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REFINEMENTS OF THE HADAMARD AND

CAUCHY–SCHWARZ INEQUALITIES WITH TWO

INEQUALITIES OF THE PRINCIPAL ANGLES
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Abstract. By discussing two volume formulae for the parallelotope, some refinements of the
Hadamard and Cauchy-Schwarz inequalities are given and a class of principal inequalities re-
lated a parallelotope is established. This class of principal inequalities have a close relation to
the Hadamard and Fischer determinant inequalities. By using the interlacing property, a prin-
cipal inequality related to two subspaces is given which has a close relation to the Koteljanskii
determinant inequality. Analysis indicates that these two principal inequalities can be extended
to two class of principal inequalities easily.
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[27] D. R. JOCIĆ, S. MILOŠEVIĆ, Refinements of operator Cauchy-Schwarz and Minkowski inequalities

for p-modified norms and related norm inequalities, Linear Algebra and its Applications 488 (2016)
284–301.

[28] S. H. WADA, On some refinement of the Cauchy-Schwarz inequality, Linear Algebra and its Applica-
tions 420 (2007) 433–440.

[29] J. M. ALDAZ, S. BARZA, M. FUJII, M. S. MOSLEHIAN, Advances in operator Cauchy-Schwarz
inequalities and their reverses, Annals of Functional Analysis, 6 (3) (2015) 275–295.

[30] H. M. ZHANG, F. DING, A property of the eigenvalues of the symmetric positive definite matrix and
the iterative algorithm for coupled Sylvester matrix equations, Journal of the Franklin Institute 351 (1)
(2014) 340–357.

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


