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THE GEOMETRY OF BLUNDON’S CONFIGURATION

DORIN ANDRICA, CĂTĂLIN BARBU AND LAURIAN IOAN PIŞCORAN

Abstract. Denote by T (R,r) the family of triangles inscribed in the circle of center O with the
radius R and circumscribed to the circle of center I with the radius r . This defines the Blundon’s
configuration. The family T (R,r) contains only two isosceles triangles AminBminCmin and
AmaxBmaxCmax , which are extremal for Blundon’s inequalites (1). Some properties of Blundon’s
configuration are given Section 2. Applications are presented in the last section where a strong
version of Blundon’s inequalites is obtained (Theorem 7).
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