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Abstract. By discussing two volume formulae for the parallelotope, some refinements of the
Hadamard and Cauchy-Schwarz inequalities are given and a class of principal inequalities re-
lated a parallelotope is established. This class of principal inequalities have a close relation to
the Hadamard and Fischer determinant inequalities. By using the interlacing property, a prin-
cipal inequality related to two subspaces is given which has a close relation to the Koteljanskii
determinant inequality. Analysis indicates that these two principal inequalities can be extended
to two class of principal inequalities easily.

1. Introduction

Polytope is an important topic in n -dimensional Euclidean space and some pro-
found results have been established. Simplex and parallelotope are main objects and
many properties and conclusions have been established. Some results of the volume
formulae for the simplices and parallelotopes are established. For example, a new vol-
ume formula for the simplex was established [1], a result for the volume of the largest
parallelotope contained in a given simplex was established [2]; some volume formu-
lae of parallelotopes and zonotopes were discussed and some determinant inequalities
involved positive definite matrices were proved [3]; a volume formula associated with
m×n matrices was discussed in [4].

Another active topic is the vertex angle of a simplex. A weighted matrix inequal-
ity was established and some inequalities on vertex angles of a n -dimensional simplex
were discussed [5]. By using the vertex angle, the generalized sine theorem and in-
equalities for the simplices were established [6]. Two property theorems for the inner
and outer bisection planes of the dihedral angles of the simplex were suggested [7].
Angles between two subspaces of dimension p and q in the Euclidean space were
discussed [8].

Matrix eigenvalue plays an important role in the matrix equation theory [9, 10,
11, 12] and system and control theory [13, 14]. Much work has been done on the
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eigenvalues of the matrix and some matrix eigenvalues inequalities were established
[15, 16, 17, 18]. For example, a new proof method for the arithmetic and geometric
mean inequality of singular values for any two matrices was given [19]. By using
principal angles and singular values, some volume formulae of parallelotopes were
discussed in [20].

In this paper, by introducing two volume formulae of the parallelotope, the relation
of the well-known Hadamard and Cauchy-Schwarz inequalities is explored, based on
it, some refinements of the Hadamard and Cauchy-Schwarz inequalities are suggested.
Using the volume formulae, a class of principal inequalities related to a parallelotope
determined by a matrix is established. This class of principal inequalities have a close
relation to the determinant Hadamard and Fischer inequalities. By using the interlac-
ing property and discussing the principal angles of two subspaces, a class of principal
inequalities of two subspaces is given. Using this principal inequality, the Koteljanskii
determinant inequality can be proved [3].

The rest of this paper is organized as follows. Section 2 gives some notation and
four lemmas as well as the definition of the principal angle. Section 3 introduces two
volume formulae for the parallelotope. Some refinements of the Hadamard and Cauchy-
Schwarz inequalities are given in Section 4. Section 5 suggests an principal inequality
related to a parallelotope. A principal inequality related to two subspaces is discussed
in Section 6. Finally, we offer some concluding remarks in Section 7.

2. Basic preliminaries

Let us introduce some notation and lemmas first. For a square matrix A ∈ R
n×n ,

symbol λi[A] , i = 1,2, · · · ,n , denotes the eigenvalues of matrix A with order λ1[A] �
λ2[A] � · · · � λn[A] . Symbol det(A) represents the determinant of a square matrix
A . Set Am := [ααααα1,ααααα2, · · · ,αααααm] , symbol Am denotes the subspace spanned by vectors
ααααα1,ααααα2, · · · ,αααααm , namely, Am := span{ααααα1,ααααα2, · · · ,αααααm} , especially, A[i1:ik] represents
the subspace spanned by vectors ααααα i1 ,ααααα i2 , · · · ,ααααα ik , where i1, i2, · · · , ik are some con-
secutive integers not starting from 1. Symbol dim(A ) represents the dimension of
subspace A ⊂ R

n . ‖ααααα‖ denotes the vector norm and is defined by formula ‖ααααα‖ :=√
αααααTααααα . VA denotes the volume of the parallelotope formed by the column vectors of

the matrix A . In is an identity matrix with order n× n . O is the zero matrix with
proper order.

The eigenvalue properties of the real symmetric matrix are depicted by the follow-
ing Courant-Fischer Minimax theorem and interlacing property [21].

LEMMA 1. (Courant-Fisher Minimax Theorem) If A ∈ R
n×n is a real sym-

metric matrix, then

λi[A] = max
dim(S)=i

min
0 �=y∈S

yTAy
yTy

, i = 1,2, · · · ,n. (2.1)

LEMMA 2. (Interlacing Property) Let A ∈ R
n×n be a symmetric positive defi-

nite matrix, Ak := A[i1,i2,···,ik] is the principal submatrix of A with indices i1, i2, · · · , ik .
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λi[Ak] denotes the eigenvalues of matrix Ak . We have the following property:

λi[A] � λi[Ak] � λn−k+i[A], i = 1,2, · · · ,k. (2.2)

Let us recall the the Schmidt orthogonalization of a matrix.

LEMMA 3. (Schmidt orthogonalization) Let ααααα1,ααααα2, · · · ,αααααm ∈R
n be the linear

independent column vectors, there exists an upper triangular matrix R such that

[ααααα1,ααααα2, · · · ,αααααm] = [βββββ 1,βββββ 2, · · · ,βββββ m]

⎡
⎢⎢⎢⎣

r11 r12 · · · r1m

0 r22 · · · a2m
...

...
...

0 0 · · · rmm

⎤
⎥⎥⎥⎦ . (2.3)

where βββββ 1,βββββ 2, · · · ,βββββ m are the norm orthogonal vectors in R
n and R := (ri j) =

[γγγγγ1,γγγγγ2, · · · ,γγγγγm]∈R
m×m is the upper triangular matrix with rii > 0 . Here, m = 1,2, · · · ,n.

Equation (2.3) can be written as

Am = BmRm, m = 1,2, · · · ,n, (2.4)

where Am = [ααααα1,ααααα2, · · · ,αααααm] , Bm = [βββββ 1,βββββ 2, · · · ,βββββ m] and Rm = [γγγγγ1,γγγγγ2, · · · ,γγγγγm] .

LEMMA 4. For matrices A ∈ R
m×n and B ∈ R

n×m , the matrices AB and BA
have the same nonzero eigenvalues.

Proof. Suppose that n � m , using the block elementary row transformation, we
have [

In O
−λ−1A Im

][
λ In B
A Im

]
=
[

λ In B
O Im −λ−1AB

]
,

and [
In −B
O Im

][
λ In B
A Im

]
=
[

λ In −BA O
A Im

]
.

Taking the determinants of these two equations gives∣∣∣∣
[

λ In B
A Im

]∣∣∣∣=
∣∣∣∣
[

λ In B
O Im −λ−1AB

]∣∣∣∣= |λ In|
∣∣Im −λ−1AB

∣∣= λ n−m |λ Im −AB| ,

and ∣∣∣∣
[

λ In B
A Im

]∣∣∣∣=
∣∣∣∣
[

λ In −BA O
A Im

]∣∣∣∣= |Im| |λ In−BA| = |λ In−BA| .

This shows that matrices AB and BA have the same nonzero eigenvalues. The proof
is completed. �

The cosine of the principal angles of two subspaces is defined by the following
formula [21, 22].
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DEFINITION 1. (Principal angles) Let F and G be subspaces in R
n whose

dimensions satisfy
p = dim(F ) � dim(G ) = q � 1.

If dim(F ∩G ) = 0 then the nonzero principal angles θ1,θ2, · · · ,θq ∈ [0,π/2] between
F and G are defined recursively by

cosθk = max
u∈F

max
v∈G

uTv = uT
kvk, (2.5)

subject to:

‖u‖ = ‖v‖ = 1,

uTui = 0, i = 1 : k−1,

vTvi = 0, i = 1 : k−1.

Here, the principal angles satisfy 0 � θ1 � θ2 · · · � θq � π/2. Referring to [20],
sinθ (F ,G ) can be defined as sinθ (F ,G ) := sinθ1 sinθ2 · · · sinθq and cosθ (F ,G )
can be defined as cosθ (F ,G ) := cosθ1 cosθ2 · · ·cosθq . In particular, sin2 θ (F ,G )+
cos2 θ (F ,G ) � 1.

3. Two volume formulae for the parallelotope

Let ααααα1,ααααα2, · · · ,αααααm ∈ R
n be the m linear independent vectors and set Am :=

[ααααα1,ααααα2, · · · ,αααααm] ∈ R
n×m . Symbol VAm denotes the volume of the parallelotope formed

by the vectors ααααα1,ααααα2, · · · ,αααααm . According to equation (2.4), we have the following
volume formula:

VAm =
√

det(ATA) =
√

det((ααααα1,ααααα2, · · · ,αααααm)T(ααααα1,ααααα2, · · · ,αααααm))

=
√

det(RT
mBT

mBmRm) =
√

det(RT
mRm) = det(Rm) = r11r22 · · · rmm. (3.1)

Here, we can take rii, i = 1,2, · · · ,m , as the distance from the end of the vector ααααα i

to the subspace Ai−1 spanned by vectors ααααα1,ααααα2, · · · ,ααααα i−1 . Symbol θ (αααααm,Am−1)
denotes the principal angle formed by vector αααααm and subspace Am−1 , according to the
definition of principal angle in Definition 1, we have

θ (αααααm,Am−1) = min
u∈spanAm−1

θ (αααααm,u) = arccos

( αααααT
mPAm−1

αααααm

‖αααααm‖‖PAm−1
αααααm‖

)
= θ (αααααm,PAm−1

αααααm), (3.2)

where PAm−1
= Am−1

(
AT

m−1Am−1
)−1 AT

m−1 is the orthogonal projection matrix of Am−1 .
According to equation (2.4), we have

Am−1 = [ααααα1,ααααα2, · · · ,αααααm−1] = [βββββ 1,βββββ 2, · · · ,βββββ m−1]Rm−1.

Set Bm−1 = [βββββ 1,βββββ 2, · · · ,βββββ m−1] , we have

PAm−1
= Am−1

(
AT

m−1Am−1
)−1 AT

m−1 = Bm−1Rm−1
(
RT

m−1B
T
m−1Bm−1Rm−1

)−1 RT
m−1B

T
m−1

= Bm−1Rm−1
(
R−1

m−1R
−T
m−1

)
RT

m−1B
T
m−1 = Bm−1B

T
m−1. (3.3)
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Using αααααm = r1mβββββ 1 + r2mβββββ 2 + · · ·+ rm−1,mβββββ m−1 + rmmβββββ m gives

PAm−1
αααααm = Bm−1BT

m−1[βββββ 1,βββββ 2, · · · ,βββββ m]γγγγγm = Bm−1[Im−1,O]αααααm

= r1mβββββ 1 + r2mβββββ 2 + · · ·+ rm−1,mβββββ m−1

= Bm

⎡
⎢⎢⎢⎣

r1m
...

rm−1,m

0

⎤
⎥⎥⎥⎦ . (3.4)

Using αααααm = r1mβββββ 1 + r2mβββββ 2 + · · ·+ rm−1,mβββββ m−1 + rmmβββββ m and equation (3.4) give

cosθ (αααααm,Am−1) =
αααααT

mPAm−1
αααααm

‖αααααm‖‖PAm−1
αααααm‖

=
r2
1m + r2

2m + · · ·+ r2
m−1,m√

r2
1m + r2

2m + · · ·+ r2
mm

√
r2
1m + r2

2m + · · ·+ r2
m−1,m

=

√
r2
1m + r2

2m + · · ·+ r2
m−1,m√

r2
1m + r2

2m + · · ·+ r2
mm

. (3.5)

According the well known formula sin2 θ (αααααm,Am−1) + cos2 θ (αααααm,Am−1) = 1, we
have

sinθ (αααααm,Am−1) =
rm,m√

r2
1m + r2

2m + · · ·+ r2
mm

=
rmm

‖γγγγγm‖ (3.6)

=
r11r22 · · · rmm

‖γγγγγm‖r11r22 · · ·rm−1,m−1
=

VAm

‖γγγγγm‖VAm−1

. (3.7)

Using equation (3.6), equation (3.1) can be rewritten as

VAm = r11r22 · · · rmm = r11‖γγγγγ2‖ r22

‖γγγγγ2‖ · · ·‖γγγγγm‖ rmm

‖γγγγγm‖
= ‖γγγγγ1‖‖γγγγγ2‖sinθ (ααααα2,A1) · · · ‖γγγγγm‖sinθ (αααααm,Am−1)
= ‖γγγγγ1‖‖γγγγγ2‖· · ·‖γγγγγm‖sinθ (ααααα2,A1)sinθ (ααααα3,A2) · · · sinθ (αααααm,Am−1). (3.8)

Note that ‖ααααα i‖ = ‖γγγγγ i‖ , i = 1,2, · · · ,m and using equation (3.8) give

VAm = ‖ααααα1‖‖ααααα2‖· · ·‖αααααm‖sinθ (ααααα2,A1)sinθ (ααααα3,A2) · · · sinθ (αααααm,Am−1). (3.9)

So we obtain a volume formula for the parallelotope. For sinθ (ααααα i,Ai−1) � 1, i =
2,3, · · · ,m−1, from equation (3.9) we obtain the following Hadamard inequality,

VAm � ‖ααααα1‖‖ααααα2‖· · ·‖αααααm‖. (3.10)

Next, we give another volume formula for the parallelotope. Suppose that ma-
trix Am can be divided into two block matrices denoted by C := [ααααα1,ααααα2, · · · ,ααααα p] and
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D := [ααααα p+1,ααααα p+2, · · · ,αααααm] , that is, Am = [C,D] . Then we have the following volume
formula for the parallelotope,

V2
Am = det(ATA) = det

([
CT

DT

]
[C,D]

)
= det

([
CTC CTD
DTC DTD

])
= det(CTC)det

(
DTD−DTC(CTC)−1CTD

)
= det(CTC)det(DTD)det

(
Im−p − (DTD)−1DTC(CTC)−1CTD

)
, (3.11)

where m− p = dim(D) . Introducing symbols C := span{ααααα1,ααααα2, · · · ,ααααα p} and D :=
span{ααααα p+1,ααααα p+2, · · · ,αααααm} , if we define

sin2 θ (C ,D) := det
(
Im−p − (DTD)−1DTC(CTC)−1CTD

)
(3.12)

and use equation (3.1) then it gives

VAm = VCVD sinθ (C ,D). (3.13)

4. Refinements of the Hadamard and Cauchy-Schwarz inequalities

The Hadamard inequality is a basic and important inequality and many proofmeth-
ods has been established [3, 23]. The Cauchy-Schwarz inequality is well-known and
an important inequality. Many extensions and refinements have been done [24, 25,
26, 27, 28, 29], but the relation of these two important inequalities seldom mentioned
in the literatures. To establish the refinements of the Hadamard and Cauchy-Schwarz
inequalities, we make more discussion on sinθ (C ,D) .

Let C = BCRC and D = BDRD are the Schmidt orthogonal decomposition forms
of the matrices C and D , respectively. We have

sin2 θ (C ,D) = det(Im−p − (DTD)−1DTC(CTC)−1CTD)

= det
(
Im−p − ((BDRD)TBDRD)−1(BDRD)TBCRC×

×((BCRC)TBCRC)−1(BCRC)TBDRD

)
= det

(
Im−p − (RT

DRD)−1(BDRD)TBCRC(RT
CRC)−1(BCRC)TBDRD

)
= det

(
Im−p −R−1

D BT
DBCBT

CBDRD

)
= det

(
Im−p −BT

DBCBT
CBD

)
. (4.1)

According to equation (8) in [30], we have 0 � λ [BT
DBCBT

CBD] � 1. Since BT
DBCBT

CBD

is a real symmetric matrix, there exists an orthogonal matrix Q such that
QTBT

DBCBT
CBDQ =: ΛΛΛΛΛ ∈ R

(m−p)×(m−p) is diagonal. Set ΛΛΛΛΛ := diag(δ 2
1 ,δ 2

2 , · · · ,δ 2
m−p) ,

δi > 0, then we have

sin2 θ (C ,D) = det(Ip)det
(
Im−p −BT

DBCBT
CBD

)
= det

(
Im−p−QTBT

DBCBT
CBDQ

)
= det(Im−p −ΛΛΛΛΛ) = (1− δ 2

1 )(1− δ 2
2 ) · · · (1− δ 2

m−p). (4.2)

Next, we prove that cosθi = δi , i = 1,2, · · · ,m− p . According to Definition 1 and
using BC and BD represent the subspaces spanned by the vectors of the matrices BC
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and BD , respectively, since BC and BD are normal orthogonal matrices, we have

cosθi = max
u∈BC

max
v∈BD

uTv
‖u‖‖v‖ = max

y∈R
p

‖y‖=1

max
z∈R

m−p
‖z‖=1

yT(BT
CBD)z =

√
max

x∈R
m−p

‖x‖=1

xT(BT
DBCBT

CBD)x

= δi. (4.3)

So equation (4.2) can be rewritten as

sin2 θ (C ,D) = (1− δ 2
1 )(1− δ 2

2 ) · · · (1− δ 2
m−p)

= (1− cos2 θ1)(1− cos2 θ2) · · · (1− cos2 θm−p)

= sin2 θ1 sin2 θ2 · · · sin2 θm−p. (4.4)

Combining equations (3.13) and (4.4) gives

VAm = VCVD sinθ1 sinθ2 · · · sinθm−p. (4.5)

With these preparations, next we establish the refinements of the Hadamard and
Cauchy-Schwarz inequalities. When m = 2, equation (3.9) or (4.5) is

V2
A2

=
∣∣∣∣ αααααT

1ααααα1 αααααT
1ααααα2

αααααT
2ααααα1 αααααT

2ααααα2

∣∣∣∣= ‖ααααα1‖2‖ααααα2‖2 sin2 θ (ααααα2,A1)

= ‖ααααα1‖2‖ααααα2‖2 sin2 θ (ααααα2,ααααα1). (4.6)

Manipulating equation (4.6) gives

∣∣∣∣ αααααT
1ααααα1 αααααT

1ααααα2

αααααT
2ααααα1 αααααT

2ααααα2

∣∣∣∣
‖ααααα1‖2‖ααααα2‖2 =

‖ααααα1‖2‖ααααα2‖2− (αααααT
1ααααα2)2

‖ααααα1‖2‖ααααα2‖2 = 1− (αααααT
1ααααα2)2

‖ααααα1‖2‖ααααα2‖2

= 1− cos2 θ (ααααα2,ααααα1) = sin2 θ (ααααα2,ααααα1). (4.7)

Equation (4.7) signifies that the Cauchy-Schwarz inequality and the Hadamard inequal-
ity are the two sides of a coin, that is, formula

∣∣∣∣ αααααT
1ααααα1 αααααT

1ααααα2

αααααT
2ααααα1 αααααT

2ααααα2

∣∣∣∣
‖ααααα1‖2‖ααααα2‖2 = sin2 θ (ααααα2,ααααα1) � 1

contains the Hadamard inequality and formula

(αααααT
1ααααα2)2

‖ααααα1‖2‖ααααα2‖2 = cos2 θ (ααααα2,ααααα1) � 1
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gives the Cauchy-Schwarz inequality. Using equation (3.9) gives√
det(ATA) =

√
det((ααααα1,ααααα2, · · · ,αααααm)T(ααααα1,ααααα2, · · · ,αααααm))

= ‖ααααα1‖‖ααααα2‖· · ·‖αααααm‖sinθ (ααααα2,A1)sinθ (ααααα3,A2) · · · sinθ (αααααm,Am−1)
� ‖ααααα1‖‖ααααα2‖· · ·‖αααααm‖sinθ (ααααα2,A1)sinθ (ααααα3,A2)

· · · sinθ (αααααm−1,Am−2) (4.8)
...

� ‖ααααα1‖‖ααααα2‖· · ·‖αααααm‖sinθ (ααααα2,A1) (4.9)

� ‖ααααα1‖‖ααααα2‖· · ·‖αααααm‖. (4.10)

Clearly, equation (4.10) is the Hadamard inequality and equations (4.8) and (4.9) can
be seen some refinements of the Hadamard inequality.

Since the Hadamard inequality and the Cauchy-Schwarz inequality are the two
sides of a coin and the Hadamard inequality has the above perfect refinement versions,
what is the refinement version of the Cauchy-Schwarz inequality? According to equa-
tions (3.12) and (4.4), we have

0 � λ [(DTD)−1DTC(CTC)−1CTD] � 1. (4.11)

This denotes

det((DTD)−1DTC(CTC)−1CTD) = det((DTD)−1)det(DTC(CTC)−1CTD)
= det(ΛΛΛΛΛ) = δ 2

1 δ 2
2 · · ·δ 2

m−p

= cos2 θ1 cos2 θ2 · · ·cos2 θm−p � 1. (4.12)

For C = [ααααα1,ααααα2, · · · ,ααααα p] and D = [ααααα p+1,ααααα p+2, · · · ,αααααm] , if p = m− p then C , D ∈
R

n×m and we have

det(DTC(CTC)−1CTD) = cos2 θ1 cos2 θ2 · · ·cos2 θm−p det(DTD) (4.13)

det(DTC)det((CTC)−1)det(CTD) = cos2 θ1 cos2 θ2 · · ·cos2 θm−p det(DTD)(
det(DTC)

)2 = cos2 θ1 cos2 θ2 · · ·cos2 θm−p det(DTD)det(CTC). (4.14)

Using equation (4.14) gives

(
det(DTC)

)2 � cos2 θ1 cos2 θ2 · · ·cos2 θm−p+1 det(DTD)det(CTC) (4.15)

...

� cos2 θ1 det(DTD)det(CTC) (4.16)

� det(DTD)det(CTC). (4.17)

Clearly, equation (4.17) is an extension of the Cauchy-Schwarz inequality [22] and
equations (4.15) and (4.16) are the refinement versions of the Cauchy-Schwarz inequal-
ity.
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5. An inequality of the principal angles related to parallelotope

Using the results established in Section 4, the following conclusion describes the
relation of the principal angles related to a parallelotope determined by a matrix.

THEOREM 2. Let ααααα1, · · · ,ααααα p,ααααα p+1, · · · ,αααααm be linear independent vectors and
C := [ααααα1, · · · ,ααααα p] and D := [ααααα p+1, · · · ,αααααm] . If p > m− p then

sinθ1 sinθ2 · · ·sinθm−p � sinθ (ααααα2,A1)sinθ (ααααα3,A2) · · · sinθ (αααααm,Am−1), (5.1)

where θi , i = 1,2, · · · ,m− p, are the principal angles determined by subspaces C and
D and θ (ααααα i,Ai−1) , i = 2,3, · · · ,m, are the principal angles between ααααα i and subspace
Ai−1 .

Proof. According to equations (3.9) and (4.5), we have
n

∏
i=1

‖ααααα i‖sinθ (ααααα2,A1)sinθ (ααααα3,A2) · · · sinθ (αααααm,Am−1)

= VCVD sinθ1 sinθ2 · · · sinθm−p. (5.2)

According equation (3.10), we have

VC � ‖ααααα1‖‖ααααα2‖· · ·‖ααααα p‖, (5.3)

VD � ‖ααααα p+1‖‖ααααα p+2‖· · ·‖αααααm‖. (5.4)

Namely,

VCVD � ‖ααααα1‖‖ααααα2‖· · ·‖ααααα p‖‖ααααα p+1‖‖ααααα p+2‖· · ·‖αααααm‖ =

(
n

∏
i=1

‖ααααα i‖
)

. (5.5)

Combining equations (5.2) and (5.5) gives equation (5.1). The proof of theorem 2 is
completed. �

REMARK 1. Theorem 2 is a special case of the following class of principal in-
equalities. According to equation (4.4), equation (5.1) can be rewritten as

sinθ (C ,D) � sinθ (ααααα2,A1)sinθ (ααααα3,A2) · · · sinθ (αααααm,Am−1). (5.6)

Let A[i1:ik ] represents the subspace spanned by vectors ααααα i1 ,ααααα i2 , · · · ,ααααα ik . Here, i1, i2, · · · ,
ik are some consecutive integers not starting from 1. For convenience, set m = 5,
C := A3 and D := A[4,5] , equation (5.6) can be rewritten as

sinθ (A3,A[4,5]) � sinθ (ααααα2,ααααα1)sinθ (ααααα3,A2)sinθ (ααααα4,A3)sinθ (ααααα5,A4). (5.7)

Using equation (3.13) recursively, we have

VA5 = VA3
VA[4,5]

sinθ (A3,A[4,5]) = ‖ααααα1‖VA[2,3]
sinθ (ααααα1,A[2,3])VA[4,5]

sinθ (A3,A[4,5])

= ‖ααααα1‖‖ααααα2‖‖ααααα3‖sinθ (ααααα1,A[2,3])sinθ (ααααα2,ααααα3)VA[4,5]
sinθ (A3,A[4,5])

=
5

∏
i=1

‖ααααα i‖sinθ (ααααα1,A[2,3])sinθ (ααααα2,ααααα3)sinθ (A3,A[4,5])sinθ (ααααα4,ααααα5). (5.8)
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Combining equations (3.9) and (5.8) gives

sinθ (ααααα2,ααααα1)sinθ (ααααα3,A2)sinθ (ααααα4,A3)sinθ (ααααα5,A4)
= sinθ (ααααα1,A[2,3])sinθ (ααααα2,ααααα3)sinθ (A3,A[4,5])sinθ (ααααα4,ααααα5). (5.9)

From equation (5.9), we can obtain a class of principal inequalities. For example, since
sinθ (ααααα5,A4) � sinθ (ααααα4,ααααα5) , we have

sinθ (ααααα2,ααααα1)sinθ (ααααα3,A2)sinθ (ααααα4,A3)
� sinθ (ααααα1,A[2,3])sinθ (ααααα2,ααααα3)sinθ (A3,A[4,5]).

And using sinθ (ααααα2,ααααα1) � 1 gives

sinθ (ααααα3,A2)sinθ (ααααα4,A3)sinθ (ααααα5,A4)
� sinθ (ααααα1,A[2,3])sinθ (ααααα2,ααααα3)sinθ (A3,A[4,5])sinθ (ααααα4,ααααα5).

Of course, equation (5.7) can be got easily from equation (5.9). Referring to equation
(3.7), a class of determinant inequalities such as the Hadamard or Fischer inequalities
can be got easily.

6. An inequality of the principal angles related to two subspaces

In this section, by using the interlacing property, we will establish a principal
angles inequality related to two subspaces.

THEOREM 3. Let ααααα1,ααααα2, · · · ,ααααα p , βββββ 1,βββββ 2, · · · ,βββββ m be linear independent vectors
in R

n and set U := [ααααα1,ααααα2 · · · ,ααααα p] and V := [βββββ 1,βββββ 2, · · · ,βββββ m] , respectively. Setting
U := span{ααααα1,ααααα2, · · · ,ααααα p} and V := span{βββββ 1,βββββ 2, · · · ,βββββ m} . Suppose that p � m and
the principal angles between U and V are φ1,φ2, · · · ,φp . Let W := [ααααα1,ααααα2 · · · ,αααααq]
and W := span{ααααα1,ααααα2 · · · ,αααααq} , q < p. The principal angles between W and V are
ψ1,ψ2, · · · ,ψq . Then we have the following inequality.

φ j � ψ j � φp−q+ j, j = 1,2, · · · ,q. (6.1)

Proof. For convenience, suppose that vector groups ααααα1,ααααα2, · · · ,ααααα p and
βββββ 1,βββββ 2, · · · ,βββββ m are normal orthogonal. Using Definition 1 gives

cosφ j = max
u∈U

max
v∈V

uTv = max
y∈R

p

‖y‖=1

max
z∈R

m
‖z‖=1

yT(UTV)z =
√

max
x∈R

m
‖x‖=1

xT(VTUUTV)x

=
√

λ j[VTUUTV]. (6.2)

According to equation (6.2), we have

cos2 φ j = λ j[VTUUTV], j = 1,2, · · · , p. (6.3)
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Similarly, we have

cos2 ψk = λk[VTWWTV], k = 1,2, · · · ,q. (6.4)

According to Lemma 4, we have

cos2 φ j = λ j[VTUUTV] = λ j[UTVVTU], j = 1,2, · · · , p, (6.5)

cos2 ψk = λk[VTWWTV] = λk[WTVVTW], k = 1,2, · · · ,q. (6.6)

Since W ⊂ U , for any unit vector z ∈ R
q there exists a unit vector y ∈ R

p such that

yTUTVVTUy
yTy

� zTWTVVTWz
zTz

. (6.7)

According to Lemma 1 and equation (6.7), we obtain

λ j[UTVVTU] � λ j[WTVVTW], j = 1,2, · · · ,q. (6.8)

Similarly, we have

λ j[WTVVTW] � λp−q+ j[UTVVTU], j = 1,2, · · · ,q. (6.9)

Combining equations (6.8) and (6.9) gives

λ j[UTVVTU] � λ j[WTVVTW] � λp−q+ j[UTVVTU], j = 1,2, · · · ,q. (6.10)

Referring to equations (6.5) and (6.6) gives

cosφ j � cosψ j � cosφp−q+ j, j = 1,2, · · · ,q. (6.11)

Note that the monotonically decreasing property of cosine in [0,π/2] . The proof of
theorem 3 is completed. �

REMARK 2. From the proof of Theorem 3, we find that W can be formed by
arbitrarily taking some column vectors from matrix U and equation (6.1) still holds.
Further more, the matrix W can be formed by taking some column vectors from matrix
V , in this case, ψi denotes the principal angles between by subspaces U and W and
the inequality in equation (6.1) still holds.

REMARK 3. According to equation (6.1) or equation (6.11), we have

sinφ j � sinψ j � sinφp−q+ j, j = 1,2, · · · ,q. (6.12)

Using equation (6.12) gives

sinφ1 sinφ2 · · ·sinφq � sinψ1 sinψ2 · · ·sinψq. (6.13)

Further more, we have

sinφ1 sinφ2 · · · sinφq sinφq+1 · · · sinφp � sinψ1 sinψ2 · · ·sinψq. (6.14)

From equation (6.14), the Koteljanskii determinant inequality can be proved [3].
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7. Conclusions

By analyzing two volume formulae for the parallelotope, some refinements of the
Hadamard and Cauchy-Schwarz inequalities are presented and a principal inequality
related a paralleotope is established. By using the interlacing property, a principal in-
equality related to two subspaces is given. It is proved that these two principal inequal-
ities can be extended to two class of principal inequalities easily. Analysis indicates
that these two class of principal inequalities have a close relation to the several classic
determinant inequalities.
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