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Abstract. Necessary and sufficient conditions for weight norm inequalities on Lebesgue spaces
to hold are given in the scale of Orlicz spaces for the fractional Orlicz maximal operators which
generalizes the fractional maximal operators. A similar argument for the Orlicz maximal op-
erators is due to Pérez, who generalizes for the Fefferman–Stein inequality. The main result
is the Fefferman–Stein inequality for the fractional maximal operators of the Sawyer type and
the Hardy–Littlewood–Sobolev type. In this paper, we establish that the Lp -boundedness and
the Fefferman–Stein type inequality of Orlicz maximal operator are essentially equivalent to
the Saywer type inequality for the fractional Orlicz maximal operators. These inequalities are
stronger than the Hardy–Littlewood–Sobolev type inequalities. More generally, we consider sev-
eral mixed strong type inequalities for the ordinary and generalized fractional Orlicz maximal
operators. As an application, we investigate the weight norm inequalities of the commutator
[b,Iα ] , where b ∈ BMO(Rn) , and Iα the fractional integral operator.

1. Introduction

This paper concerns the boundedness of the Hardy–Littlewood maximal function
M , the fractional maximal function Mα , and the fractional integral operator Iα on
weighted Lebesgue spaces. Here by an weight we mean a non-negative measurable
function. Here and below for a measurable set E , the symbol χE denotes the charac-
teristic function of E ⊂ Rn and the symbol |E| denotes the Lebesgue measure of E .
By a “cube” we mean a compact cube whose edges are parallel to cooridinate axes. Let
us recall their definition:

DEFINITION 1.1. Let f be a measurable function defined on Rn .

(1) Given 0 < α < n , as long as the definition makes sense, define the fractional
integral operator Iα by:

Iα f (x) :=
ˆ

Rn

f (y)
|x− y|n−α dy.
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(2) Given 0 � α < n , define the fractional maximal operator Mα by:

Mα f (x) := sup
Q:cube

χQ(x)

|Q|1− α
n

ˆ
Q
| f (y)|dy.

In particular, M := M0 is called the Hardy–Littlewood maximal operator.

These operators M , Mα , and Iα are fundamental tools in harmonic analysis and
potential theory (see [5, 13]).

Our aim in this paper is to obtain various weighted norm inequalities of the frac-
tional Orlicz maximal operators MB and MB,α . We will describe the Young functions,
Bp -condition, the operators MB and MB,α . As usual, a function B : [0,∞) → [0,∞) is
said to be a Young function if it is continuous, convex and increasing and it satisfies
B(0) = 0 and B(t) → ∞ as t → ∞ . Define the B-average of a measurable function f
over a cube Q by means of the Luxemburg norm.

DEFINITION 1.2. Given a Young function B and a cube Q , define the B-average
of a measurable function f over a cube Q by

‖ f‖B,Q := inf

{
λ > 0 :

1
|Q|

ˆ
Q

B

( | f (x)|
λ

)
dx � 1

}
.(1.1)

By (1.1), we can define the Orlicz maximal operator and the fractional Orlicz
maximal operator.

DEFINITION 1.3. Let B be a Young function, 0 � α < n , and 0 < u < ∞ .

(1) Define the fractional Orlicz maximal operators by

MB,α( f )(x) = MB,α f (x) := sup
Q:cube

χQ(x)|Q| α
n ‖ f‖B,Q ,(1.2)

where Q ranges over all cubes. If α = 0, then abbreviate MB,α to MB .
(2) Let 0 < u < ∞ . Define the powered fractional Orlicz maximal operators by

M(u)
B,α( f )(x) := (MB,α(| f |u)(x)) 1

u (x ∈ Rn).(1.3)

If α = 0, then abbreviate M(u)
B,α to M(u)

B . Furthermore, if B(t) ≡ t for t � 0,

we write M(u) instead of M(u)
B .

Let 0 � α < n , and let B be a Young function. It is easy to check the following
inequality (see [1, p.108]): for a measurable function f

Mα f (x) � CMB,α f (x).(1.4)

So, MB,α dominates Mα .
We study the weak (1,1) of the Fefferman–Stein type inequality for MB : The

following theorem is a starting point of this paper:
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THEOREM 1.4. Let w be a weight and B be a Young function. Then for every
λ > 0

ˆ
{x∈Rn:MB f (x)>λ}

w(x)dx � 3n
ˆ

Rn
B

(
4n f (x)

λ

)
Mw(x)dx.(1.5)

One of our aims in this paper is to extend Theorem 1.4.
Write log+ a = log(max(1,a)) for a � 0.

THEOREM 1.5. Let B be a Young function, Q0 be a cube and f be a measurable
function supported on Q0 .

(1) There exists C > 0 independent of f and Q such that

1
|Q0|

ˆ
Q0

MB f (x)dx � C+
C
|Q0|

ˆ
Q0

B(| f (x)|) log+ | f (x)|
B−1(1)

dx.(1.6)

(2) Let D(t) = B(t) log+ t for t � 0 . Then

1
|Q0|

ˆ
Q0

MB f (x)dx � C‖ f‖D,Q0
.(1.7)

In particular, M ◦MB f � CMD f .

DEFINITION 1.6. A Young function B is said to satisfy the Bp -condition with
1 < p < ∞ , if

ˆ ∞

1

B(t)
t p+1 dt < ∞.

The set Bp collects all Young functions satisfying the Bp -condition.

The classes
{
Bp
}

p∈(1,∞) of the set of functions are nested:

Bp � Bq (1 < p < q < ∞).(1.8)

Let 1 < p < ∞ and B be a Young function. Perez showed that MB is bounded on
Lp if and only if B ∈ Bp ; see [11, p.139].

The complementary Young function B of a Young function B is defined by

B(t) := sup
s>0

(st−B(s)) (t > 0).(1.9)

We next point out the following characterization of this class.

THEOREM 1.7. Let 0 � α < n and 1 < p < n
α . A Young function B belongs to

Bp if and only if B satisfies one of the following equivalent conditions:
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(1) There is a constant C such that

ˆ
Rn

Mα f (y)p w(y)

M
( 1

p )

B,α
(u)(y)

dy � C
ˆ

Rn
| f (y)|p Mw(y)

u(y)
dy

for all measurable functions f , weights w and u such that u is positive almost
everywhere.

(2) There is a constant C > 0 such that

ˆ
Rn

MB,α f (x)pw(x)dx � C
ˆ

Rn
| f (x)|p Mα pw(x)dx

for all measurable functions f and weights w.
(3) There is a constant C > 0 such that

ˆ
Rn

Mα f (y)p w(y)

M

(
1
p

)
B

(u)(y)

dy � C
ˆ

Rn
| f (y)|p Mα pw(y)

u(y)
dy

for all measurable functions f , weights w and u such that u is positive almost
everywhere.

Theorem 1.7 reinforces the following characterization by Perez [11, p.139].

PROPOSITION 1.8. Let 1 < p < ∞ . A Young function B belongs to Bp if and
only if B satisfies one of the following equivalent conditions:

(4) There is a constant C such that

ˆ
Rn

MB f (y)pdy � C
ˆ

Rn
| f (y)|pdy

for all measurable functions f .
(5) There is a constant C such that

ˆ
Rn

MB f (y)pw(y)dy � C
ˆ

Rn
| f (y)|pMw(y)dy

for all measurable functions f and all weights w.
(6) There is a constant C such that

ˆ
Rn

M f (y)p w(y)

M

(
1
p

)
B

(u)(y)

dy � C
ˆ

Rn
| f (y)|p Mw(y)

u(y)
dy

for all measurable functions f , and all weights w and u such that u is positive
almost everywhere.
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Remark that Theorem 1.7 (1), (2) and (3) with α = 0 recapture Proposition 1.8 (4), (5)
and (6), respectively.

For each 1 � p � ∞ , p′ will denote the dual exponent of p , i.e., p′ = p
p−1 with

the usual modifications 1′ = ∞ and ∞′ = 1. We remark that Proposition 1.8 gives the
following estimate on the [p′ + 1]-fold iterated maximal operator M[p′+1] of M . As
usual [u] denotes the integer part of u ∈ R .

COROLLARY 1.9. [11, p.139] Let 1 < p < ∞ . Then for all measurable functions
f and a measurable function u which is positive almost everywhere,

ˆ
Rn

M f (x)p
(
M[p′+1]u(x)

)1−p
dx � C

ˆ
Rn

| f (x)|pu(x)1−pdx.

As is pointed out in [11], the example of f = u = χ(0,1)n shows that Corollary 1.9

is sharp in the sense that we can not replace M[p′+1] by M[p′] .
Cruz-Uribe, Martell and Pérez obtained a necceary and sufficient condition of the

weak boundedness; see [2, p.100, Proposition 5.6].

PROPOSITION 1.10. Let 1 < p < ∞ . For a Young function B, the following are
eqivalent.

(W-1) There exists a constant C > 0 such that for sufficiently large t > 0 , the growth
condition

B(t) � Ct p :(1.10)

is satisfied.
(W-2) The maximal operator MB is weak Lp -bounded, that is, there exists a constant

C > 0 such that for all measurable functions f and λ > 0

|{x ∈ Rn : MB f (x) > λ}| � C
λ p

ˆ
Rn

| f (x)|pdx.

According to [1], if B ∈ Bp , then B satisfies condition (1.10).
Recall that a function ϕ : (0,∞) → (0,∞) is said to be almost increasing if there

exists a constant C > 0 such that Cφ(s) � φ(t) for all 0 < t < s < ∞ . In terms of
weights, we can further characterize the conditions of the weak boundedness of the
fractional Orlicz maximal operators. Here and below, given a weight w and a measur-
able set E , let w(E) :=

´
E w(x)dx .

THEOREM 1.11. Let 0 � α < n, and let 1 < p � q < n
α satisfy 1

q = 1
p − α

n . For
a Young function B, assume that

t ∈ (0,∞) 	→ t−n/αB(t) ∈ (0,∞) is almost decreasing and that t−n/αB(t) → 0 (t → ∞).
(1.11)

Then a Young function B satisfies the growth condition 1 if and only if B satisfies one
of the following equivalent conditions for all measurable functions f and weights w
and u such that u does not vanish almost everywhere:
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(W-3) There is a constant C > 0 independent of f and w such that for every λ > 0 ,

w({x ∈ Rn : MB,α f (x) > λ}) � C
λ p

ˆ
Rn

| f (x)|pMα pw(x)dx.

(W-4) There is a constant C > 0 independent of f , w and u such that for every
λ > 0 ,

w
({

x ∈ Rn : Mα f (x) > λMB

(
u

1
p

)
(x)
})

� C
λ p

ˆ
Rn

| f (x)|p Mα pw(x)
u(x)

dx.

(W-5) There is a constant C > 0 independent of f such that for every λ > 0 ,

|{x ∈ Rn : MB,α f (x) > λ}| �
(

C
λ

(ˆ
Rn

| f (x)|pdx

) 1
p
)q

.

(W-6) There is a constant C > 0 independent of f and w such that for every λ > 0 ,

w({x ∈ Rn : MB,α f (x) > λ}) �
(

C
λ

(ˆ
Rn

| f (x)|pMw(x)
p
q dx

) 1
p
)q

.

(W-7) There is a constant C > 0 independent of f , w and u such that for every
λ > 0 ,

w
({

x ∈ Rn : Mα f (x) > λMB

(
u

1
q

)
(x)
})

�

⎛
⎝C

λ

(ˆ
Rn

| f (x)|p
(

Mw(x)
u(x)

) p
q

dx

) 1
p
⎞
⎠

q

.

(W-8) There is a constant C > 0 independent of f , w and u such that for every
λ > 0 ,

w
({

x ∈ Rn : Mα f (x) > λMB,α

(
u

1
p

)
(x)
})

� C
λ p

ˆ
Rn

| f (x)|p Mw(x)
u(x)

dx.

In particular, a Young function B belongs to Bp if and only if B satisfies the following
condition for all measurable functions f and all weights w:

(W-9) There is a constant C > 0 independent of the measurable functions f and w
such that for every λ > 0 ,

w({x ∈ Rn : MB f (x) > λ}) � C
λ p

ˆ
Rn

| f (x)|pMw(x)dx.

We discuss relation between these weighted inequalities and the existing result.
We start with the Hardy–Littlewood–Sobolev theorem for the fractional maximal

operator Mα (see [5, p.89]).
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PROPOSITION 1.12. Let 0 � α < n, and let 1 � p � q < ∞ satisfy 1
q = 1

p − α
n .

(A) If p > 1 , then there exists a constant C =C(n, p) such that for all measurable
functions f ,

‖Mα f‖Lq(Rn) � C‖ f‖Lp(Rn) .

(B) If p = 1 , then there exists a constant C = C(n,1) such that for λ > 0 and all
measurable functions f ,

|{x ∈ Rn : Mα f (x) > λ}| 1
q � C

λ

ˆ
Rn

| f (x)|dx.

We next recall the Fefferman–Stein dual inequality (see [5, p.37]):

PROPOSITION 1.13.

(A) If 1 < p < ∞ , then there exists a constant C = C(n, p) > 0 such that for all
measurable functions f and all weights w, ‖M f‖Lp(w) � C‖ f‖Lp(Mw) .

(B) There exists a constant C = C(n,1) > 0 such that for all λ > 0 and for all

measurable functions f and all weights w, w({x ∈ Rn : M f (x) > λ}) � C
λˆ

Rn
| f (x)|Mw(x)dx.

We can mix Propositions 1.12 and 1.13. We add a statement with respect to a
Young function B :

PROPOSITION 1.14. Let 0 � α < n, and let 1 < p < n
α .

(1) [12] There exists a constant C = C(n, p) such that for all non-negative mea-
surable functions f and w

‖Mα f‖Lp(w) � C‖ f‖Lp(Mα pw) .

(2) [2, p.115] There exists a constant C = C(n,1) such that for all non-negative
measurable functions f and w and λ > 0 ,

w({x ∈ Rn : Mα f (x) > λ}) � C
λ

ˆ
Rn

| f (x)|Mαw(x)dx.

(3) Let B be a Young function. Define q ∈ (p,∞) by 1
q = 1

p − α
n . Assume in

addition that B(t) � Ctu for some 1 � u < q. Then there is a constant C > 0
such that

(ˆ
Rn

MB,α f (x)qdx

) 1
q

� C

(ˆ
Rn

| f (x)|pdx

) 1
p

.(1.12)

for all measurable functions f .
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The proof of (3) is a consequence of the Hardy–Littlewood–Sobolev inequality.
We invoke the following proposition from [9], which extends Proposition 1.12 in that
the operator Mα or MB,α in Proposition 1.12 is replaced by a more general operator of
MB,α (see [1, pp.115–116]).

PROPOSITION 1.15. Let 0 � α < n, 1 < p < n
α . Suppose that 1

q = 1
p − α

n . Then
conclusion (1.12) in Proposition 1.14 holds if B ∈ Bp .

REMARK 1.

(1) Suppose that MB,α : Lp → Lq is bounded. Then the dilation transform forces q
to satisfy 1

q = 1
p − α

n , which justifies the assumption 1
q = 1

p − α
n .

(2) In Proposition 1.15, the condition B ∈ Bp is best possible: Let ε > 0. Then
as the example of B(t) = t p+ε−δ shows, there exists a Young function B such
that B ∈ Bp+ε but that MB,α(χQ(0,1)) 
∈ Lq(Rn) .

It might be interesting to ask ourselves whether the condition B ∈ Bp is the neces-
sary condition of MB,α : Lp → Lq based on this remark. In this paper, we also investigate
the problem.

Going through an argument similar to Theorem 1.7, we will develop Proposi-
tion 1.15.

THEOREM 1.16. Let 0 � α < n, 1 < p < n
α and 1 < q < ∞ . Consider three

conditions with respect to a Young function B,

(8) There is a constant C > 0 such that

(ˆ
Rn

MB,α f (x)qw(x)dx

) 1
q

� C

(ˆ
Rn

| f (x)|p(Mw(x))
p
q dx

) 1
p

.

for all measurable functions f and w.
(9) There is a constant C > 0 such that

⎛
⎜⎜⎝
ˆ

Rn
Mα f (x)q w(x)

M

(
1
q

)
B

u(x)

dx

⎞
⎟⎟⎠

1
q

� C

(ˆ
Rn

| f (x)|p
(

Mw(x)
u(x)

) p
q

dx

) 1
p

for all measurable functions f and weights w and u such that u is positive
almost everywhere.

(10) B
αq
n +1 ∈ Bq

Then (3) ⇔ (8) ⇒ (9) ⇒ (10) hold.
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Having clarified the characterization of the class Bp which we are going to prove,
we will obtain general inequalities related to MB,α . To proceed further we recall the
Ap -condition and the A∞ -condition. Here and below for a measurable function F de-
fined on Q , we write  

Q
F(x)dx :=

1
|Q|

ˆ
Q

F(x)dx.

DEFINITION 1.17. Let 1 < p < ∞ . One says that a weight w satisfies the Ap -
condition if

[w]Ap := sup
Q:cube

( 
Q

w(x)dx

)( 
Q

w(x)−
p′
p dx

)p−1

< ∞,

where the supremum is taken over all cubes Q in Rn . Write Ap for the set of all
weights satisfying the Ap -condition. Finally, define A∞(Rn) :=

⋃
p>1 Ap(Rn) .

It is well known that the class Ap emerged from the following celebrated theorem:

THEOREM 1.18. ([8]) Let 1 < p < ∞ . Then the following statements are equiva-
lent:

(A) w ∈ Ap .
(B) There exists a constant C > 0 such that ‖M f‖Lp(w) � C‖ f‖Lp(w) for all mea-

surable functions f .

For the proof of Theorem 1.18 we also refer to the textbooks [5, 6].
Going back to the general estimates of MB,α , we note that estimates in Theorem

1.16 are useful since they will give us further estimates.

THEOREM 1.19. Let 0 � α < n, 1 < p < n
α , A, B and C be Young functions

such that

(1.13) A−1(t)C−1(t) � B−1(t).

Moreover we assume that V ∈ A∞(Rn) ,

K1 := sup
Q:cube

V (Q)
α
n

(
1

V (Q)

ˆ
Q

v(x)V (x)dx

) 1
p ∥∥∥w− 1

p

∥∥∥
A,Q

< ∞(1.14)

and

MC : Lp(W ) → Lp(V ).(1.15)

Then ˆ
Rn

MV,B,α f (x)pv(x)V (x)dx � C
ˆ

Rn
| f (x)|pw(x)W (x)dx,(1.16)

where MV,B,α f (x) := sup
Q:cube

χQ(x)V (Q)
α
n ‖ f‖B,Q for x ∈ Rn .
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As a special case in Theorem 1.19, we get the following general weight estimate:

COROLLARY 1.20. Let 0 � α < n, 1 < p < n
α and B be a Young function.

Moreover we assume that V ∈ A∞(Rn) and that

MB : Lp(W ) → Lp(V ).(1.17)

Then (ˆ
Rn

MV,t,α f (x)p|g(x)|V (x)dx

) 1
p

� C

(ˆ
Rn

| f (x)|pMV,α pg(x)W (x)dx

) 1
p

,(1.18)

where MV,α pg(x) := sup
Q:cube

χQ(x)V (Q)
α p
n −1

ˆ
Q
|g(y)|V (y)dy for x ∈ Rn .

To prove Corollary 1.20, in Theorem 1.19 we simply take v ≡ |g| , w ≡ MV,α pg ,

and we let A−1 =
B
−1

2
and C = B , so that A−1(t)C−1(t) =

B
−1

(t)B−1(t)
2

� t .

Moreover, taking V ≡W ≡ 1, we learn that Corollary 1.20 boils down to Propo-
sition 1.14.

Furthermore, we obtain the following result:

THEOREM 1.21. Let 0 � α < n, 1 < p � q < n
α , and let v , w be weights such

that w is positive almost everywhere. Suppose that A,B and C are Young functions
which satisfy (1.13) . Moreover we assume that V ∈ A∞(Rn) , that

K2 := sup
Q:cube

(
1

V (Q)

ˆ
Q

v(x)V (x)dx

) 1
q ∥∥∥w− 1

p

∥∥∥
A,Q

< ∞(1.19)

and that

MC,α : Lp(W ) → Lq(V ).(1.20)

Then for all measurable functions f

(ˆ
Rn

MB,α f (x)qv(x)V (x)dx

) 1
q

� C

(ˆ
Rn

| f (x)|pw(x)W (x)dx

) 1
p

.(1.21)

As a special case in Theorem 1.21, we get Corollary 1.22 below by taking v = |g| ,

w = (MV g)
p
q , and let A−1 =

B
−1

2
and C = B . Note that A−1(t)C−1(t) =

B
−1

(t)B−1(t)
2

� t .

COROLLARY 1.22. Let 0 � α < n, 1 < p � q < n
α and B be a Young function.

Let V and W be weights. Moreover we assume that V ∈ A∞(Rn) and

MB,α : Lp(W ) → Lq(V ).(1.22)
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Then for all measurable functions f and g

(ˆ
Rn

Mα f (x)q|g(x)|V (x)dx

) 1
q

� C

(ˆ
Rn

| f (x)|pMV (g)(x)
p
q W (x)dx

) 1
p

.(1.23)

Moreover, taking V ≡W ≡ 1, W = |g| and

α =
n
p
− n

q
,

we see that Corollary 1.22 reduces ‖Mα f‖Lq(w) � C‖ f‖
Lp

(
(Mw)

p
q

) . Meanwhile, as

the other case in Theorem 1.21, we can recover (8) ⇒ (9). In fact, replacing weight

functions V by w , v by

(
M

( 1
q )

B
u

)−1

, W by (Mw)
p
q , w by u−1 , A by B and C by B

in Theorem 1.21, respectively, then, (1.20) reduces matters to (8) and the estimate of

K2 = sup
Q:cube

⎛
⎜⎝ 1

w(Q)

ˆ
Q

w(x)

M
( 1

q )

B
u(x)

dx

⎞
⎟⎠

1
q ∥∥∥u 1

q

∥∥∥
B,Q

.

Since M
( 1

q )

B
u(x) �

∥∥∥u 1
q

∥∥∥q

B,Q
for every cube Q and x ∈ Q , we obtain

sup
Q:cube

⎛
⎜⎝ 1

w(Q)

ˆ
Q

w(x)

M
( 1

q )

B
u(x)

dx

⎞
⎟⎠

1
q ∥∥∥u 1

q

∥∥∥
B,Q

� 1.

Applying Theorem 1.21, we get estimate (9).
For the sufficient condition, the following result can be found in [3, Theorem 3.3

in p.428].

PROPOSITION 1.23. Given 0 < α < n, 1 < p < n
α and define q by: 1

q = 1
p − α

n ,

let B be a Young function satisfying (1.11) and B
q
p ∈ Bq . Then for all measurable

functions f

‖MB,α f‖Lq � C‖ f‖Lp .

REMARK 2. It seems that [3, Theorem 3.3 in p.428] does not seem to contain
condition (1.11). However, Proposition 1.23 seems to need condition (1.11). We prove
Proposition 1.23 in Section 5.

Meanwhile, the weighted version of Proposition 1.15 is in [1, p.115].
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PROPOSITION 1.24. Let 0 � α < n, 1 < p � q < n
α . Let A, B and C be Young

functions such that (1.13) holds, and that C is doubling and satisfies the Bp condition.
If (u,v) is a pair of weights such that for every cube Q,

|Q| α
n + 1

q− 1
p

( 
Q

u(x)qdx

) 1
q ∥∥v−1

∥∥
A,Q < ∞,(1.24)

then, for all f ∈ Lp(vp) ,

(ˆ
Rn

MB,α f (x)qu(x)qdx

) 1
q

� C‖ f‖Lp(vp) .(1.25)

According to [2, p.115], the following proposition does not seem to have been
stated explicitly in the literature, but the proof is almost identical to that for the analo-
golous result for the Hardy–Littlewood maximal operator.

PROPOSITION 1.25. Let 0 � α < n and 1 � p � q < ∞ . For a pair of weights
(u,v) , the following are equivalent:

(1)

sup
Q:cube

|Q| α
n + 1

q− 1
p

( 
Q

u(x)qdx

) 1
q
( 

Q
v(x)−p′dx

) 1
p′

< ∞.(1.26)

When p = 1 ,
(ffl

Q v(x)−p′dx
) 1

p′ is understood as esssup x∈Q
1

v(x) .

(2) For all λ > 0 and measurable functions f defined on Rn ,

uq ({x ∈ Rn : Mα f (x) > λ}) � C

(
1
λ
‖ f‖Lp(vp)

)q

.(1.27)

For p > 1, the fractional Orlicz maximal function MB,α is also of weak type (p,q)
provided that B satifies condition (1.10):

Let α = n
p − n

q . As a spacial case of Proposition 1.23, we obtain the following:

REMARK 3. Let 1 < p � q < ∞ and B be a Young function. If B
q
p ∈ Bq , then

MB, n
p− n

q
: Lp → Lq .

By Remark 3, we can improve Proposition 1.24:

THEOREM 1.26. Let 0 � α < n, 1 < p � q < n
α . Let A, B and C be Young

functions such that A−1(t)C−1(t) � B−1(t) , and that C
q
p ∈ Bq . If a pair of weights

(u,v) satisfies (1.24). Then for all f ∈ Lp(vp) , inequality (1.25) holds.
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Since we need only modify slightly the proof of Proposition 1.24 to prove Theo-
rem 1.26, we omit the proof.

The following notation is used: The letter C always denotes a positive constant,
which is independent of the essential parameters, but is not necessary the same at each
occurrence. We will use the following observation on the class A∞ : Assume that V ∈
A∞(Rn) . Then V satisfies doubling condition:

V (2Q) � CV (Q) (Q : cube)(1.28)

The rest of this paper is organized as follows. In Section 2, we list some lemmas
needed in this paper. Section 3 is devoted to the proof of the main results. In Section
4, we consider the applications: We prove the boundedness of the commutator [b, Iα ] ,
where b ∈ BMO(Rn) . Section 5 is an appendix: We prove Proposition 1.23 in Section
5.

2. Some lemmas

We invoke the properties of Young functions to prove main results.

LEMMA 2.1. Write

D
+
B(t) = limsup

h→0+

B(t +h)−B(t)
h

.

The Young function B satisfies that

B(t) ∼= tD
+
B(t) (t > 0).(2.1)

and

aB(t) � B(at) and B
( t

a

)
� B(t)

a
(a > 1).(2.2)

Inequalities (2.2) entail

B(t)
t

� B(s)
s

(0 < t < s).(2.3)

The functions B and B satisfy the following inequality:

t � B−1(t) ·B−1
(t) � 2t (t > 0).(2.4)

It is also well known that generalized Hölder’s inequality holds: 
Q
| f (y)g(y)|dy � 2‖ f‖B,Q ‖g‖B,Q .(2.5)

More generally, if A, B and C are Young functions such that for all t > 0 , A−1(t)C−1(t)
� B−1(t) , then

‖ f g‖B,Q � 2‖ f‖A,Q ‖g‖C,Q .(2.6)
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We need the following two-sided estimate to prove Theorem 1.7.

LEMMA 2.2. Let 0 � α < n. Given a Young function B, Whenever |x| > 1 ,

MB,α(χQ(0,1))(x) ∼= |x|α B
−1

(|x|n)−1 ,(2.7)

where the center of the cube Q(0,1) is the origin and the side-length �(Q(0,1)) equals
1 .

Proof. By definition,

MB,α(χQ(0,1))(x) = sup
Q:cube

χQ(x)�(Q)αB
−1
( |Q|
|Q∩Q(0,1)|

)−1

.

We omit further details since (2.7) can be obtained from a geometric observation;
see Figure 1.

O

Q(0, 1)

Q

x

1

|x|

x

y

FIGURE 1. (In the case of n = 2)

� �

REMARK 4. In particular taking B(t) = t in (2.7), we obtain Mα(χQ(0,1))(x) ∼=
1

|x|n−α (|x| > 1).

Denote by D = D(Rn) the set of all dyadic cubes. To analyze simply the operator
MV,B,α , we study the equivalent of the dyadic version:

LEMMA 2.3. Let 0 � α < n. Given a Young function B and a weight function
V , the following equivalence holds:

MV,B,α ,3D f (x) � MV,B,α f (x) � MV,B,α ,3D f (x),
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where
MV,B,α ,3D f (x) := sup

x∈Q∈D(Rn)
V (3Q)

α
n ‖ f‖B,3Q .

Proof. It suffices to verify MV,B,α f (x) � CMV,B,α ,3D f (x) . Fix a point x ∈ Rn . For
every cube Q ⊂ Rn such that Q � x , there exists a unique integer k ∈ Z such that
2−(k+1)n � |Q|< 2−kn . Then we can choose dyadic cubes Ji ( i = 1,2, . . . ,2n ) such that
|Ji| = 2−kn and the dyadic cubes Ji ( i = 1,2, . . . ,2n ) cover Q (see Figure 2).

J

3J1

J1
J2

J3 J4

x

2−k 2−k

2−k

2−k

2−k2−k

2−k

2−k

Q

FIGURE 2. (In the case of n = 2)

That is,

Q ⊂
2n⋃
i=1

Ji(2.8)

and

|Q| < |Ji| � 2n|Q|.(2.9)

Hence,

(2.10) V (Q)
α
n ‖ f‖B,Q = V (Q)

α
n ‖ f χJ‖B,Q ,

where J :=
2n⋃
i=1

Ji . Obviously, for i = 1,2, . . . ,2n ,

|J| = 2n|Ji|.(2.11)

By (2.8),

(2.12) V (Q)
α
n ‖ f χJ‖B,Q � V (Q)

α
n

2n

∑
i=1

‖ f χJi‖B,Q .
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By (2.9),

(2.13) ‖ f χJi‖B,Q � inf

{
λ > 0 :

2n

|Ji|
ˆ

Ji

B

(
f (x)
λ

)
dx � 1

}
.

Since Ji ⊂ 3J1 ,
(2.14)

inf

{
λ > 0 :

2n

|Ji|
ˆ

Ji

B

(
f (x)
λ

)
dx � 1

}
� inf

{
λ > 0 :

6n

|3J1|
ˆ

3J1

B

(
f (x)
λ

)
dx � 1

}
.

By (2.2),

(2.15) inf

{
λ > 0 :

6n

|3J1|
ˆ

3J1

B

(
f (x)
λ

)
dx � 1

}
� 6n ‖ f‖B,3J1

.

Estimates (2.10)–(2.15) imply

V (Q)
α
n ‖ f‖B,Q � 6nV (3J1)

α
n ‖ f‖B,3J1

.

Since the cube J1 � x is a dyadic cube, we obtain Theorem 2.3. � �

We invoke the following Lemma in [11, p.146].

LEMMA 2.4. Suppose that B is a Young function, and that f is a non-negative
bounded function with compact support. For each λ > 0 , let Ωλ = {x∈Rn : MB f (x) >
λ} . Then if Ωλ is not empty, we have

Ωλ ⊂
∞⋃

j=1

3Qj,(2.16)

where {Qj}∞
j=1 is a family of non-overlapping maximal dyadic cubes satisfying

λ
4n < ‖ f‖B,Qj

� λ
2n(2.17)

for each integer j . Furthermore, it follows that

|Ωλ | � C0

ˆ
{

y∈Rn: f (y)> λ
2n

}B

(
f (y)
λ

)
dy.(2.18)

Lemma 2.4 gives us the weak (1,1) of the Fefferman–Stein type inequality for
MB f (see Theorem 1.4). Similarly, we use the following lemma without weight.

LEMMA 2.5. Let 0 � α < n. Given a Young function B, suppose f is a non-
negative function such that |3Q| α

n ‖ f‖B,3Q tends to zero as |Q| tends to infinity. Then
given a > max{2 ·6nC0,2n} , where C0 is the constant in inequality (2.18), for each
k ∈ Z there exists a disjoint collection of maximal dyadic cubes

{
Qk, j
}

such that for
each j ,

ak <
∣∣3Qk, j

∣∣ α
n ‖ f‖B,3Qk, j

� 2nak.(2.19)
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Moreover, {
x ∈ Rn : MB,α ,3D f (x) > ak

}
=
⋃
j

Qk, j(2.20)

holds. Further, let Dk =
⋃

j Qk, j and Ek, j = Qk, j \Dk+1 . Then the Ek, j ’s are pairwise
disjoint for all j and k . Moreover

(2.21) |Qk, j| � 2|Ek, j|

holds.

We use the following calculation to show that our results are sharp.

LEMMA 2.6. Let 0 � α < n, and let w0(x) = (1+ |x|)−α ,x ∈ Rn . Then

Mαw0 ∈ L∞

Proof. Recall that M p
q (Rn) is the set of all measurable functions f for which

‖ f‖M p
q

= sup
Q∈D(Rn)

|Q| 1
p− 1

q ‖ f‖Lq(Q)

is finite. It is well known that w0 ∈M
n/α
1 (Rn) . Since Mα maps M

n/α
1 (Rn) boundedly

to L∞(Rn) , it follows that Mαw0 ∈ L∞ . � �

We use the Hölder inequality to decompose the fractional maximal operator.

LEMMA 2.7. Let 0 � α < n, B be a Young function. Then for all measurable

functions f : Rn → C and u : Rn → (0,∞) , Mα f � 2MB

(
f u−

1
p

)
·MB,α

(
u

1
p

)
.

Proof. Let x ∈ Rn be fixed. Note that

Mα f (x) = Mα

(
f u−

1
p ·u 1

p

)
(x) = sup

Q:cube
χQ(x)�(Q)α

 
Q
| f (z)|u(z)−

1
p u(z)

1
p dz.

By (2.5),

Mα f (x) � 2 sup
Q:cube

χQ(x)
∥∥∥ f u−

1
p

∥∥∥
B,Q

· �(Q)α
∥∥∥u 1

p

∥∥∥
B,Q

� 2MB

(
f u−

1
p

)
(x) ·MB,α

(
u

1
p

)
(x). �

�
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3. Proofs of the results

Proof of Theorem 1.4. We use Lemma 2.4. Let Ωλ := {x ∈ Rn : MB f (x) >
λ} . We may assume that Ωλ is not empty; otherwise the left-hand side of the conclu-
sion in Theorem 1.4 is zero. Assuming Ωλ is not empty, we are in the position of using
Lemma 2.4. By (2.16),ˆ

Ωλ

w(x)dx �
ˆ
⋃

j 3Qj

w(x)dx � ∑
j

ˆ
3Qj

w(x)dx.

Meanwhile, by (2.17),

1 <

 
Qj

B

(
4n f (x)

λ

)
dx.

Therefore, we get
ˆ

Ωλ

w(x)dx � 3n ∑
j

( 
3Qj

w(x)dx

)(ˆ
Qj

B

(
4n f (x)

λ

)
dx

)

= ∑
j

(ˆ
Qj

B

(
4n f (x)

λ

)( 
3Qj

w(y)dy

)
dx

)

� ∑
j

(ˆ
Qj

B

(
4n f (x)

λ

)
Mw(x)dx

)
�
(ˆ

Rn
B

(
4n f (x)

λ

)
Mw(x)dx

)
. �

Proof of Theorem 1.5.

(1) We estimate
ˆ

Q0

MB f (x)dx by the Layer Cake Formula. We calculate

ˆ
Q0

MB f (x)dx = 2
ˆ ∞

0
|{x ∈ Q0 : MB f (x) > 2λ}|dλ

= 2

(ˆ 1

0
+
ˆ ∞

1

)
|{x ∈ Q0 : MB f (x) > 2λ}|dλ

� 2

(ˆ 1

0
|Q0|dx+

ˆ ∞

1
|{x ∈ Q0 : MB f (x) > 2λ}|dλ

)

= 2

(
|Q0|+

ˆ ∞

1
|{x ∈ Q0 : MB f (x) > 2λ}|dλ

)
.

We evaluate |{x ∈ Q0 : MB f (x) > 2λ}| for λ > 0. Write f1 := f
χ{x∈Q0:| f (x)|>B−1(1)λ} and f2 := f − f1 , so that we have MB f � MB f1 +MB f2 .

This gives that

|{x ∈ Q0 : MB f (x) > 2λ}| � |{x ∈ Q0 : MB f1(x) > λ}|
+ |{x ∈ Q0 : MB f2(x) > λ}| .
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Since MB f2 � λ , we have |{x ∈ Q0 : MB f2(x) > λ}| = 0. Hence, we get

(3.1) |{x ∈ Q0 : MB f (x) > 2λ}| � |{x ∈ Q0 : MB f1(x) > λ}| .
By (2.18),

|{x ∈ Q0 : MB f1(x) > λ}| � C0

ˆ
Rn

B

(
f1(x)

λ

)
dx

= C0

ˆ
{x∈Q0: f (x)>B−1(1)λ}

B

(
f (x)
λ

)
dx.(3.2)

Estimates (3.1) and (3.2) imply that

|{x ∈ Q0 : MB f (x) > 2λ}| � C0

ˆ
{x∈Q0:| f (x)|>B−1(1)λ}

B

( | f (x)|
λ

)
dx.(3.3)

By (3.3),
ˆ ∞

1
|{x ∈ Q0 : MB f (x) > 2λ}|dλ

�C0

ˆ ∞

1

ˆ
Q0

B

( | f (x)|
λ

)
χ{x∈Q0:| f (x)|>B−1(1)λ}(x)dxdλ .

Using Fubini’s theorem, we calculate
ˆ ∞

1

ˆ
Q0

B

( | f (x)|
λ

)
χ{x∈Q0:| f (x)|>B−1(1)λ}(x)dxdλ

=
ˆ

Q0

ˆ ∞

1
B

( | f (x)|
λ

)
χ{λ>0:| f (x)|>B−1(1)λ}(λ )dλdx

�
ˆ

Q0

ˆ max

{
1,

| f (x)|
B−1(1)

}

1
B

( | f (x)|
λ

)
dλdx.

By (2.2), we have

ˆ
Q0

ˆ max

{
1,

| f (x)|
B−1(1)

}

1
B

( | f (x)|
λ

)
dλdx �

ˆ
Q0

B(| f (x)|)
ˆ max

{
1,

| f (x)|
B−1(1)

}

1

dλ
λ

dx

=
ˆ

Q0

B(| f (x)|) log+ | f (x)|
B−1(1)

dx.

(2) Let B̃(t) := B(t) log+ t
B−1(1)

(t � 0). Then we have

ˆ
Q0

B(| f (x)|) log+ | f (x)|
B−1(1)

dx =
ˆ

Q0

B̃(| f (x)|)dx.
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Taking F(x) :=
| f (x)|
‖ f‖B̃,Q0

, we apply (1.6):

 
Q0

MBF(x)dx � 2

(
1+C0

 
Q0

B̃(F(x))dx

)
.

By the definition of ‖ · ‖B̃,Q0
, we get

 
Q0

B̃(F(x))dx =
 

Q0

B̃

(
| f (x)|
‖ f‖B̃,Q0

)
dx � 1.

This implies that

 
Q0

MBF(x)dx � 2(1+C0) ,

that is,
 

Q0

MB f (x)dx � 2(1+C0)‖ f‖B̃,Q0
∼= ‖ f‖B(L) logL,Q0

. �

Proof of Theorem 1.7. We plan to verify the following keeping in mind that (4)–(6)
are equivalent to the fact that B ∈ Bp :

• (B ∈ Bp ⇐⇒ ) (5) ⇒ (1) ⇒ B ∈ Bp ,
• (B ∈ Bp ⇐⇒ ) (4) ⇒ (2) ⇒ (3) ⇒ B ∈ Bp .

(1) We prove (5) ⇒ (1). Lemma 2.7 implies that

ˆ
Rn

Mα f (y)p w(y)

M

(
1
p

)
B,α

u(y)

dy � 2p
ˆ

Rn
MB

(
f u−

1
p

)
(y)pw(y)dy.

By (5),

ˆ
Rn

MB

(
f u−

1
p

)
(y)pw(y)dy � C

ˆ
Rn

| f (y)|p Mw(y)
u(y)

dy.

Hence (1) holds.
(2) We prove B ∈ Bp assuming (1). Let f = χQ(0,1) , u = f + ε and w = 1, where

ε > 0 is chosen arbitrarily. By (1) and the monotone convergence theorem,

ˆ
Rn

Mα(χQ(0,1))(x)
p dx

MB,α
(
χQ(0,1)

)
(x)p

� C
ˆ

Q(0,1)
dx =C.
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We insert MB,α(χQ(0,1))(x) , x ∈ Rn . By (2.7) itself and (2.7) with B(t) = t ,
ˆ

Rn
Mα(χQ(0,1))(x)

p dx

MB,α
(
χQ(0,1)

)
(x)p

�C
ˆ
|y|>1

1

|y|(n−α)p ·
1

|y|α p
(
B
−1

(|y|n)−1
)p dy = C

ˆ
|y|>1

(
B
−1

(|y|n)
)p

|y|np dy.

Using polar coordinates, we have

ˆ
|y|>1

(
B
−1

(|y|n)
)p

|y|np dy = C
ˆ ∞

1

rn−1 ·
(
B
−1

(rn)
)p

rnp dr.

We change variables r 	→ t = rn . Then we have

ˆ ∞

1

rn−1 ·
(
B
−1

(rn)
)p

rnp dr = C
ˆ ∞

1

B
−1

(t)p

t p dt.

By (2.4), ˆ ∞

1

B
−1

(t)p

t p dt ∼=
ˆ ∞

1

1
(B−1 (t))p dt.

Taking � = B−1 (t) , we obtain
ˆ ∞

1

1

(B−1 (t))p dt =
ˆ ∞

B−1(1)

B′(�)
�p d�.

By (2.1), ˆ ∞

B−1(1)

B′(�)
�p d� ∼=

ˆ ∞

B−1(1)

B(�)
�p+1 d�.

If we combine all these observations, we obtainˆ ∞

B−1(1)

B(�)
�p+1 d� � C

ˆ
Rn

Mα
(
χQ(0,1)

)
(x)p dx

MB,α
(
χQ(0,1)

)
(x)p

� C < ∞.

Hence we obtain B ∈ Bp .
(3) We prove that (4) ⇒ (2). We may assume that f ∈L∞

c . Let a > max{2 ·6nC0,2n} ,
and let Ωk =

{
x ∈ Rn : MB,α ,3D f (x) > ak+1

}
. We may assume that Ωk is not

empty; otherwise there is nothing to prove. By Lemma 2.5, there exists a dis-
joint collection of maximal dyadic cubes {Qk, j} , Ωk =

⋃
j Qk, j holds. Then

ˆ
Rn

MB,α f (x)pw(x)dx = ∑
k

ˆ
Ωk\Ωk+1

MB,α f (x)pw(x)dx

= ∑
k, j

ˆ
Qk, j\Ωk+1

MB,α f (x)pw(x)dx.
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By Lemma 2.3,

∑
k, j

ˆ
Qk, j\Ωk+1

MB,α f (x)pw(x)dx ∼= ∑
k, j

ˆ
Qk, j\Ωk+1

MB,α ,3D f (x)pw(x)dx.

By the definition of Ωk+1 ,

∑
k, j

ˆ
Qk, j\Ωk+1

MB,α ,3D f (x)pw(x)dx � ∑
k, j

a(k+1)p
 

3Qk, j

w(x)dx · |3Qk, j|.

By (2.19) and (2.21),

∑
k, j

a(k+1)p
 

3Qk, j

w(x)dx · |3Qk, j|

�C∑
k, j

∣∣3Qk, j

∣∣ α p
n ‖ f‖p

B,3Qk, j

 
3Qk, j

w(x)dx · |Ek, j|

=C∑
k, j

ˆ
Ek, j

∥∥∥∥∥∥ f

(∣∣3Qk, j

∣∣α p
n

 
3Qk, j

w(y)dy

) 1
p

∥∥∥∥∥∥
p

B,3Qk, j

dx.

From the definition of the maximal operator, we have

∑
k, j

ˆ
Ek, j

∥∥∥∥∥∥ f

(∣∣3Qk, j
∣∣ α p

n

 
3Qk, j

w(y)dy

) 1
p

∥∥∥∥∥∥
p

B,3Qk, j

dx

�∑
k, j

ˆ
Ek, j

∥∥∥ f (Mα pw)
1
p

∥∥∥p

B,3Qk, j

dx � ∑
k, j

ˆ
Ek, j

MB

(
f (Mα pw)

1
p

)
(x)pdx

�
ˆ

Rn
MB

(
f (Mα pw)

1
p

)
(x)pdx.

By (4), we have (2).
(4) We prove that (2) ⇒ (3). By (2.5), we obtain the point-wise inequality:

Mα f (y) � 2sup
Q�y

�(Q)α
∥∥∥ f u−

1
p

∥∥∥
B,Q

∥∥∥u 1
p

∥∥∥
B,Q

� 2MB,α

(
f u−

1
p

)
(y) ·MB

(
u

1
p

)
(y).

Hence inserting this pointwise estimate into the left-hand side of (3), we obtainˆ
Rn

Mα f (y)p w(y)

MB

(
u

1
p

)
(y)p

dy

�2p
ˆ

Rn
MB,α

(
f u−

1
p

)
(y)p ·MB

(
u

1
p

)
(y)p w(y)

MB

(
u

1
p

)
(y)p

dy

�2p
ˆ

Rn
MB,α

(
f u−

1
p

)
(y)pw(y)dy.

By (2), we obtain (3).
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(5) We next prove that (3) if B ∈ Bp . Let f = u = χQ(0,1) . Then
ˆ

Rn
| f (y)|p Mα pw(y)

u(y)
dy =

ˆ
Q(0,1)

Mα pw(y)dy.

Let w(x) =
1

(1+ |x|)α p . Then by Lemma 2.6, Mα pw(x) � C . Hence, we have

ˆ
Rn

| f (x)|p Mα pw(x)
u(x)

dx � C.

Meanwhile,ˆ
Rn

Mα f (x)
w(x)

MB

(
u

1
p

)
(x)p

dx �
ˆ
|x|>1

Mα(χQ(0,1))(x)
1

MB
(
χQ(0,1)

)
(x)p

dx

(1+ |x|)α p .

Note that
1

1+ |x| � 1
2|x| whenever |x| > 1. Thus,

ˆ
|x|>1

Mα(χQ(0,1))(x)
1

MB
(
χQ(0,1)

)
(x)p

dx

(1+ |x|)α p

�C
ˆ
|x|>1

Mα(χQ(0,1))(x)
1

MB
(
χQ(0,1)

)
(x)p

dx
|x|α p .

By Lemma 2.7,

ˆ
|x|>1

Mα(χQ(0,1))(x)
1

MB
(
χQ(0,1)

)
(x)p

dx
|x|α p �

ˆ
|x|>1

B
−1 (|x|n)p

|x|np dx.

(6) If (3) holds, we can show B ∈ Bp similar to the proof of (1) ⇒ B ∈ Bp . We
omit the further details. �

Proof of Theorem 1.16.
Clearly, as a special case of w = 1, (8) implies (3). In the rest of the proof,

we will verify implications (3) ⇒ (8) ⇒ (9) ⇒ (10). The sufficient condition on
which MB,α : Lp → Lq is bounded is due to [3]: Assume that the function t ∈ (0,∞) 	→
t−n/αB(t) ∈ (0,∞) is almost decreasing, that t−n/αB(t) → 0 (t → ∞) and (10) with the
condition 1

q = 1
p − α

n , MB,α : Lp → Lq is bounded (see Proposition 1.23).

(1) We prove that (3) implies (8). By Lemma 2.3, we have only to analyze the
weighted norm of MB,α ,3D f . We may assume that f ∈ L∞

c by the monotone
convergence theorem to show (8). For k ∈ Z , let Ωk :={
x ∈ Rn : MB,α ,3D f (x) > ak

}
in Lemma 2.5. Since f ∈ L∞

c , we have

Rn =
⋃
k∈Z

Ωk \Ωk+1.
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Thus,ˆ
Rn

MB,α ,3D f (x)qw(x)dx = ∑
k∈Z

ˆ
Ωk\Ωk+1

MB,α ,3D f (x)qw(x)dx.

By the definition of Ωk+1 ,ˆ
Ωk\Ωk+1

MB,α ,3D f (x)qw(x)dx � aq ·akq
ˆ

Ωk\Ωk+1

w(x)dx.

Since Ωk \Ωk+1 ⊂⋃ j Qk, j ,

∑
k∈Z

akq
ˆ

Ωk\Ωk+1

w(x)dx � ∑
k∈Z

∑
j

(ˆ
Qk, j

w(x)dx

)
akq.

Since ak < |3Qk, j| α
n ‖ f‖B,3Qk, j

,

∑
k∈Z

∑
j

(ˆ
Qk, j

w(x)dx

)
akq

� ∑
k∈Z

∑
j

�(3Qk, j)αq

( 
Qk, j

w(x)dx

)
‖ f‖q

B,3Qk, j
|Qk, j|

= ∑
k∈Z

∑
j

�(3Qk, j)αq
∥∥∥ f ·(Mw)

1
q ·(Mw)−

1
q

∥∥∥q

B,3Qk, j

w(Qk, j).

If x ∈ 3Qk, j , then Mw(x) � m3Qk, j (w) . Thus

∑
k∈Z

∑
j

�(3Qk, j)αq
∥∥∥ f · (Mw)

1
q · (Mw)−

1
q

∥∥∥q

B,3Qk, j

w(Qk, j)

� ∑
k∈Z

∑
j

�(3Qk, j)αq
∥∥∥ f · (Mw)

1
q

∥∥∥q

B,3Qk, j

m3Qk, j (w)−1w(Qk, j)

�3n ∑
k∈Z

∑
j

�(3Qk, j)αq
∥∥∥ f · (Mw)

1
q

∥∥∥q

B,3Qk, j

|Qk, j|.

Since |Qk, j| � C|Ek, j| ,

∑
k∈Z

∑
j

�(3Qk, j)αq
∥∥∥ f · (Mw)

1
q

∥∥∥q

B,3Qk, j

|Qk, j|

�C ∑
k∈Z

∑
j

ˆ
Ek, j

(
�(3Qk, j)α

∥∥∥ f · (Mw)
1
q

∥∥∥
B,3Qk, j

)q

dx

�C ∑
k∈Z

∑
j

ˆ
Ek, j

MB,α

[
f · (Mw)

1
q

]
(x)qdx.

Since the Ek, j ’s are disjoint, we obtain

∑
k∈Z

∑
j

ˆ
Ek, j

{
MB,α

[
f · (Mw)

1
q

]
(x)
}q

dx �
ˆ

Rn
MB,α

[
f · (Mw)

1
q

]
(x)qdx.
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By (3),

(ˆ
Rn

{
MB,α

[
f · (Mw)

1
q

]
(x)
}q

dx

) 1
q

� C

(ˆ
Rn

| f (x)|pMw(x)
p
q dx

) 1
p

.

This implies that

(ˆ
Rn

MB,α f (x)qw(x)dx

)
� C

(ˆ
Rn

| f (x)|pMw(x)
p
q dx

) 1
p

.

(2) We prove that (8) ⇒ (9). By (2.5),

Mα f (x) � 2MB,α

(
f u−

1
q

)
(x)MB

(
u

1
q

)
(x) (x ∈ Rn).

Hence

⎛
⎝ˆ

Rn
Mα f (x)q · w(x)

MB

(
u

1
q

)
(x)q

dx

⎞
⎠

1
q

� 2

(ˆ
Rn

{
MB,α

(
f u−

1
q

)
(x)
}q

w(x)dx

) 1
q

.

By (8),

(ˆ
Rn

{
MB,α

(
f u−

1
q

)
(x)
}q

w(x)dx

) 1
q

� C

(ˆ
Rn

| f (x)|p
(

Mw(x)
u(x)

) p
q

dx

) 1
p

.

Hence, we obtain (9).
(3) We prove that (9) ⇒ (10). Let f = u = χQ(0,1) and w = 1. Then

(ˆ
Rn

| f (x)|p
(

Mw(x)
u(x)

) p
q

dx

) 1
p

= 1.

By (2.7),

ˆ
Rn

Mα f (x)q dx

MB

(
χQ(0,1)

)
(x)q

�
ˆ
|y|>1

Mα f (y)q dy

MB

(
χQ(0,1)

)
(y)q

∼=
ˆ
|y|>1

|y|αqB
−1

(|y|n)q dy
|y|nq .

Using polar coordinates, we have

ˆ
|y|>1

|y|αqB
−1

(|y|n)q dy
|y|nq = C

ˆ ∞

1
rn−1−nq+αq ·

(
B
−1

(rn)
)q

dr.
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Taking t = rn , we obtain

ˆ ∞

1
rn−1−nq+αq ·

(
B
−1

(rn)
)q

dr = C
ˆ ∞

1
t

α
n q

(
B
−1

(t)
t

)q

dt.

By (2.4),

ˆ ∞

1
t

α
n q

(
B
−1

(t)
t

)q

dt ∼=
ˆ ∞

1
t

α
n q 1

B−1(t)q dt.

Taking � = B−1(t) , we obtain
ˆ ∞

1
t

α
n q 1

B−1(t)q dt =
ˆ ∞

B−1(1)
B(�)

α
n q 1

�q B′(�)d�.

By (2.1),
ˆ ∞

B−1(1)
B(�)

α
n q 1

�q B′(�)d� ∼=
ˆ ∞

B−1(1)

B(�)
α
n q+1

�q+1 d�.

Hence 10 holds. �

Proof of Theorem 1.11. We plan to show Theorem 1.11 as follows:

• (1)=⇒ (9) =⇒ (8) =⇒ (1),
• (1)=⇒ (3) =⇒ (4) =⇒ (1),
• (5)⇐⇒ (1)=⇒ (6)=⇒ (7)=⇒ (1).

(1) Condition (9) follows readily from (1) and the Fefferman–Stein inequality. In
fact, by assumption 1, MB f (x) � CM(p) f (x) for all x ∈ Rn . Furthermore by
the Fefferman–Stein inequality for p = 1,

w({x ∈ Rn : MB f (x) > λ}) � w({x ∈ Rn : M (| f |p) (x) > λ p})
� C

λ p

ˆ
Rn

| f (x)|pMw(x)dx.

Hence, we obtain (9).
(2) We verify (9) =⇒ (8). By (2.5),

w

⎛
⎝
⎧⎨
⎩x∈Rn :

Mα f (x)

MB,α

(
u

1
p

)
(x)

> λ

⎫⎬
⎭
⎞
⎠� w

({
x∈Rn : 2MB

(
f u−

1
p

)
(x) >

λ
2

})
.

By assumption (9),

w

({
x ∈ Rn : MB

(
f u−

1
p

)
(x) >

λ
2

})
�
{

C
λ

(ˆ
Rn

| f (x)|p Mw(x)
u(x)

dx

) 1
p
}p

.

Hence, we obtain (8).
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(3) Thirdly, we verify (8) =⇒ (1). Fix t > 1, Q0 = Q(0,1) , |Q1| = t , Q0 ⊂ Q1 .
Taking w ≡ 1, f = u = χQ0 , for every λ > 0, we calculate ‖ f‖Lp(Mw) = 1.
Meanwhile,

w

⎛
⎝
⎧⎨
⎩x ∈ Rn :

Mα f (x)

MB,α

(
u

1
p

)
(x)

> λ

⎫⎬
⎭
⎞
⎠

�w

({
x ∈ 3Q1, |x| > �(Q1),

Mα
(
χQ0

)
(x)

MB,α
(
χQ0

)
(x)

> λ

})
.

If x ∈ 3Q1 , then

Mα
(
χQ0

)
(x) � �(3Q1)α

 
3Q1

χQ0(y)dy ∼= t
α
n −1.(3.4)

If x∈ 3Q1 and |x|> �(Q1)(> 1) , then �(Q1) < |x|< �(3Q1) . By property (2.7)
in Lemma 2.2,

MB,α
(
χQ0

)
(x) ∼= |x|αB

−1 (|x|n)−1 � �(3Q1)αB
−1 (�(Q1)

n)−1 = 3α t
α
n B

−1 (t)−1 .

By (2.4),

MB,α
(
χQ0

)
(x) ∼= t

α
n −1B−1(t).(3.5)

these inequalities (3.4) and (3.5) give

Mα
(
χQ0

)
(x)

MB,α
(
χQ0

)
(x)

� B−1(t)−1.

Taking λ ∼= B−1(t)−1 , we obtain

w

({
x ∈ 3Q1, |x| > �(Q1),

Mα
(
χQ0

)
(x)

MB,α
(
χQ0

)
(x)

> λ

}) 1
p

�w(3Q1\{|x| � �(Q1)})
1
p ∼= |Q1|

1
p = t

1
p .

This implies that

t
1
p

B−1(t)
∼= λ t

1
p � λw

({
x ∈ 3Q1, |x| > �(Q1),

Mα
(
χQ0

)
(x)

MB,α
(
χQ0

)
(x)

> λ

}) 1
p

.

By assumption (8),

B−1(t)−1t
1
p � 1 and B

(
t

1
p

)
� t.

Letting s ∼= t
1
p , we obtain (1).
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(4) We verify (1)=⇒ (3). By assumption (1), MB,α f (x) � Mα p (| f |p)(x) 1
p holds.

We check condition (1.26) for α → α p , p and q → 1:

sup
Q

|Q| α p
n +1−1

( 
Q

w(x)dx

)(
ess inf

x∈Q
Mα pw(x)

)−1

�sup
Q

|Q| α p
n +1−1

( 
Q

w(x)dx

)(
�(Q)α p

 
Q

w(y)dy

)−1

= 1.

By Proposition 1.25,

w
({

x ∈ Rn : Mα p (| f |p)(x) > λ p})�
(

1
λ

(ˆ
Rn

| f (x)|pMα pw(x)dx

) 1
p
)p

.

Therefore we obtain (3).
(5) We verify (3)=⇒ (4). By (2.5),

w

⎛
⎝
⎧⎨
⎩x ∈ Rn :

Mα f (x)

MB

(
u

1
p

)
(x)

> λ

⎫⎬
⎭
⎞
⎠� w

({
x ∈ Rn : MB,α

(
f u−

1
p

)
(x) >

λ
2

})
.

By assumption (3),

w

({
x ∈ Rn : 2MB,α

(
f u−

1
p

)
(x) >

λ
2

})
�
{

1
λ

(ˆ
Rn

| f (x)|p Mα pw(x)
u(x)

dx

) 1
p
}p

.

Hence, we obtain (4).
(6) We verify (4) =⇒ (1). Fix t > 1. Letting Q0 = Q(0,1) , |Q1| = t , Q0 ⊂ Q1 ,

w(x) =
1

(1+ |x|)α p and f = u = χQ0 , by Lemma 2.6,

(ˆ
Rn

| f (x)|p Mα pw(x)
u(x)

dx

) 1
p

� 1.(3.6)

Meanwhile,

w

⎛
⎝
⎧⎨
⎩x ∈ Rn :

Mα f (x)

MB

(
u

1
p

)
(x)

> λ

⎫⎬
⎭
⎞
⎠

�w

({
x ∈ 3Q1, |x| > �(Q1),

Mα
(
χQ0

)
(x)

MB

(
χQ0

)
(x)

> λ

})
.

If x ∈ 3Q1 , then (3.4) holds. If x ∈ 3Q1 and |x| > �(Q1)(> 1) , note that
�(Q1) < |x| < �(3Q1) . by property (2.7) in Lemma 2.2.

MB

(
χQ0

)
(x) ∼= B

−1 (|x|n)−1 � B
−1 (�(Q1)

n)−1 = B
−1 (�(Q1)

n)−1 = B
−1 (t)−1 .
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By (2.4),

MB

(
χQ0

)
(x) � B−1(t)

t
.(3.7)

these inequalities (3.4) and (3.7) give

Mα
(
χQ0

)
(x)

MB,α
(
χQ0

)
(x)

� t
α
n

B−1(t)
.

Taking λ ∼= t
α
n

B−1(t)
, we obtain

w

({
x ∈ 3Q1, |x| > �(Q1),

Mα
(
χQ0

)
(x)

MB

(
χQ0

)
(x)

> λ

}) 1
p

�
(ˆ

3Q1\{|x|��(Q1)}
1

(1+ |x|)α p dx

) 1
p

�
(ˆ

3Q1\{|x|��(Q1)}
1

�(Q1)
α p dx

) 1
p

=|Q1|− α
n

(ˆ
3Q1\{|x|��(Q1)}

dx

) 1
p

∼= |Q1|
1
p− α

n = t
1
p− α

n .

This implies that

t
1
p

B−1(t)
∼= λ t

1
p− α

n � λw

({
x ∈ 3Q1, |x| > �(Q1),

Mα
(
χQ0

)
(x)

MB

(
χQ0

)
(x)

> λ

}) 1
p

.

By assumption (4),

t
1
p

B−1(t)
� 1 and B

(
t

1
p

)
� t.

Letting s ∼= t
1
p , we obtain (1).

(7) We will prove that (5)=⇒ (1). For every t > 1, let |Q1| = t , |Q0| = 1 such
that Q1 ⊃ Q0 and f = χQ0 . Note that {x ∈ Rn : MB,α f (x) > λ} ⊃ {x ∈ Q1 :
MB,α (χQ1)(x) > λ} . If x ∈ Q1 , then

MB,α
(
χQ0

)
(x) � �(Q1)

α ∥∥χQ0

∥∥
B,Q1

= �(Q1)
α B−1 (|Q1|)−1 = t

α
n B−1 (t)−1 .

Letting λ = t
α
n B−1 (t)−1 ,

|{x ∈ Rn : MB,α f (x) > λ}| �
∣∣∣{x ∈ Q1 : MB,α f (x) > t

α
n B−1 (t)−1

}∣∣∣= |Q1| = t.

Meanwhile, by (5),

∣∣{x ∈ Rn : MB,α
(
χQ0

)
(x) > λ

}∣∣� ( 1
λ

ˆ
Rn

| f (x)|pdx

)q

t−
α
n qB−1(t)q.
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That is,

t
1
q + α

n � B−1(t) and B
(
t

1
q+ α

n

)
� t.

Letting s ∼= t
1
q + α

n , we see

B(s) � s

(
1
q+ α

n

)−1

.(3.8)

Since 1
q = 1

p − α
n , we obtain

B(s) � sp,

that is, 1 holds.
(8) We verify (1) =⇒ (5). By (1),

MB,α f (x) � Mα p (| f |p) (x)
1
p .(3.9)

This implies that

|{x ∈ Rn : MB,α f (x) > λ}| � ∣∣{x ∈ Rn : Mα p (| f |p) (x) > λ p}∣∣ .(3.10)

Applying statement (B) of Proposition 1.12 for p
q = 1− α p

n ,

∣∣{x ∈ Rn : Mα p (| f |p)(x) > λ p}∣∣ p
q � 1

λ p ‖| f |p‖L1(Rn) =
1

λ p

ˆ
Rn

| f (x)|pdx.(3.11)

By (3.10) and (3.11), we obtain (5):

|{x ∈ Rn : MB,α f (x) > λ}| �
(

1
λ

(ˆ
Rn

| f (x)|pdx

) 1
p
)q

.

(9) We verify that (1) =⇒ (6). By (1), inequality (3.9) holds. We check condi-

tion (1.26) with α = n
p − n

q , u(x) = w(x)
p
q , and v(x) = Mw(x)

p
q . For every

cube Q ⊂ Rn ,

|Q| α p
n + p

q −1
( 

Q
u(x)

q
p dx

) p
q
(

ess inf
x∈Q

v(x)
)−1

=
( 

Q
w(x)dx

) p
q
(

ess inf
x∈Q

Mw(x)
p
q

)−1

�
( 

Q
w(x)dx

) p
q
(( 

Q
w(y)dy

) p
q
)−1

=1 < ∞.

Applying Proposition 1.25, we learn

w({x ∈ Rn : MB,α f (x) > λ}) 1
q �
{

u
q
p
({

x ∈ Rn : Mα p (| f |p) (x) > λ p}) p
q
} 1

p

�
{

1
λ p ‖| f |p‖L1(v)

} 1
p

=
1
λ

(ˆ
Rn

| f (x)|Mw(x)
p
q dx

) 1
p

.
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(10) We verify (6) =⇒ (7). By (2.5),

w

⎛
⎝
⎧⎨
⎩x ∈ Rn :

Mα f (x)

MB

(
u

1
q

)
(x)

> λ

⎫⎬
⎭
⎞
⎠� w

({
x ∈ Rn : 2MB,α

(
f u−

1
q

)
(x) > λ

})
.

By (6),

w
({

x ∈ Rn : 2MB,α

(
f u−

1
q

)
(x) > λ

})

�

⎛
⎝ 1

λ

(ˆ
Rn

| f (x)|p
(

Mw(x)
u(x)

) p
q

dx

) 1
p
⎞
⎠

q

.

(11) Finally, we verify that (7) =⇒ (1). For t > 1, letting Q0 = Q(0,1) and |Q1|= t
such that Q0 ⊂ Q1 , w = χ3Q1 and f = u = χQ0 , for λ > 0,

λw

⎛
⎝
⎧⎨
⎩x ∈ Rn :

Mα ( f ) (x)

MB

(
u

1
q

)
(x)

> λ

⎫⎬
⎭
⎞
⎠

1
q

�λ

∣∣∣∣∣
{

x ∈ 3Q1 : |x| > �(Q1),
Mα
(
χQ0

)
(x)

MB

(
χQ0

)
(x)

> λ

}∣∣∣∣∣
1
q

(3.12)

and

(ˆ
Rn

| f (x)|p
(

Mw(x)
u(x)

) p
q

dx

) 1
p

=
(ˆ

Q0

M (χ3Q1)(x)
p
q dx

) 1
p

� |Q0|
1
p = 1<∞

(3.13)

hold. If x ∈ 3Q1 , then

Mα
(
χQ0

)
(x) � �(3Q1)α

( 
3Q1

χQ0(y)dy

)
∼= |Q1|

α
n −1 = t

α
n −1.(3.14)

If x ∈ 3Q1 and |x| > �(Q1)(> 1) , by property (2.7) in Lemma 2.2,

MB

(
χQ0

)
(x) ∼= B

−1 (|x|n)−1 � B
−1 (|Q1|)−1 = B

−1 (t)−1 .(3.15)

(3.13) and (3.15) imply that

Mα
(
χQ0

)
(x)

MB

(
χQ0

)
(x)

� t
α
n −1B

−1(t).

Taking λ ∼= t
α
n −1B

−1(t) , we have

w

⎛
⎝
⎧⎨
⎩x ∈ Rn :

Mα ( f ) (x)

MB

(
u

1
q

)
(x)

> λ

⎫⎬
⎭
⎞
⎠� |Q1| = t.
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Hence,

λw

⎛
⎝
⎧⎨
⎩x ∈ Rn :

Mα ( f ) (x)

MB

(
u

1
q

)
(x)

> λ

⎫⎬
⎭
⎞
⎠

1
q

� λ |Q1|
1
q ∼= t

α
n −1+ 1

q B
−1(t).(3.16)

By (2.4),

t
α
n −1+ 1

q B
−1(t) � t

α
n + 1

q
1

B−1(t)
(3.17)

holds. By assumption (7), inequalities (3.12), (3.13), (3.16) and (3.17) give

t
α
n + 1

q

B−1(t)
� 1 and B

(
t

α
n + 1

q

)
� t.

Taking s ∼= t
α
n + 1

q , we conclude

B(s) � s

(
α
n + 1

q

)−1

.

Since 1
q = 1

p − α
n , we obtain (1). �

Proof of Theorem 1.19. By Lemma 2.3, we have only to analyze the mixed weighted
norm of MV,B,α ,3D f . We may assume that f ∈ L∞

c as before. For k ∈ Z , let Ωk :={
x ∈ Rn : MV,B,α ,3D f (x) > ak

}
in Lemma 2.5. Since f ∈ L∞

c , we have

Rn =
⋃
k∈Z

Ωk \Ωk+1.

Thus ˆ
Rn

MV,B,α ,3D f (x)pv(x)V (x)dx = ∑
k∈Z

ˆ
Ωk\Ωk+1

MV,B,α ,3D f (x)pv(x)V (x)dx

� ∑
k∈Z

a(k+1)p
ˆ

Ωk\Ωk+1

v(x)V (x)dx.

Since Ωk\Ωk+1 ⊂⋃ j Qk, j ,

∑
k∈Z

a(k+1)p
ˆ

Ωk\Ωk+1

v(x)V (x)dx � ap ∑
k, j∈Z

(ˆ
Qk, j

v(x)V (x)dx

)
akp.

Since akp < V (3Qk, j)
α p
n ‖ f‖p

B,3Qk, j
,

∑
k, j∈Z

(ˆ
Qk, j

v(x)V (x)dx

)
akp � ∑

k, j∈Z

(ˆ
Qk, j

v(x)V (x)dx

)
V (3Qk, j)

α p
n ‖ f‖p

B,3Qk, j

= ∑
k, j∈Z

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (3Qk, j)

α p
n ‖ f‖p

B,3Qk, j
V (Qk, j).
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Since V (Qk, j) � CV (Ek, j) ,

∑
k, j∈Z

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (3Qk, j)

α p
n ‖ f‖p

B,3Qk, j
V (Qk, j)

�C ∑
k, j∈Z

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (3Qk, j)

α p
n ‖ f‖p

B,3Qk, j
V (Ek, j).

By (2.6), ‖ f‖B,3Qk, j
� 2
∥∥∥ f w

1
p

∥∥∥
C,3Qk, j

∥∥∥w− 1
p

∥∥∥
A,3Qk, j

. This implies that

∑
k, j∈Z

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (3Qk, j)

α p
n ‖ f‖p

B,3Qk, j
V (Ek, j)

�2p ∑
k, j

V (3Qk, j)
α p
n

∥∥∥ f w
1
p

∥∥∥p

C,3Qk, j

∥∥∥w− 1
p

∥∥∥p

A,3Qk, j

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (Ek, j).

By (1.28) and (1.14)

∑
k, j

V (3Qk, j)
α p
n

∥∥∥ f w
1
p

∥∥∥p

C,3Qk, j

∥∥∥w− 1
p

∥∥∥p

A,3Qk, j

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (Ek, j)

� CpKp
1 ∑

k, j

∥∥∥ f w
1
p

∥∥∥p

C,3Qk, j

V (Ek, j) = CpKp
1 ∑

k, j

ˆ
Ek, j

∥∥∥ f w
1
p

∥∥∥p

C,3Qk, j

V (x)dx

� CpKp
1 ∑

k, j

ˆ
Ek, j

{
MC

(
f w

1
p

)
(x)
}p

V (x)dx

= CpKp
1 ∑

k

ˆ
Ωk\Ωk+1

{
MC

(
f w

1
p

)
(x)
}p

V (x)dx

= CpKp
1

ˆ
Rn

{
MC

(
f w

1
p

)
(x)
}p

V (x)dx.

By assumption (1.15),ˆ
Rn

{
MC

(
f w

1
p

)
(x)
}p

V (x)dx � C
ˆ

Rn

(
| f (x)|w(x)

1
p

)p
W (x)dx

= C
ˆ

Rn
| f (x)|pw(x)W (x)dx.

This completes the proof. �

Proof of Theorem 1.21. By Lemma 2.3, we have only to analyze the mixed weighted
norm of MB,α ,3D f . We may assume that f ∈ L∞

c . For k ∈ Z , let Ωk :={
x ∈ Rn : MB,α ,3D f (x) > ak

}
in Lemma 2.5. Since f ∈ L∞

c , we have

Rn =
⋃
k∈Z

Ωk \Ωk+1.
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Based on this partition, we decompose the integrals:ˆ
Rn

MB,α ,3D f (x)qv(x)V (x)dx = ∑
k∈Z

ˆ
Ωk\Ωk+1

MB,α ,3D f (x)qv(x)V (x)dx.

By the definition of Ωk ,

∑
k∈Z

ˆ
Ωk\Ωk+1

MB,α ,3D f (x)qv(x)V (x)dx � aq ∑
k∈Z

akq
ˆ

Ωk\Ωk+1

v(x)V (x)dx.

Since Ωk\Ωk+1 ⊂⋃ j Qk, j ,

∑
k∈Z

akq
ˆ

Ωk\Ωk+1

v(x)V (x)dx � ∑
k, j∈Z

akq
ˆ

Qk, j

v(x)V (x)dx.

Since akq < �(3Qk, j)αq ‖ f‖q
B,3Qk, j

,

∑
k, j∈Z

akq
ˆ

Qk, j

v(x)V (x)dx � ∑
k, j∈Z

�(3Qk, j)αq ‖ f‖q
B,3Qk, j

ˆ
Qk, j

v(x)V (x)dx.

By (2.6), ‖ f‖B,3Qk, j
� 2
∥∥∥ f w

1
p

∥∥∥
C,3Qk, j

∥∥∥w− 1
p

∥∥∥
A,3Qk, j

. This implies that

∑
k, j∈Z

�(3Qk, j)αq ‖ f‖q
B,3Qk, j

ˆ
Qk, j

v(x)V (x)dx

�2q ∑
k, j∈Z

�(3Qk, j)αq
∥∥∥ f w

1
p

∥∥∥q

C,3Qk, j

∥∥∥w− 1
p

∥∥∥q

A,3Qk, j

ˆ
Qk, j

v(x)V (x)dx.

Since V (Qk, j) � CV (Ek, j) ,

∑
k, j∈Z

�(3Qk, j)αq
∥∥∥ f w

1
p

∥∥∥q

C,3Qk, j

∥∥∥w− 1
p

∥∥∥q

A,3Qk, j

ˆ
Qk, j

v(x)V (x)dx

� ∑
k, j∈Z

�(3Qk, j)αq
∥∥∥ f w

1
p

∥∥∥q

C,3Qk, j

∥∥∥w− 1
p

∥∥∥q

A,3Qk, j

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (Ek, j).

By (1.28) and (1.19),

∑
k, j∈Z

�(3Qk, j)αq
∥∥∥ f w

1
p

∥∥∥q

C,3Qk, j

∥∥∥w− 1
p

∥∥∥q

A,3Qk, j

(
1

V (Qk, j)

ˆ
Qk, j

v(x)V (x)dx

)
V (Ek, j)

�CqKq
2 ∑

k, j∈Z

(
�(3Qk, j)α

∥∥∥ f w
1
p

∥∥∥
C,3Qk, j

)q

V (Ek, j)

=CqKq
2 ∑

k, j∈Z

ˆ
Ek, j

(
�(3Qk, j)α

∥∥∥ f w
1
p

∥∥∥
C,3Qk, j

)q

V (x)dx

�CqKq
2 ∑

k, j∈Z

ˆ
Ek, j

MC,α

(
f w

1
p

)
(x)qV (x)dx.
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Therefore, we have(ˆ
Rn

MB,α f (x)qv(x)V (x)dx

) 1
q

� CK2

(ˆ
Rn

MC,α

(
f w

1
p

)
(x)qV (x)dx

) 1
q

.

By assumption (1.20),

(ˆ
Rn

MC,α

(
f w

1
p

)
(x)qV (x)dx

) 1
q

� C

(ˆ
Rn

| f (x)|pw(x)W (x)dx

) 1
p

.

This completes the proof. �

4. Applications and related results

REMARK 5. We consider the duality for Iα : for non-negative measurable func-
tions f and g , ˆ

Rn
Iα f (x)g(x)dx =

ˆ
Rn

f (x)Iαg(x)dx.

Note that (ˆ
Rn

Iα f (x)qu(x)dx

) 1
q

� C

(ˆ
Rn

f (x)pv(x)dx

) 1
p

(4.1)

holds for all nonnegative measurable functions f and g if and only if the “dual” in-
equality

(ˆ
Rn

Iα f (x)p′v(x)1−p′dx

) 1
p′

� C

(ˆ
Rn

f (x)q′u(x)1−q′dx

) 1
q′

(4.2)

holds for all nonnegative measurable functions f and g .
In contrast, for non-negative measurable functions f and g ,ˆ

Rn
M f (x)g(x)dx =

ˆ
Rn

f (x)Mg(x)dx(4.3)

fails as the example of f = χ(0,1)n and g(x) ≡ 1. In fact,
ˆ

Rn
M f (x)g(x)dx = ∞ >ˆ

Rn
f (x)Mg(x)dx = 1. This implies that it is not trivial whether or not the boundedness

of M : Lp(u) → Lp(v) yields to the dual inequality M : Lp′(v1−p′) → Lp′(u1−p′) in
general weights u and v . In the case of Proposition 1.18, the dual inequality holds. In
fact, since w ∈ Ap if and only if w1−p′ ∈ Ap′ ,

‖M f‖Lp(w) � C‖ f‖Lp(w) ⇐⇒ w ∈ Ap ⇔ w1−p′ ∈ Ap′

⇔ ‖M f‖Lp′ (w1−p′ ) � C‖ f‖Lp′ (w1−p′ ) .
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In contrast, let us consider the classical weighted inequality of Fefferman and
Stein:

ˆ
Rn

M f (x)pw(x)dx � C
ˆ

Rn
| f (x)|pMw(x)dx.(4.4)

Then the natural “dual” inequality

ˆ
Rn

M f (x)p′(Mw(x))1−p′dx � C
ˆ

Rn
| f (x)|p′w(x)1−p′dx(4.5)

fails even as the example of f = w = χ(0,1)n shows. Corollary 1.9 can be located as a
modificated result in inequality (4.5).

From these observations we learn that it is natural and important to ask ourselves
whether the “dual” of the weighted inequalities of the maximal operators M or Mα
holds.

REMARK 6. According to [10, 11], we have the following inequality: If k =
1,2,3, . . . , then there exists a constant C = Cn,k such that for all bounded functions f
with support contained in Q

‖ f‖L(logL)k ,Q � C
 

Q
Mk f (y)dy,(4.6)

where Mk = M ◦M ◦ · · · ◦M denotes the k -fold composition of M . Estimate 4.6 gives
the following inequality: Let 0 � α < n ,

ML(logL)k,α( f )(x) � CMα

(
Mk f

)
(x).(4.7)

Theorem 1.7 1 gives the dual type inequality. The proofs of Corollaries 4.1, 4.2
and 4.3 below are based on the proof of Corollary 1.8 in [11, p.151].

COROLLARY 4.1. Let 0 � α < n, 1 < p < ∞ satisfy 1 � p′ < n
α . Suppose that

u is a weight. Then

ˆ
Rn

Mα f (x)p ·Mα p′
(
M[p′]u

)
(x)1−pdx � C

ˆ
Rn

| f (x)|pu(x)1−pdx

for all measurable functions f and all weights u.

REMARK 7. In Corollary 4.1 the result is sharp in the sense that it does not
hold for M[p′] replaced by the pointwise smaller operator M[p′]−1 as the example of
f = u = χ(0,1)n shows.

Theorem 1.7 (3) gives the dual type inequality.
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COROLLARY 4.2. Let 0 � α < n and 1 < p < n
α . Let also u and w be weights.

Then ˆ
Rn

Mα f (y)pM[p′+1]u(y)1−pw(y)dy � C
ˆ

Rn
| f (y)|pu(y)1−p ·Mα pw(y)dy.(4.8)

As we will check after the proof of Theorem 4.10, Corollary 4.2 is sharp in the
sense that it does not hold with M[p′+1] replaced by the pointwise smaller operator
M[p′] .

Likewise Theorem 1.16 (9) gives the dual type inequality.

COROLLARY 4.3. Let 0 � α < n, 1 < p < n
α , and 1 < q < ∞ . Suppose that

1
q = 1

p − α
n . Then,

(ˆ
Rn

Mα f (x)q dx

M[p′+1]u(x)
q
p′

) 1
q

� C

(ˆ
Rn

| f (x)|pu(x)1−pdx

) 1
p

(4.9)

for all measurable functions f and u.

We prove Corollary 4.3 only since Corollaries 4.1 and 4.2 can be proved similarly.

Proof of Corollary 4.3. Let A(t) = t log[p′](1+ t) and choose a Young function B

so that B(t) � t p′ log[p′](1+ t) . Write v = u
p′
q . Then

MB

(
u

1
q

)
(x) = MB

(
v

p−1
p

)
(x) � CM[p′+1]v(x)

q
p′ (x ∈ Rn).

Hence ⎛
⎜⎜⎝
ˆ

Rn
Mα f (x)q w(x)

M

(
1
q

)
B

u(x)

dx

⎞
⎟⎟⎠

1
q

� C

⎛
⎝ˆ

Rn
Mα f (x)q w(x)

MB (v)(x)
q
p′

dx

⎞
⎠

1
q

.

By Theorem 1.16 9

(ˆ
Rn

Mα f (x)q w(x)

M[p′+1]v(x)
q
p′

dx

) 1
q

� C

(ˆ
Rn

| f (x)|p
(

Mw(x)
u(x)

) p
q

dx

) 1
p

=
(ˆ

Rn
| f (x)|pv(x)1−pMw(x)

p
q dx

) 1
p

.

Taking w = 1, and replacing the weight v with the weight u , we obtain

(ˆ
Rn

Mα f (x)q dx

M[p′+1]u(x)
q
p′

) 1
q

� C

(ˆ
Rn

| f (x)|pu(x)1−pdx

) 1
p

. �
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Given 0 < α < n and b ∈ BMO, define the first order commutator [b, Iα ] to be
the operator

[b, Iα ] f (x) =
ˆ

Rn

b(x)−b(y)
|x− y|n−α f (y)dy.

Theorem 1.7 has an application to the commutator [b, Iα ] on weighted Lebesgue spaces.

THEOREM 4.4. Let 0 < α < n and 1 < p < n
α . If b ∈ BMO(Rn) and w ∈

A∞(Rn) . Then,

‖[b, Iα ] f‖Lp(w) � C‖b‖BMO ‖ f‖Lp(Mα p(w)) ( f ∈ L∞
c ),

where

‖b‖BMO := sup
Q⊂Rn

 
Q
|b(x)−mQ(b)|dx.

To prove Theorem 4.4, we use Lemmas 4.5, 4.6, and 4.7. Denote by f ∗ the de-
creasing rearrangement of a measurable function f . The following inequality is a well-
known result (see [1, p.127]):

LEMMA 4.5. We assume that f ∗(t) → 0 (t → ∞) . If w ∈ A∞(Rn) , then for all
p > 0 , there exists a constant C such that

ˆ
Rn

MD f (x)pw(x)dx � C
ˆ

Rn
M# f (x)pw(x)dx,

where M# is the sharp maximal operator:

M# f (x) := sup
Q:cube

χQ(x)
 

Q
| f (y)−mQ( f )|dy,

and MD is the dyadic maximal operator:

MD f (x) := sup
x∈Q∈D(Rn)

 
Q
| f (y)|dy.

The following point-wise inequality is due to [1].

LEMMA 4.6. Let B(t) = t log(e + t) , Given α , 0 < α < n, b ∈ BMO and a
non-negative function f ∈ L∞

c (Rn) , there exists a constant C such that for all x ,

M# ([b, Iα ] f ) (x) � C‖b‖BMO (Iα f (x)+MB,α f (x)) .

The following inequality is a well-known result (see [7, p.143]) which we use for
the proof of Theorem 4.4.
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LEMMA 4.7. If w∈A∞(Rn) , then ‖Iα f‖Lp(w) �C‖Mα f‖Lp(w) for all f ∈L∞
c (Rn) .

Proof of Theorem 4.4. Since |[b, Iα ] f (x)|� MD ([b, Iα ] f ) (x) by the Lebesgue dif-
ferentiation theorem,

‖[b, Iα ] f‖Lp(w) � ‖MD ([b, Iα ] f )‖Lp(w) .

Since [b, Iα ] f ∈ Lu(Rn) as long as u satisfies

1 < u < ∞,
1
u

+
α
n
∈ (0,1),

([b, Iα ] f )∗(λ ) → 0 as λ → ∞ . Since w ∈ A∞(Rn) , we are in the position of using
Lemma 4.5. The result is

‖MD ([b, Iα ] f )‖Lp(w) � C
∥∥M# ([b, Iα ] f )

∥∥
Lp(w) .

By Lemma 4.6, if B(t) = t log(e+ t) , then

∥∥M# ([b, Iα ] f )
∥∥

Lp(w) � C‖b‖BMO

(
‖Iα f‖Lp(w) +‖MB,α f‖Lp(w)

)
.

By Lemma 4.7 and (1.4) in Theorem 1.7,

‖Iα f‖Lp(w) � C‖MB,α f‖Lp(w) .

By (2),

‖MB,α f‖Lp(w) � C‖ f‖Lp(Mα p(w)) .

This implies that we get the desired result. �

Theorem 1.16 has an application to the commutator [b, Iα ] on weighted Lebesgue
spaces.

THEOREM 4.8. Let 0 < α < n, 1 < p < n
α and 1

q = 1
p − α

n . If b ∈ BMO(Rn)
and w ∈ A∞(Rn) , for all f ∈ L∞

c ,

‖[b, Iα ] f‖Lq(w) � C‖b‖BMO ‖ f‖
Lp

(
(Mw)

p
q

) .

The proof of Theorem 4.8 is omitted since it is similar to the one of Theorem 4.4.
Since ˆ

Rn
[b, Iα ] f (x) ·g(x)dx = −

ˆ
Rn

[b, Iα ]g(x) · f (x)dx

for all f ,g ∈ L∞
c (Rn) , we can dualize Theorems 4.4 and 4.8.

THEOREM 4.9. Let 0 < α < n and 1 < p < n
α . Suppose that b ∈ BMO(Rn) .
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(A) If w ∈ A∞(Rn) , then for all f ∈ L∞
c (Rn) and weights w

(ˆ
Rn

|[b, Iα ] f (x)|p′Mα pw(x)−
p′
p dx

) 1
p′

�C‖b‖BMO(Rn)

(ˆ
Rn

| f (x)|p′w(x)−
p′
p dx

) 1
p′

.

(B) Suppose that 1
q = 1

p − α
n and w ∈ A∞(Rn) . Then for all f ∈ L∞

c (Rn) and
weights w

(ˆ
Rn

|[b, Iα ] f (x)|p′Mw(x)−
p′
q dx

) 1
p′

� C‖b‖BMO(Rn)

(ˆ
Rn

| f (x)|q′w(x)−
q′
q dx

) 1
q′

.

We now discuss the sharpness of Corollary 4.2. We have an explicit formula for the
iterated operator of one-dimensional uncentered Hardy–Littlewood maximal operator
M .

THEOREM 4.10. Let Q = (a,b) be an interval and k ∈ N . Then

Mk (χQ) (x) = χQ(x)+ χQc(x)

⎛
⎝ b−a∣∣x− a+b

2

∣∣+ b−a
2

k−1

∑
j=0

1
j!

(
log

∣∣x− a+b
2

∣∣+ b−a
2

b−a

) j
⎞
⎠

(x ∈ R),

in particular, if x > b, then,

Mk (χQ)(x) =
b−a
x−a

k−1

∑
j=0

1
j!

(
log

x−a
b−a

) j

and if x < a then,

Mk (χQ)(x) =
b−a
b− x

k−1

∑
j=0

1
j!

(
log

b− x
b−a

) j

.

In particular, if Q = (0,1) and x > 1, then,

Mk (χ(0,1)
)
(x) =

1
x

k−1

∑
j=0

1
j!

(logx) j .

It is interesting that the k -th approximation of et at t = 0 naturally appears in the
right-hand side. We prove Theorem 4.10.

Proof of Theorem 4.10. We induct on k ∈ N . Firstly, we prove the base case of
k = 1. Clearly, if x ∈ Q , then, M (χQ)(x) = 1. If x > b , then,

M (χQ) (x) =
1

x−a

ˆ x

a
χ(a,b)(y)dy =

1
x−a

ˆ b

a
dy =

b−a
x−a

.
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If x < a , then,

M (χQ)(x) =
1

b− x

ˆ b

x
χ(a,b)(y)dy =

1
b− x

ˆ b

a
dy =

b−a
b− x

.

Hence, in the case of k = 1, Theorem 4.10 holds.
We assume that Theorem 4.10 is true in the case of k = N . Obviously, if x ∈ Q ,

then MN+1(χQ)(x) = 1. If x > b , then,

MN+1 (χQ) (x) =
1

x−a

ˆ x

a
MN (χQ)(y)dy

=
1

x−a

(ˆ b

a
MN (χQ)(y)dy+

ˆ x

b
MN (χQ) (y)dy

)
.

By the assumption of the induction,

MN+1 (χQ) (x) =
b−a
x−a

(
1+

N−1

∑
j=0

1
j!

ˆ x

b

1
y−a

(
log

y−a
b−a

) j

dy

)

=
b−a
x−a

(
1+

N−1

∑
j=0

1
( j +1)!

(
log

x−a
b−a

) j+1
)

=
b−a
x−a

N

∑
j=0

1
j!

(
log

x−a
b−a

) j

.

If x < a , then,

MN+1 (χQ)(x) =
1

b− x

ˆ b

x
MN (χQ) (y)dy

=
1

b− x

(ˆ a

x
MN (χQ) (y)dy+

ˆ b

a
MN (χQ) (y)dy

)
.

Similar argument of the case x > b gives

MN+1 (χQ) (x) =
b−a
b− x

N

∑
j=0

1
j!

(
log

b− x
b−a

) j

.

Therefore, Theorem 4.10 holds in the case of k = N+1. This completes the proof. �

We end this section with the proof of the sharpness of Corollary 4.2.

REMARK 8. Corollary 4.2 is sharp in the sense that it does not hold with M[p′+1]

replaced by the pointwise smaller operator M[p′] , as the example of f = u = χ(0,1)n and

w =
1

(1+ | · |)α p shows. In fact, by Lemma 2.6,

ˆ
Rn

| f (y)|p u(y)1−pMα pw(y)dy � C.
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Meanwhile,
ˆ

Rn
Mα f (y)pM[p′]u(y)1−pw(y)dy �

ˆ ∞

e
Mα
(
χ(0,1)

)
(y)pM[p′] (χ(0,1)

)
(y)1−p dy

(1+ y)α p .

By Theorem 4.10,
ˆ ∞

e
Mα
(
χ(0,1)

)
(y)pM[p′] (χ(0,1)

)
(y)1−p dy

(1+ y)α p

�C
ˆ ∞

e

(
yα−1)p( (logy)([p

′]−1)

y

)1−p
dy

(1+ y)α p =
ˆ ∞

e
yα p−1(logy)([p

′]−1)(1−p) dy
(1+ y)α p .

By the change of variables s = logy ,
ˆ ∞

e
yα p−1(logy)([p

′]−1)(1−p) dy
(1+ y)α p =

ˆ ∞

1

(
es

1+ es

)α p

s([p
′]−1)(1−p)ds.

Since the function F(s) =
(

es

1+ es

)α p

is an increasing function,

ˆ ∞

1

(
es

1+ es

)α p

s([p
′]−1)(1−p)ds � F(1)

ˆ ∞

1
s([p

′]−1)(1−p)ds

=
eα p

(1+ e)α p

ˆ ∞

1
s([p

′]−1)(1−p)ds.

Since ([p′]−1)(1− p) � (p′ −1)(1− p) = −1,

eα p

(1+ e)α p

ˆ ∞

1
s([p

′]−1)(1−p)ds = ∞.

Therefore,ˆ
Rn

Mα f (x)pM[p′]u(x)1−pw(x)dx � C
ˆ

Rn
| f (x)|pu(x)1−pMα pw(x)dx

fails.

5. Appendix–Proof of Proposition 1.23

We prove Proposition 1.23. For every cube Q , we assume supp( f ) ⊂ Q and that

f (x) � 0 for almost every x ∈ Rn . Let Bp(t) := B
(
t

1
p

)
. We use the following scaling

property of the maximal operators: MB,α f (x) = MBp,α p ( f p)(x)
1
p . From (2.18) we

have

∣∣{x ∈ Q : MBp,α p ( f pχQ) (x) > t
}∣∣ n−α p

n � C1

ˆ
{x∈Q: f (x)�t/C2}

Bp

(
f (x)p

t

)
dx.(5.1)
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Since(ˆ
Q

MB,α( f χQ)(y)qdy

) 1
q

=
(ˆ

Q
MBp,α p ( f pχQ) (y)

q
p dy

) 1
q

=
(

q
p

ˆ ∞

0
t

q
p
∣∣{x ∈ Q : MBp,α p ( f pχQ) (x) > t

}∣∣ dt
t

) 1
q

,

we have (ˆ ∞

0
t

q
p
∣∣{x ∈ Q : MBp,α p ( f pχQ)(x) > t

}∣∣ dt
t

) 1
q

�C

⎛
⎝ˆ ∞

0
t

q
p

(ˆ
{x∈Q: f (x)p>t/c}

Bp

(
f (x)p

t

)
dx

) n
n−α p dt

t

⎞
⎠

1
q

by inequality (5.1). Since n
n−α p = q

p , we have

⎛
⎝ˆ ∞

0
t

q
p

(ˆ
{x∈Q: f (x)p>t/C2}

Bp

(
f (x)p

t

)
dx

) n
n−α p dt

t

⎞
⎠

1
q

=

⎧⎪⎨
⎪⎩
⎛
⎝ˆ ∞

0
t

q
p

(ˆ
{x∈Q: f (x)p>t/C2}

Bp

(
f (x)p

t

)
dx

) q
p dt

t

⎞
⎠

p
q
⎫⎪⎬
⎪⎭

1
p

=

⎧⎨
⎩
(ˆ ∞

0

(ˆ
Q

tBp

(
f (x)p

t

)
χ{x∈Rn: f (x)p>t/C2}(x)dx

) q
p dt

t

) p
q
⎫⎬
⎭

1
p

.

We use the Minkowski inequality:⎧⎨
⎩
(ˆ ∞

0

(ˆ
Q

tBp

(
f (x)p

t

)
χ{x∈Rn: f (x)p>t/C2}(x)dx

) q
p dt

t

) p
q
⎫⎬
⎭

1
p

�

⎧⎨
⎩
ˆ

Q

(ˆ ∞

0
t

q
p Bp

(
f (x)p

t

) q
p

χ{t>0:t<C2 f (x)p}(t)
dt
t

) p
q

dx

⎫⎬
⎭

1
p

=

⎧⎨
⎩
ˆ

Q

(ˆ C2 f (x)p

0
t

q
p B

(
f (x)
t1/p

) q
p dt

t

) p
q

dx

⎫⎬
⎭

1
p

.

By the change of the variables s = f (x)
t1/p ,

ˆ C2 f (x)p

0
t

q
p B

(
f (x)
t1/p

) q
p dt

t
= p

ˆ ∞

C2
− 1

p

(
f (x)
s

)q

B(s)
q
p

ds
s

= p f (x)q
ˆ ∞

C2
− 1

p

B(s)
q
p

sq+1 ds.
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Hence,

⎧⎨
⎩
ˆ

Q

(ˆ C2 f (x)p

0
t

q
p B

(
f (x)
t1/p

) q
p dt

t

) p
q

dx

⎫⎬
⎭

1
p

=

⎧⎨
⎩
ˆ

Q

(
p f (x)q

ˆ ∞

C
− 1

p
2

B(s)
q
p

sq+1 ds

) p
q

dx

⎫⎬
⎭

1
p

=

⎧⎨
⎩
(ˆ

Q
p

p
q f (x)pdx

)
·
(ˆ ∞

C
− 1

p
2

B(s)
q
p

sq+1 ds

) p
q
⎫⎬
⎭

1
p

=p
1
q

(ˆ
Q

f (x)pdx

) 1
p

·
(ˆ ∞

C
− 1

p
2

B(s)
q
p

sq+1 ds

) 1
q

.
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[9] C. PÉREZ, Two weighted inequalities for potential and fractional type maximal operators, Indiana
Univ. Math. J. 43, (1994), 2, 663–683.
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