x
ta−1e−t dt, a > 0,x > 0,

while the exponential integral is defined by

E1 (x) = lim
a→0+

Γ(a,x) =
∫ ∞

x

e−t

t
dt, x > 0.

They are related to the integral function
∫ x
0 e−t pdt or

∫ ∞
x e−t pdt with p > 0. Indeed, it

is known that ∫ ∞

x
e−t pdt =

1
p

Γ
(

1
p
,xp
)

(1.1)

and ∫ x

0
e−t pdt =

1
p

Γ
(

1
p

)
− 1

p
Γ
(

1
p
,xp
)

. (1.2)

In particular, for p = 2, we know that

1− 1√
π

Γ
(

1
2
,x2
)

=
2√
π

∫ x

0
e−t2dt = erf(x)

is the error function [1]–[5], while

1√
π

Γ
(

1
2
,x2
)

= 1− erf(x) =
2√
π

∫ ∞

x
e−t2dt
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is the complementary error function.
There are various bounds for the integral functions

∫ x
0 e−t pdt and

∫ ∞
x e−t pdt with

p > 0, see for example, Gautschi [6], Gupta and Waknis [7], Elbert and Laforgia [8],
Borwein and Chan [9], Komatu [10], Pollak [11], Boyd [12], [13], Neuman [14], Gasull
and Utzet [15], Yang and Chu [16], Qi and Huang [17], Qi and Guo [18]. More results
for the integrals

∫ x
0 e−t pdt and

∫ ∞
x e−t pdt , and related special functions can be found in

the literatures [19]–[31].
In particular, Elbert and Laforgia [8] presented an interesting lower bound for the

function x−1 ∫ x
0 e−t pdt , that is,

1− 1
p+1

∫ xp

0

1− e−t

t
dt <

1
x

∫ x

0
e−t pdt (1.3)

holds for 0 < x < [9(3p+1)/(4(2p+1))]1/p and p > 1. The inequality (1.3) was
proved to be also valid for all x > 0 and p > 1 in [32] by Laforgia and Natalini.

Moreover, Qi and Huang in [17] gave a simple lower bound for the integral func-
tion

∫ x
0 e−t pdt :

1− e−xp

xp−1 �
∫ x

0
e−t pdt, x > 0, p � 1. (1.4)

Motivated by the inequalities (1.3) and (1.4), the aim of this paper is to investigate
the monotonicity of the ratios

R1 (x) =
1− v(bxp)/(b(p+1))

x−1
∫ x
0 e−t pdt

for b > 0, (1.5)

where

v(x) =
∫ x

0

1− e−t

t
dt, (1.6)

R2 (x) =
−∫ xp

0
1−e−t

t dt−∑m
n=1

(−1)n

nn! xpn

x−1
∫ x
0 e−t pdt−∑m

n=0
(−1)n

(np+1)n!x
pn

, (1.7)

R3 (x) =
x−p

(
1− e−xp)−∑m−1

n=0
(−1)nxnp

(n+1)!

x−1
∫ x
0 e−t pdt−∑m−1

n=0
(−1)n

(np+1)n!x
pn

(1.8)

on (0,∞) . As a consequence, some sharp inequalities for x−1 ∫ x
0 e−t pdt are established,

which refine and generalize Laforgia and Natalini’s inequality (1.3) and Qi and Huang’
inequality (1.4). It should be emphasized that the range of parameter p is extended
from p > 1 in [8], [32], [17] to p > 0 in our results.

The rest of this paper is organized as follows. In Section 2, we give some prelim-
inary lemmas. In Section 3, we deal with the monotonicity of the function Ri(x) for
i = 1,2,3; and present some new sharp bounds for the incomplete gamma function. In
the final section, the conclusion is drawn to summarize the study.
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2. Some lemmas

In order to prove our main results, we need some preliminary lemmas. The fol-
lowing lemma is called L’Hospital Monotone Rule, for short, LMR (see [33]), which
is an efficient tool to deal with the monotonicity of the ratio between two functions. A
monotonicity rule for ratio of two power series was presented in [34]. A similar mono-
tonicity rule for the ratio of two Laplace transforms was established in [35, Lemma 4]
(see also [36]).

LEMMA 2.1. ([33, Theorem 2]) For −∞ < a < b < ∞ , let f ,g : [a,b] → R be
continuous functions that are differentiable on (a,b) , with f (a) = g(a) = 0 or f (b) =
g(b) = 0 . If f ′/g′ with g′(x) �= 0 for each x in (a,b) is increasing (decreasing) on
(a,b) , then so is f/g.

To state the final lemma, we need to introduce a useful auxiliary function Hf ,g .
For −∞ � a < b � ∞ , let f and g be differentiable on (a,b) and g′ �= 0 on (a,b) .
Then the function Hf ,g is defined by

Hf ,g :=
f ′

g′
g− f . (2.9)

The function Hf ,g has some well properties [37, Property 1] and plays an important
role in the proof of a monotonicity criterion for the quotient of power series, also see
[38]. Let us recall the following lemma, which is called L’Hospital Piecewise Monotone
Rule, for short, LPMR.

LEMMA 2.2. ([37, Theorem 7]) Let −∞ � a < b � ∞ . Suppose that (i) f and g
are differentiable functions on (a,b); (ii) g′ �= 0 on (a,b); (iii) f (a+) = g(a+)= 0 ; (iv)
there is a c∈ (a,b) such that f ′/g′ is increasing (decreasing) on (a,c) and decreasing
(increasing) on (c,b) . Then

(i) when sgng′sgnHf ,g (b−) � (�)0 , f/g is increasing (decreasing) on (a,b);
(ii) when sgng′sgnHf ,g (b−) < (>)0 , there is a unique number x0 ∈ (a,b) such

that f/g is increasing (decreasing) on (a,x0) and decreasing (increasing) on (x0,b) .

The following lemma offers a simple but efficient criterion to determine the sign
of a kind of special series, so we call it as ”sign rule of a kind of special series”.

LEMMA 2.3. ([39, Lemma 2]) Let {ak}k�0 be a nonnegative real sequence with
am > 0 and ∑∞

k=m+1 ak > 0 and let

S (t) = −
m

∑
k=0

akt
k +

∞

∑
k=m+1

akt
k

be a convergent power series on the interval (0,r) (r > 0 ). (i) If S (r−) � 0 then
S (t) < 0 for all t ∈ (0,r) . (ii) If S (r−) > 0 then there is a unique t0 ∈ (0,r) such that
S (t) < 0 for t ∈ (0, t0) and S (t) > 0 for t ∈ (t0,r) .
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REMARK 2.4. From Lemma 2.3, it is easy to see that if there is a t1 ∈ (0,r) such
that S (t1) > 0 , then we have S (t) > 0 for all t ∈ [t1,r) .

REMARK 2.5. If r = ∞ , then Lemma 2.3 is reduced to [40, Lemma 6.3] (see also
[41, Lemma 2], [42, Lemma 2.1]). Furthermore, if we put ak = 0 for all k � n > m+1 ,
then Lemma 2.3 yields [43, Lemma 7] (see also [44]).

3. Main results

3.1. Monotonicity of R1 (x)

Our first result is the following theorem.

THEOREM 3.1. For b, p > 0 , let v(x) be defined on (0,∞) by (1.6). Then the
ratio R1 (x) defined by (1.5) is decreasing on (0,∞) if b � b0 = 2(p+1)/(2p+1).
And therefore, the inequality

1− 1
b(p+1)

∫ bxp

0

1− e−t

t
dt <

1
x

∫ x

0
e−t pdt (3.10)

holds for x > 0 if b � b0 . While b > b0 , there is a unique number x0 ∈ (0,∞) such
that R1 (x) is increasing on (0,x0) and decreasing on (x0,∞) .

Proof. Let

f1 (x) = x− x
b(p+1)

v(bxp) = x− x
b(p+1)

∫ bxp

0

1− e−t

t
dt,

g1 (x) =
∫ x

0
e−t pdt.

Then R1 (x) = f1 (x)/g1 (x) with f1 (0+) = g1 (0+) = 0. Differentiation gives

f ′1 (x)
g′1 (x)

=
exp

b(p+1)

(
b− p+bp+ pe−bxp−

∫ bxp

0

1− e−t

t
dt

)
xp=y
===

ey

b(p+1)

(
b− p+bp+ pe−by−

∫ by

0

1− e−t

t
dt

)

and (
f ′1 (x)
g′1 (x)

)′
=

d
dy

[
ey

b(p+1)

(
b− p+bp+ pe−by+

∫ by

0

e−t −1
t

dt

)]
dy
dx

=
pxp−1ey

b(p+1)
h1 (y) ,

where

h1 (y) = (1−b) pe−by− 1− e−by

y
−
∫ by

0

1− e−t

t
dt +b− p+bp
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with h1 (0+) = 0.
Differentiation again yields

by2ebyh′1 (y) = beby−byeby− (b−1)by+(b−1) p(by)2−b := h3 (y) .

Expanding in power series leads to

by2ebyh′1 (y) = b
∞

∑
n=0

(by)n

n!
−

∞

∑
n=1

(by)n

(n−1)!
− (b−1)(by)+ (b−1) p(by)2 −b

=
∞

∑
n=1

(b−n)(by)n

n!
− (b−1)(by)+ (b−1) p(by)2 :=

∞

∑
n=2

wn (by)n ,

where

w2 =
1+2p

2

(
b− 2p+2

2p+1

)
and wn =

b−n
n!

for n � 3.

Now, if b � (2p+2)/(2p+1) = b0 , then w2 � 0 and wn < 0 for n � 3, and then
h′1 (y)< 0. This indicates that h1 (y)< h1 (0+)= 0, which implies that ( f ′1 (x)/g′1 (x))′ <
0 for x ∈ (0,∞) . By Lemma 2.1, the first assertion of this theorem follows.

For b > b0 = (2p+2)/(2p+1), we distinguish two cases to confirm the sign of
wn for n � 3, and then determine the sign of h1 (y) .

Case 1: (2p+2)/(2p+1) < b � 3. It is seen that

w2 > 0, w3 = b−3 � 0, wn < 0 for n � 4.

Case 2: b > 3. We have w2 > 0. Since the sequence {n!wn}n�3 is decreasing,
and 3!w3 = b−3 > 0 and limn→∞ (n!wn) = −∞ , there is a n0 � 4 such that n!wn > 0
for 3 � n � n0 and n!wn < 0 for n > n0 . That is to say, wn > 0 for 2 � n � n0 and
wn < 0 for n > n0 .

In both cases, by Lemma 2.3, there is a by0 ∈ (0,∞) such that h′1 (y) > 0 for by ∈
(0,by0) and h′1 (y) < 0 for by ∈ (by0,∞) . Hence, h1 (y) > h1 (0+) = 0 for y ∈ (0,y0) ,
but h1 (∞) = −∞ . It is deduced that there is a y1 ∈ (y0,∞) such that h1 (y) > 0 for
y ∈ (0,y1) and h1 (y) < 0 for y ∈ (y1,∞) . This reveals that f ′1/g′1 is increasing on

(0,x1) and decreasing on (x1,∞) , where x1 = y1/p
1 .

Due to g′1 (x) > 0 and

Hf1,g1 (x) =
f ′1 (x)
g′1 (x)

g1 (x)− f1 (x)

=
exp

b(p+1)

(
b− p+bp+ pe−bxp−

∫ bxp

0

1− e−t

t
dt

)

×
∫ x

0
e−t pdt−

(
x− x

b(p+1)

∫ bxp

0

1− e−t

t
dt

)

=
exp ∫ bxp

0 t−1 (1− e−t) dt
b(p+1)

[
(b− p+bp)

∫ x
0 e−t pdt∫ bxp

0 t−1 (1− e−t) dt
+

pe−bxp

∫ bxp

0 t−1 (1− e−t) dt

−
∫ x

0
e−t pdt− b(p+1)x

exp ∫ bxp

0 t−1 (1− e−t) dt
+

x
exp

]
→−∞, as x → ∞,
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where the first, second, fourth and fifth items in the square brackets tend to zero, while
the third one tends to −Γ(1+1/p), by (ii) of Lemma 2.2, there is a unique number
x0 ∈ (0,∞) such that f1/g1 is increasing on (0,x0) and decreasing on (x0,∞) .

This completes the proof. �

PROPOSITION 3.2. For b, p > 0 , the inequality

1− 1
b(p+1)

∫ bxp

0

1− e−t

t
dt <

1
x

∫ x

0
e−t pdt (3.11)

holds for x > 0 if and only if b � b0 = (2p+2)/(2p+1).

Proof. The necessity is deduced from the limit relation

lim
x→0+

x−1 ∫ x
0 e−t pdt−1+ v(bxp)/(b(p+1))

x2p � 0.

Indeed, expanding in power series gives

1
x

∫ x

0
e−t pdt−1+

1
b(p+1)

∫ bxp

0

1− e−t

t
dt

=
1
x

∫ x

0

∞

∑
n=0

(−1)n t pn

n!
dt−1− 1

b(p+1)

∫ bxp

0

∞

∑
n=1

(−1)n tn−1

n!
dt

=
∞

∑
n=2

(
1

np+1
− bn−1

n(p+1)

)
(−1)n xpn

n!
,

which yields

lim
x→0+

x−1 ∫ x
0 e−t pdt−1+ v(bxp)/(b(p+1))

x2p =
1

2p+1
− 1

2
b

p+1
.

Hence, we get that the necessary condition is b � (2p+2)/(2p+1). The sufficiency
easily follows by Theorem 3.1. �

It is easy to check that b �→ v(bx)/b is decreasing on (0,∞) . Then taking b = b0 ,
1 , 0+ in Proposition 3.2 gives the following corollary.

COROLLARY 3.3. We have

1− xp

p+1
< 1− 1

p+1

∫ xp

0

1− e−t

t
dt < 1− 1

b0 (p+1)

∫ b0x
p

0

1− e−t

t
dt <

1
x

∫ x

0
e−t pdt

(3.12)

for p,x > 0 , where b0 = 2(p+1)/(2p+1).

REMARK 3.4. Corollary 3.3 shows that the third inequality of (3.12) is a refine-
ment of Laforgia and Natalini’s inequality (1.3).
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By utilizing the relation (1.2) and making changes of variables q = 1/p and u =
xp ∈ (0,∞) , we have

∫ x

0
e−t pdt =

1
p

Γ
(

1
p

)
− 1

p
Γ
(

1
p
,xp
)

= qΓ(q)−qΓ(q,u) . (3.13)

Then Proposition 3.2 can be equivalently stated as follows.

PROPOSITION 3.5. For u,q > 0 , the inequality

Γ(q,u) <
Γ(q+1)−uq

q
+

uq

b(q+1)

∫ bu

0

1− e−t

t
dt (3.14)

holds if and only if b � (2q+2)/(2+q).

Since Γ(0,u) = E1 (u) and

lim
q→0+

Γ(q+1)−uq

q
= −γ − lnu,

where γ = 0.57722... is the Euler constant, by Proposition 3.5 we have

COROLLARY 3.6. The inequality

E1 (u) =
∫ ∞

u

e−t

t
dt < −γ − lnu+

1
b

∫ bu

0

1− e−t

t
dt

holds for u > 0 if and only if b � 1 .

3.2. Monotonicity of R2 (x)

THEOREM 3.7. For p > 0 and m ∈ N , the function

R2 (x) =
−∫ xp

0
1−e−t

t dt−∑m
n=1

(−1)n

nn! xpn

1
x

∫ x
0 e−t pdt−∑m

n=0
(−1)n

(np+1)n!x
pn

is strictly increasing on (0,∞) with

R2
(
0+)= p+

1
m+1

and R2 (∞) = p+
1
m

.

Consequently, the double inequality

(−1)m Lm,α2 (xp) <
(−1)m

x

∫ x

0
e−t pdt < (−1)m Lm,β2

(xp) (3.15)

holds for p,x > 0 with the best constants α2 = p + 1/(m+1) and β2 = p + 1/m,
where

Lm,λ (x) = 1+
m

∑
n=1

(−1)n
(

n
np+1

− 1
λ

)
xn

nn!
− 1

λ

∫ x

0

1− e−t

t
dt.
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Proof. Let

f2 (x) = −x
∫ xp

0

1− e−t

t
dt−

m

∑
n=1

(−1)n

nn!
xpn+1, (3.16)

g2 (x) =
∫ x

0
e−t pdt−

m

∑
n=0

(−1)n

(np+1)n!
xpn+1. (3.17)

Then R2 (x) = f2 (x)/g2 (x) with f2 (0+) = g2 (0+) = 0. Differentiation yields

f ′2 (x) = −
∫ xp

0

1− e−t

t
dt− p

(
1− e−xp

)
−

m

∑
n=1

(−1)n (pn+1)
nn!

xpn := f21 (xp) ,

g′2 (x) = e−xp −
m

∑
n=0

(−1)n

n!
xpn := g21 (xp) .

where

f21 (y) = −
∫ y

0

1− e−t

t
dt− p

(
1− e−y)− m

∑
n=1

(−1)n (pn+1)
nn!

yn,

g21 (y) = e−y −
m

∑
n=0

(−1)n

n!
yn

with y = xp .
Since ∑m

n=0
(−1)n

n! yn is the m-order Taylor polynomial of the function e−y at y = 0,

we have g(k)
21 (0) = 0 for 0 � k � m . This in combination with

(−1)m+1 g(m+1)
21 (y) = e−y > 0

gives (−1)m+1 g21 (y) > 0 for y > 0, which in turn implies that (−1)m+1 g′2 (x) > 0,
and so

(−1)m+1 g2 (x) > (−1)m+1 g2 (0) = 0 for x > 0.

Also, f21 (0) = 0. Differentiation again yields

− y f ′21 (y) = pye−y− e−y +1+
m

∑
n=1

(−1)n (np+1)
n!

yn := f22 (y) ,

−yg′21 (y) = ye−y +
m

∑
n=1

(−1)n

(n−1)!
yn := g22 (y) . (3.18)

Likewise, it is easy to check that −∑m
n=1

(−1)n

(n−1)!y
n is the m-order Taylor polyno-

mial of the function ye−y at y = 0, which leads to g(k)
22 (0+) = 0 for 0 � k � m . Also,

since

(−1)m g(m)
22 (y) = (−1)m

[
(−1)m ye−y +(−1)m−1 me−y +(−1)m m

]
= ye−y +m

(
1− e−y)> 0,
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it is deduced that (−1)m g(k)
22 (y) > (−1)m g(k)

22 (0+) = 0 for 0 � k � m− 1. Moreover,

−1−∑m
n=1

(−1)n(np+1)
n! yn is the m-order Taylor polynomial of the function pye−y−e−y ,

so f (k)
22 (0+) = 0 for 0 � k � m .

Thus, if we prove the ratio f (m)
22 /g(m)

22 is increasing on (0,∞) , then by Lemma 2.1,

so is f (k)
22 /g(k)

22 for 0 � k � m , and so are f ′21/g′21 = f22/g22 and f21/g21 . Due to

(
f ′2 (x)
g′2 (x)

)′
=

d
dy

(
f21 (y)
g21 (y)

)
× dy

dx
= pxp−1

(
f21 (y)
g21 (y)

)′
> 0,

by Lemma 2.1 again, it then follows that f2/g2 is strictly increasing on (0,∞) . Then
the proof is done except R2 (0+) and R2 (∞) .

In fact, we have

f (m)
22 (y)

g(m)
22 (y)

=
p
(
(−1)m ye−y +(−1)m−1 me−y

)
− (−1)m e−y +(−1)m (mp+1)

(−1)m (ye−y +m(1− e−y))

=
pye−y − (pm+1)e−y +mp+1

ye−y +m(1− e−y)
=

(mp+1)ey + py−mp−1
mey + y−m

,

(
f (m)
22 (y)

g(m)
22 (y)

)′
=

yey − ey +1

(mey + y−m)2
> 0 for y > 0.

Finally, we compute R2 (0+) and R2 (∞) . To obtain R2 (0+) , we write R2 (x) in
the form of ratio of two power series

R2 (x) =
∑∞

n=1
(−1)n

nn! xpn−∑m
n=1

(−1)n

nn! xpn

∑∞
n=0

(−1)n

(np+1)n!x
pn−∑m

n=0
(−1)n

(np+1)n!x
pn

=
∑∞

n=m+1
(−1)n

nn! xpn

∑∞
n=m+1

(−1)n

(np+1)n!x
pn

,

which yields

lim
x→0+

R2 (x) =
(−1)m+1 /((m+1)(m+1)!)

(−1)m+1 /(((m+1) p+1)(m+1)!)
= p+

1
m+1

.

To compute R2 (∞) , we divide the numerator and denominator in R2 (x) by xpm and
note that

lim
x→∞

1
xpm

∫ xp

0

1− e−t

t
dt = lim

x→∞

1
xpm+1

∫ x

0
e−t pdt = 0,

to get

lim
x→∞

R2 (x) =
−(−1)m /(mm!)

−(−1)m /((mp+1)m!)
= p+

1
m

.

Then the desired double inequality follows, which ends the proof. �
Taking m = 1 in Theorem 3.7, we immediately get the following corollary.
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COROLLARY 3.8. For p > 0 , the double inequality

1− 1
p+1

∫ xp

0

1− e−t

t
dt <

1
x

∫ x

0
e−t pdt < 1+

xp

(p+1)(2p+1)
− 2

2p+1

∫ xp

0

1− e−t

t
dt

(3.19)

holds for x > 0 . The lower and upper bounds are sharp.

REMARK 3.9. Corollary 3.8 obviously gives a reverse inequality of Laforgia and
Natalini’s inequality (1.3).

Making changes of variables q = 1/p and u = xp ∈ (0,∞) and using the relation
(3.13), Theorem 3.7 can be equivalently stated as follows.

THEOREM 3.10. For q > 0 and m ∈ N , the function

R∗
2 (u) =

−∫ u
0 t−1 (1− e−t)dt−∑m

n=1
(−1)n

nn! un

u−q (Γ(q)−Γ(q,u))−∑m
n=0

(−1)n

(n+q)n!u
n

is strictly increasing on (0,∞) with

R∗
2

(
0+)= 1+

q
m+1

and R∗
2 (∞) = 1+

q
m

.

Consequently, the double inequality

(−1)m+1 Lm,β ∗
2
(u) < (−1)m

(
Γ(q,u)− Γ(q+1)−uq

q

)
< (−1)m+1 Lm,α∗

2
(u)

(3.20)
holds for p,x > 0 with the best constants α∗

2 = 1 + q/(m+1) and β ∗
2 = 1 + q/m,

where

Lm,λ (u) =
m

∑
n=1

(−1)n
(

n
n+q

− 1
λ

)
un+q

nn!
− uq

λ

∫ u

0

1− e−t

t
dt.

Letting m → ∞ in Theorem 3.10 yields α∗
2 ,β ∗

2 → 1 and

Lm,α∗
2
(u) ,Lm,β ∗

2
(u) →−quq

∞

∑
n=1

(−1)n
un

n(n+q)n!
−uq

∫ u

0

1− e−t

t
dt.

Then inequalities (3.20) imply a series expansion for Γ(q,u) , which is clearly abso-
lutely convergent.

COROLLARY 3.11. For q,u > 0 , we have

Γ(q,u) =
Γ(q+1)−uq

q
+uq

∫ u

0

1− e−t

t
dt +q

∞

∑
n=1

(−1)n
un+q

n(n+q)n!
. (3.21)

In particular, putting q → 0+ , the following identity holds true:

E1 (u)+ γ + lnu =
∫ u

0

1− e−t

t
dt. (3.22)
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REMARK 3.12. The expansion (3.21) seems to be new, and the identity (3.22)
appeared in [45, P. 230, (5.139)].

3.3. Monotonicity of R3 (x)

THEOREM 3.13. For p > 0 and m ∈ N , the function

R3 (x) =
x−p

(
1− e−xp)−∑m−1

n=0
(−1)nxnp

(n+1)!

1
x

∫ x
0 e−t pdt−∑m−1

n=0
(−1)n

(np+1)n!x
pn

is increasing (decreasing) on (0,∞) if 0 < p < (>)1 with

R3
(
0+)=

mp+1
m+1

and R3 (∞) =
mp− p+1

m
.

Therefore, the double inequality

(−1)m Qm,α3 (xp) <
(−1)m

x

∫ x

0
e−t pdt < (−1)m Qm,β3

(xp) (3.23)

holds for p,x > 0 with the best constants

α3 = min

(
m+1
mp+1

,
m

mp− p+1

)
and β3 = max

(
m+1
mp+1

,
m

mp− p+1

)
,

where

Qm,λ (x) = λ
1− e−x

x
+

m−1

∑
n=0

(−1)n
(

n+1
np+1

−λ
)

xn

(n+1)!
.

Proof. Let

f3 (x) = x1−p
(
1− e−xp

)
−

m−1

∑
n=0

(−1)n xnp+1

(n+1)!
,

g3 (x) =
∫ x

0
e−t pdt−

m−1

∑
n=0

(−1)n

(np+1)n!
xpn+1.

Then R3 (x) = f3 (x)/g3 (x) with f3 (0+) = g3 (0+) = 0. Differentiation yields

f ′3 (x) = pe−xp − p−1
xp

(
1− e−xp

)
−

m−1

∑
n=0

(−1)n (np+1)
(n+1)!

xnp := f31 (xp) ,

g′3 (x) = e−xp −
m−1

∑
n=0

(−1)n

n!
xpn := g31 (xp) ,

where

f31 (y) = pe−y − p−1
y

(
1− e−y)−m−1

∑
n=0

(−1)n (np+1)
(n+1)!

yn,

g31 (y) = e−y −
m−1

∑
n=0

(−1)n

n!
yn
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with y = xp .
Similar to show that (−1)m+1 g′2 (x) , (−1)m+1 g2 (x) > 0 for x > 0 in the proof of

Theorem3.7, we have that (−1)m g′3 (x) , (−1)m g3 (x)> 0 for x > 0 and (−1)m g31 (y)>
0 for y > 0.

Set

f32 (y) = y f31 (y) = pye−y +(p−1)e−y − (p−1)−
m−1

∑
n=0

(−1)n (np+1)
(n+1)!

yn+1,

g32 (y) = yg31 (y) = ye−y −
m−1

∑
n=0

(−1)n

n!
yn+1.

Evidently, g32 (y) ≡ g22 (y) . As shown in the proof of Theorem 3.7, (−1)m g(k)
32 (y) >

(−1)m g(k)
32 (0+)= 0 for 0 � k � m . Also, we easily see that p−1+∑m−1

n=0
(−1)n(np+1)

(n+1)! yn+1

is the m-order Taylor polynomial of the function pye−y +(p−1)e−y , so f (k)
32 (0+) = 0

for 0 � k � m . Thus, if we prove the ratio f (m)
32 /g(m)

32 is increasing (decreasing) on

(0,∞) for 0 < p < (>)1, then by Lemma 2.1, so is f (k)
32 /g(k)

32 for 0 � k � m , and so are
f31/g31 = f32/g32 and f21/g21 . In view of(

f ′3 (x)
g′3 (x)

)′
=

d
dy

(
f31 (y)
g31 (y)

)
× dy

dx
= pxp−1

(
f31 (y)
g31 (y)

)′
> 0,

by Lemma 2.1 again, it then follows that f3/g3 is strictly increasing on (0,∞) .
Indeed, we have

f (m)
32 (y)

g(m)
32 (y)

=
p
(
(−1)m ye−y +(−1)m−1 me−y

)
+(−1)m (p−1)e−y− (−1)m−1 ((m−1) p+1)

(−1)m (ye−y +m(1− e−y))

=
p(ye−y −me−y)+ (p−1)e−y +(m−1) p+1

ye−y +m(1− e−y)

=
(mp− p+1)ey + py−mp+ p−1

mey + y−m
,(

f (m)
32 (y)

g(m)
32 (y)

)′
= −(p−1)

yey − ey +1

(mey + y−m)2

{
> 0 if p ∈ (0,1) ,
< 0 if p ∈ (1,∞)

for y > 0.
Finally, we compute the limits R3 (0+) and R3 (∞) . We write R3 (x) in the form

of ratio of two power series

R3 (x) =
∑∞

n=0
(−1)nxnp

(n+1)! −∑m−1
n=0

(−1)nxnp

(n+1)!

∑∞
n=0

(−1)n

(np+1)n!x
pn−∑m−1

n=0
(−1)n

(np+1)n!x
pn

=
∑∞

n=m
(−1)nxnp

(n+1)!

∑∞
n=m

(−1)n

(np+1)n!x
pn

,
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which gives

lim
x→0+

R3 (x) =
(−1)m /(m+1)!

(−1)m /((mp+1)m!)
=

mp+1
m+1

.

To compute R3 (∞) , we divide the numerator and denominator in R3 (x) by xp(m−1) to
obtain

lim
x→∞

R3 (x) =
−(−1)m−1 /m!

−(−1)m /((mp− p+1)(m−1)!)
=

mp− p+1
m

.

Then the desired double inequality follows, which completes the proof. �
Taking m = 1,2 in Theorem 3.13, the following corollary is immediate.

COROLLARY 3.14. If p > 1 , then the inequalities

1− e−xp

xp <
1
x

∫ x

0
e−t pdt <

p−1
p+1

+
2

p+1
1− e−xp

xp ,

2
p−1
2p+1

− p−1
2(p+1)(2p+1)

xp +
3

2p+1
1− e−xp

xp

<
1
x

∫ x

0
e−t pdt <

p−1
p+1

+
2

p+1
1− e−xp

xp

hold for x > 0 . They are reversed if 0 < p < 1 .

REMARK 3.15. Corollary 3.14 indicates that our double inequality (3.23) greatly
generalizes and extends Qi and Huang’s inequality (1.4).

By the changes of variables q = 1/p , u = xp ∈ (0,∞) and the relation (3.13), we
can rewrite Theorem 3.13 as follows.

THEOREM 3.16. For q > 0 and m ∈ N , the function

R∗
3 (u) =

u−1 (1− e−u)−∑m−1
n=0

(−1)n

(n+1)!u
n

u−q (Γ(q)−Γ(q,u))−∑m−1
n=0

(−1)n

(n+q)n!u
n

is increasing (decreasing) on (0,∞) if 0 < q > (<)1 with

R∗
3

(
0+)=

m+q
m+1

and R∗
3 (∞) =

m−1+q
m

.

Therefore, the double inequality

(−1)m+1 Qm,β ∗
3
(u) < (−1)m Γ(q,u)− (−1)m

Γ(q+1)−uq

q
< (−1)m+1 Qm,α∗

3
(u)

(3.24)
holds for q,x > 0 with the best constants

α∗
3 = min

(
m+1
m+q

,
m

m−1+q

)
and β ∗

3 = max

(
m+1
m+q

,
m

m−1+q

)
,
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where

Qm,λ (u) = λuq−1 (1−u− e−u)+ m−1

∑
n=1

(−1)n
(

n+1
n+q

−λ
)

un+q

(n+1)!
.

Letting q → 0+ in Theorem 3.16, we have

COROLLARY 3.17. For m ∈ N with m � 2 , the function

R∗∗
3 (u) =

u−1 (1− e−u)−∑m−1
n=0

(−1)n

(n+1)!u
n

−E1 (u)− γ − lnu−∑m−1
n=1

(−1)n

nn! un

is decreasing on (0,∞) with

R∗∗
3

(
0+)=

m
m+1

and R∗∗
3 (∞) =

m−1
m

.

Therefore, the double inequality

(−1)m+1 scQm,β ∗∗
3

(u) < (−1)m (Ei(u)+ γ + lnu) < (−1)m+1 scQm,α∗∗
3

(u) (3.25)

holds for x > 0 with the best constants

α∗∗
3 =

m+1
m

and β ∗∗
3 =

m
m−1

,

where

scQm,λ (u) = λ
1−u− e−u

u
+

m−1

∑
n=1

(−1)n
(

n+1
n

−λ
)

un

(n+1)!
.

In particular, putting m = 2 , we have

2
e−u +u−1

u
< E1 (u)+ γ + lnu <

1
4

6e−u +u2 +6u−6
u

for u > 0 .

Letting m → ∞ in Theorem 3.16, we obtain another series expansion for Γ(q,u) ,
which is also absolutely convergent.

COROLLARY 3.18. For q,u > 0 , we have

Γ(q,u) =
Γ(q+1)−uq

q
+uq−1(e−u +u−1

)
+(q−1)

∞

∑
n=1

(−1)n un+q

(n+q)(n+1)!
. (3.26)

In particular, taking q → 0+ , we have

E1 (u)+ γ + lnu =
e−u +u−1

u
−

∞

∑
n=1

(−1)n un

n(n+1)!
. (3.27)
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4. Conclusions

We proved in this paper the monotonicity of the three ratios Ri (x) ( i = 1,2,3)
given by (1.5), (1.7) and (1.8) on (0,∞) . These monotonicity yield several best bounds
for x−1 ∫ x

0 e−t pdt , for example, Corollary 3.3 refines Laforgia and Natalini’s inequality
(1.3), and inequalities (3.15) and Corollary 3.8 give an improvement and a generaliza-
tion of inequality (1.3), while inequality (3.23) greatly generalizes and extends Qi and
Huang’s inequality (1.4). Moreover, inequalities (3.15) and (3.23) imply correspond-
ing ones for the exponential integral E1 (x) , which are new and sharp. Interestingly, as
by-products, we obtain two power series representations of Γ(q,u) , that are, (3.21) and
(3.26), which seem to be new comers.
Acknowledgement This paper is supported by the National Natural Science Founda-
tion of China (No. 11371050)
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