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ORLICZ–FRACTIONAL MAXIMAL

OPERATORS ON WEIGHTED Lp SPACES

TAKESHI IIDA AND YOSHIHIRO SAWANO

Abstract. Necessary and sufficient conditions for weight norm inequalities on Lebesgue spaces
to hold are given in the scale of Orlicz spaces for the fractional Orlicz maximal operators which
generalizes the fractional maximal operators. A similar argument for the Orlicz maximal op-
erators is due to Pérez, who generalizes for the Fefferman–Stein inequality. The main result
is the Fefferman–Stein inequality for the fractional maximal operators of the Sawyer type and
the Hardy–Littlewood–Sobolev type. In this paper, we establish that the Lp -boundedness and
the Fefferman–Stein type inequality of Orlicz maximal operator are essentially equivalent to
the Saywer type inequality for the fractional Orlicz maximal operators. These inequalities are
stronger than the Hardy–Littlewood–Sobolev type inequalities. More generally, we consider sev-
eral mixed strong type inequalities for the ordinary and generalized fractional Orlicz maximal
operators. As an application, we investigate the weight norm inequalities of the commutator
[b,Iα ] , where b ∈ BMO(Rn) , and Iα the fractional integral operator.
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