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Abstract. In the present paper we consider one parameter generalizations of some ’useful’ non -
symmetric divergence measures. All the generalizations considered can be written as particular
cases of Csiszar f-divergence. Under some conditions of probability distributions, inequalities
among generalized ‘useful’ relative divergence measures are obtained.

1. Introduction

Let Δ+
n = {P = (p1, p2, ..., pn), pi � 0, ∑n

i=1 pi = 1} ,be a set of all possible dis-
crete probability distributions of a random variable X having utility distribution U =
{(u1,u2, ...,un); ui > 0for all i} attached to each P ∈ Δ+

n such that ui > 0 is utility of
an event having probability of occurrence pi > 0.
The following measure of ‘useful’ directed divergence or ‘useful’ relative information
is given by

I(P;Q;U) =
∑n

i=1 uipi log
(

pi
qi

)
∑n

i=1 uipi
(1)

It may be noted (1) that is a generalization of the measure

H(P;U) = −∑n
i=1 uipi log pi

∑n
i=1 uipi

(2)

It can be observed that (2) is not symmetric in P and Q and its symmetric version
is given by

J(P;Q;U) = I(P;Q;U)+ I(Q;P;U)

=
∑n

i=1 uipi log
(

pi
qi

)
∑n

i=1 uipi
+

∑n
i=1 uiqi log

(
qi
pi

)
∑n

i=1 uiqi

=
∑n

i=1 ui(pi −qi) log
(

pi
qi

)
∑n

i=1 uipi
, (3)
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where ∑n
i=1 uipi = ∑n

i=1 uiqi .
When utilities are ignored or ui = 1 for each i , (3) reduces to

J(P;Q) =
n

∑
i=1

(pi −qi) log

(
pi

qi

)
. (4)

Which is[11] divergence measure and it is written as J-divergence. In the next
section we give some generalized ‘useful’ non-Symmetric Divergence Measures.

2. Generalized ‘useful’ non–symmetric divergence measures

Some generalized ‘useful’ non-symmetric measures of information are given be-
low:

‘Useful’ χ2 –divergence

χ2(P;Q;U) =
∑n

i=1 ui(pi−qi)2
/
qi

∑n
i=1 uipi

=
∑n

i=1

(
uip2

i
/
qi

)
∑n

i=1 uipi
−1. (5)

‘Useful’ relative information

L(P;Q;U) =
∑n

i=1 uipi log
(

pi
qi

)
∑n

i=1 uipi
. (6)

‘Useful’ relative Jensen-Shannon divergence

S(P;Q;U) =
∑n

i=1 uipi log
(

2pi
pi+qi

)
∑n

i=1 uipi
. (7)

‘Useful’ relative arithmetic-geometric divergence

T (P;Q;U) =
∑n

i=1 ui
( pi+qi

2

)
log

(
pi+qi
2pi

)
∑n

i=1 uipi
. (8)

‘Useful’ relative j- divergence (Dragomir et al. [8])

G(P;Q;U) =
∑n

i=1 ui (pi−qi) log
(

pi+qi
2qi

)
∑n

i=1 uipi
. (9)

Symmetric versions of above ‘useful’ measures are given by

ψ(P;Q;U) = χ2(P;Q;U)+ χ2(Q;P;U) (10)

F(P;Q;U) = L(P;Q;U)+L(Q;P;U) = G(P;Q;U)+G(Q;P;U) (11)
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K(P;Q;U) =
1
2
[S(P;Q;U)+S(Q;P;U)] (12)

and

J(P;Q;U) =
1
2
[T (P;Q;U)+T(Q;P;U)]. (13)

After simplification, we can write

F(P;Q;U) = 4 [K(P;Q;U)+ J(Q;P;U)] (14)

and

G(Q;P;U) =
1
2
[S(P;Q;U)+T(P;Q;U)].

When utilities are ignored all the above measures reduces to [2],[14],[12],[15,
16],[22],[8].

[9] studied the measures (9), referred to subsequently as [21] ‘useful’ symmetric
chi-square divergence. Measure (11) is known as ‘useful’ Jeffreys-Kullback-Leibler
[12] J-divergence, the measure (12) is ‘useful’ Jensen-Shannon divergence studied by
Sibson[16] and Burbea and Rao[3]. Measure(13) is ‘useful’ arithmetic and geometric
mean divergence studied by Taneja [18]. More details on some of these measures can
be found in Taneja[17, 18] and in the on line book by Taneja [20].

In the next section we will study the unified measures of ‘useful’ non symmetric
relative information.

3. Generalized ‘useful’ non – symmetric divergence measures of type s

Let us consider the following generalization of (6) & call it ‘useful’ relative infor-
mation of type s:

Ls(P;Q;U) = [s(s−1)]−1

[
∑n

i=1 uips
i q

1−s
i

∑n
i=1 uipi

−1

]
, s �= 0,1; (15)

where ∑n
i=1 uipi = ∑n

i=1 uiqi .
We have the following limiting cases:

lim
s→1

Ls(P;Q;U) = L(P;Q;U)

and
lim
s→0

Ls(P;Q;U) = L(Q;P;U),

provided ∑n
i=1 uipi = ∑n

i=1 uiqi .
The measure (15) is a non-additive generalized ‘useful’ relative information mea-

sure & has some interesting particular cases which are discussed as given below:
(i) When s = 1

/
2 we have
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L1/2(P;Q;U) = 4 [1−B(P;Q;U)]

where B(P;Q;U) = ∑n
i=1 ui p

1/2
i q1/2

i
∑n

i=1 ui pi
is ‘useful’ distance corresponding to [1] distance

B(P;Q) = ∑n
i=1

√
piqi . Further

L1/2(P;Q;U) = 4h(P;Q;U)

where h(P;Q;U) = 1
2

∑n
i=1 ui(p

1/2
i −q1/2

i )2

∑n
i=1 ui pi

is ‘useful’ discrimination measure corre-

sponding to [10] discrimination h(P;Q) = 1
2 ∑n

i=1

(
p1/2

i −q1/2
i

)2
.

(ii) When s = 2, we have

L2(P;Q;U) =
1
2

χ2(P;Q;U).

(iii) When s = −1, we have

L−1(P;Q;U) =
1
2

χ2(Q;P;U).

We can write measures (12) in the following unified way

ϕs(P;Q;U) =

⎧⎪⎨
⎪⎩

Ls(P;Q;U) s �= 0,1

L(Q;P;U) s = 0

L(P;Q;U) s = 1,

(16)

provided ∑n
i=1 uipi = ∑n

i=1 uiqi .

4. Generalized ‘useful’ unified relative JS and AG–divergence of type s

The following unified one parameter generalization of measures (7) and (8) simul-
taneously are considered:

Ωs(P;Q;U) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

STs(P;Q;U) = [s(s−1)]−1

[
∑n

i=1 ui pi

(
pi+qi
2pi

)s

∑n
i=1 ui pi

−1

]
s �= 0,1

S(P;Q;U) =
∑n

i=1 ui pi log
(

2pi
pi+qi

)
∑n

i=1 ui pi
s = 0

T (P;Q;U) =
∑n

i=1 ui

(
pi+qi

2

)
log
(

pi+qi
2pi

)
∑n

i=1 ui pi
s = 1.

(17)

The adjoint of Ωs(P;Q;U) written as Ωs(Q;P;U) is obtained by interchanging P
and Q , and pi and qi in the above expression. The measures Ωs(Q;P;U)can also be
obtained from (15) by replacing pi by pi+qi

2 .
We have the following particular cases of Ωs(P;Q;U) and Ωs(Q;P;U) :
(i) Ω−1(P;Q;U) = Ω−1(Q;P;U) = 1

4 Δ(P;Q;U) .
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(ii) (a) Ω0(P;Q;U) = S(P;Q;U) .
(b) Ω0(Q;P;U) = S(Q;P;U) .

(iii) (a) Ω1(P;Q;U) = T (P;Q;U) .
(b) Ω1(Q;P;U) = T (Q;P;U) .

(iv) (a) Ω2(P;Q;U) = 1
8 χ2(Q;P;U) .

(b) Ω2(Q;P;U) = 1
8 χ2(P;Q;U) .

The expression Δ(P;Q;U) appearing in part (i) is the well known ‘useful’ trian-
gular discrimination, and is given by

Δ (P;Q;U) =
∑n

i=1 ui
(pi−qi)

2

pi+qi
∑n

i=1 ui pi
.

5. Generalized ‘useful’ relative J–divergence of type s

We now propose the following one parameter generalization of the ‘useful’ relative
J-divergence measures given by (9).

ζs(P;Q;U) =

⎧⎪⎪⎨
⎪⎪⎩

Gs(P;Q;U) =
(s−1)−1 ∑n

i=1 ui(pi−qi)
(

pi+qi
2qi

)
∑n

i=1 ui pi

s−1

s �= 1

G(P;Q;U) =
∑n

i=1 ui(pi−qi) ln
(

pi+qi
2qi

)
∑n

i=1 ui pi
s = 1,

(18)

where ∑n
i=1 uipi = ∑n

i=1 uiqi .
The adjoint of ζs(P;Q;U)written as ζs(Q;P;U) is obtained by interchanging P

and Q , and pi and qi in the expression (18).
Some particular cases are:
(i) ζo(P;Q;U) = ζ0(Q;P;U) = Δ(P;Q;U).
(ii) (a) ζ1(P;Q;U) = D(P;Q;U).

(b) ζ1(Q;P;U) = D(Q;P;U).
(iii) (a) ζ2(P;Q;U) = 1

2 χ2(P;Q;U).
(b) ζ2(Q;P;U) = 1

2 χ2(Q;P;U).
We observe that the generalized ‘useful’ relative information of type s, Φs(P;Q;U) ,

contains the classical measures Bhattacharyya coefficient, ‘useful’χ2–divergence and
‘useful’ Hellinger discrimination. The generalized ‘useful’ unified relative JS and AG–
divergence of type s, Ωs(P;Q;U) and Ωs(Q;P;U) , contains ‘useful’ triangular dis-
crimination and ‘useful’ χ2 –divergence, while the generalized ‘useful’ relative J– di-
vergences of type s, ζs(P;Q;U)and ζs(Q;P;U) , yield, in particular, ‘useful’ triangular
discrimination and ‘useful’ χ2 -divergence.

6. Csiszar’s ‘useful’ f- divergence and its particular cases

For a function f : [0,∞) → ℜ, the ‘useful’ f-divergence measure is given by

Cf (P;Q;U) =
∑n

i=1 uiqi f
(

pi
qi

)
∑n

i=1 uipi
, (19)
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for all P,Q ∈ Δ+
n .

The following result is well known in the literature.

THEOREM 1. [4, 5]. If the function f is convex and normalized, i.e., f (1) = 0 ,
then, Cf (P;Q;U)and its adjoint Cf (Q;P;U)are both nonnegative and convex in the
pair of probability distributions (P,Q) ∈ Δ+

n ×Δ+
n and U is the utility distribution.

EXAMPLE 1. (Relative information of type s). Let us consider

ϕs(x) =

⎧⎪⎨
⎪⎩

[s(s−1)]
−1

[xs−1− s(x−1)] s �= 0,1

x−1− logx s = 0

1− x+ x logx s = 1.

(20)

For all x > 0 in (19). Then Cf (P;Q;U) = Φs(P;Q;U).

EXAMPLE 2. (Relative JS and AG – divergence of type s). Let us consider

Ψs(x) =

⎧⎪⎪⎨
⎪⎪⎩

[s(s−1)]−1
[
x
(

x+1
2x

)s− x− s
(

1−x
2

)]
s �= 0,1

1−x
2 − x log

(
x+1
2x

)
s = 0

x−1
2 +

(
x+1
2

)
log
(

x+1
2x

)
s = 1.

(21)

For all x > 0 in (19). Then Cf (P;Q;U) = Ωs(P;Q;U).

EXAMPLE 3. (Adjoint of Relative JS and AG- divergence of type s). Let us con-
sider

υs(x) =

⎧⎪⎪⎨
⎪⎪⎩

[s(s−1)]−1
[(

x+1
2

)s −1− s
(

x−1
2

)]
s �= 0,1

x−1
2 + log

( 2
x+1

)
s = 0

1−x
2 + x+1

2 log
(

x+1
2

)
s = 1.

(22)

For all x > 0 in (19). Then Cf (P;Q;U) = Ωs(Q;P;U).

EXAMPLE 4. (Relative J- divergence of type s). Let us consider

ξs(x) =

{
(s−1)−1(x−1)

[(
x+1
2

)s−1−1
]

s �= 1

(x−1) log
(

x+1
2

)
s = 1.

(23)

For all x > 0 in (19). Then Cf (P;Q;U) = ζs(P;Q;U).

EXAMPLE 5. (Adjoint of relative J-divergence of type s). Let us consider

ζs(x) =

{
(s−1)−1 (1− x)

[(
x+1
2x

)s−1−1
]

s �= 1

(1− x) log
(

x+1
2x

)
s = 1.

(24)

For all x > 0 in (19). Then Cf (P;Q;U) = ζs(Q;P;U).
By considering the second order derivative of the functions given by (20)-(24) with

respect to x, and applying the Theorem 1, it can easily be checked that the measures
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Φs(P;Q;U) , Ωs(P;Q;U) , Ωs(Q;P;U) , ζs(P;Q;U) and ζs(Q;P;U) are nonnegative
and convex in the pair of probability distributions (P,Q) ∈ Δ+

n ×Δ+
n respectively and U

is the utility distribution, for all s ∈ ℜ for the measures Φs(P;Q;U) , Ωs(P;Q;U) and
Ωs(Q;P;U) . And 0 � s � 4 for the measure ζs(P;Q;U) and ζs(Q;P;U) .

THEOREM 2. [23]. Let f1 , f2 : I ⊂ ℜ+ → ℜ be two normalized functions, i.e.,
f1(1) = f2(1) = 0 and satisfy assumptions:

(i) f1 and f2 are twice differentiable on (r, R);
(ii) There exists the real constants m, M such that 0 � m < M and

m � f
′′
1 (x)
f
′′
2 (x)

� M, f
′′
2 (x) > 0, f orall x ∈ (r,R) (25)

If P,Q ∈ Δ+
n are discrete probability distributions and U is the utility distribution

attached to each P∈ Δ+
n such that ∑n

i=1 uipi = ∑n
i=1 uiqi , then we have the inequalities:

m Cf2(P;Q;U) � Cf1(P;Q;U) � M Cf2(P;Q;U). (26)

Proof. Let us consider the functions ηm .s(·)and ηM.s(·)given by

ηm(x) = f1(x)−m f2(x) (27)

and

ηM(x) = M f2(x)− f1(x) , (28)

respectively, where m and M are given by (25).
Since f1(x) and f2(x) are normalized, i.e., f1(1) = f2(1) = 0, then ηm .s(·)and

ηM.s(·)are also normalized, i.e., ηm(1) = 0and ηM(1) = 0. Also, the functions f1(x)
and f2(x) are twice differentiable. Then in view of (25), we have

η
′′
m(x) = f

′′
1 (x)−m f

′′
2 (x) = f

′′
2 (x)

(
f
′′
1 (x)
f
′′
2 (x)

−m

)
� 0 (29)

and

η
′′
M(x) = M f

′′
2 (x)− f

′′
1 (x) = f

′′
2 (x)

(
M− f

′′
1 (x)
f
′′
2 (x)

)
� 0 (30)

for all x ∈ (r,R) .
In view of (29) and (30), we can say that the functions ηm(·) and ηM(·)are convex

on (r, R).
According to Theorem 1, we have

Cη m(P;Q;U) = Cf1−m f2(P;Q;U) = Cf1(P;Q;U)−mCf2(P;Q;U) � 0 , (31)

and
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Cη M(P;Q;U) = CM f2− f1(P;Q;U) = MCf2(P;Q;U)−Cf1(P;Q;U) � 0 . (32)

Combining (31) and (32), we get (26). �

7. Inequalities among generalized ‘useful’ relative divergences

THEOREM 3. Let the generating functions given by (20)-(24) are twice differen-
tiable in interval (r,R) with 0 < r � R and U is the utility distribution attached to each
P ∈ Δ+

n such that ∑n
i=1 uipi = ∑n

i=1 uiqi , then we have the following inequalities among
the generalized measures:

(i) Ωs(P;Q;U)and Φt(P;Q;U) :

1
4rt+1

(
r+1
2r

)s−2

Φt (P;Q;U) � Ωs(P;Q;U) � 1
4Rt+1

(
R+1
2R

)s−2

Φt(P;Q;U),

s+ t � 1, t � −1,

(33)

and

1
4Rt+1

(
R+1
2R

)s−2

Φt(P;Q;U) � Ωs(P;Q;U) � 1
4rt+1

(
r+1
2r

)s−2

Φt(P;Q;U),

s+ t � 1, t � −1.

(34)

(ii) Ωs(Q;P;U)and Φt(P;Q;U) :

1
4rt−2

(
r+1

2

)s−2

Φt (P;Q;U) � Ωs(Q;P;U) � 1
4Rt−2

(
R+1

2

)s−2

Φt(P;Q;U),

s � t, t � 2,

(35)

and

1
4Rt−2

(
R+1

2

)s−2

Φt(P;Q;U) � Ωs(Q;P;U) � 1
4rt−2

(
r+1

2

)s−2

Φt(P;Q;U),

s � t, t � 2.

(36)

(iii) ζs(P;Q;U)and Φt(P;Q;U) :



NON-SYMMETRIC DIVERGENCE MEASURES AND INEQUALITIES 459

(
r+1

2

)s−3( sr+4− s
4rt−2

)
Φt(P;Q;U) � ζs(P;Q;U)

�
(

R+1
2

)s−3( sR+4− s
4Rt−2

)
Φt(P;Q;U), 0 � s � 4,t � 2,s � t +1,

(37)

and (
R+1

2

)s−3( sR+4− s
4Rt−2

)
Φt (P;Q;U) � ζs(P;Q;U)

�
(

r+1
2

)s−3( sr+4− s
4rt−2

)
Φt (P;Q;U), 0 � s � 4, t � 2,s � t +1.

(38)

(iv) ζs(Q;P;U)and Φt (P;Q;U) :

(
r+1
2r

)s−3( (4− s)r+ s
4rt+2

)
Φt(P;Q;U) � ζs(Q;P;U)

�
(

R+1
2R

)s−3( (4− s)R+ s
4Rt+2

)
Φt(P;Q;U), 0 � s � 4, t � −1, s+ t � 1,

(39)

and (
R+1
2R

)s−3( (4− s)R+ s
4Rt+2

)
Φt(P;Q;U) � ζs(Q;P;U)

�
(

r+1
2r

)s−3( (4− s)r+ s
4rt+2

)
Φt(P;Q;U), 0 � s � 4,t � −1,s+ t � 2.

(40)

(v) Ωs(Q;P;U)and Ωt(P;Q;U) :

rt+1
(

r+1
2

)s−t

Ωt(P;Q;U) � Ωs(Q;P;U) � Rt+1
(

R+1
2

)s−t

Ωt(P;Q;U),

s � −1, t � −1,

(41)

and

Rt+1
(

R+1
2

)s−t

Ωt(P;Q;U) � Ωs(Q;P;U) � rt+1
(

r+1
2

)s−t

Ωt(P;Q;U),

s � −1, t � −1.

(42)

(vi) ζs(P;Q;U)and Ωt(P;Q;U) :

rt+1
(

r+1
2

)s−t−1

(sr+4− s) Ωt(P;Q;U) � ζs(P;Q;U)

�Rt+1
(

R+1
2

)s−t−1

(sR+4− s)Ωt(P;Q;U) , 0 � s � 4, t � −1.

(43)
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(vii) ζs(Q;P;U)and Ωt(P;Q;U) :

(
r+1
2r

)s−t−1( (4− s)r+ s
r

)
Ωt(P;Q;U) � ζs(Q;P;U)

�
(

R+1
2R

)s−t−1 ( (4− s)R+ s
R

)
Ωt(P;Q;U),

0 � s � 4,t � s,t(4− s) � 6s− s2−4,

(44)

and (
R+1
2R

)s−t−1( (4− s)R+ s
R

)
Ωt(P;Q;U) � ζs(Q;P;U)

�
(

r+1
2r

)s−t−1 ( (4− s)r+ s
r

)
Ωt(P;Q;U),

0 � s � 4,t � s,t(4− s) � 6s− s2−4.

(45)

(viii) ζs(P;Q;U)and Ωt(Q;P;U) :

(
r+1

2

)s−t−1

(sr+4− s) Ωt(Q;P;U) � ζs(P;Q;U)

�
(

R+1
2

)s−t−1

(sR+4− s)Ωt(Q;P;U), 0 � s � 4,s � t,s(t− s+6) � 4(1+ t),

(46)

and(
R+1

2

)s−t−1

(sR+4− s) Ωt(Q;P;U) � ζs(P;Q;U)

�
(

r+1
2

)s−t−1

(sr+4− s)Ωt(Q;P;U), 0 � s � 4, s � t, s(t − s+6) � 4(1+ t).

(47)

(ix) ζs(Q;P;U)and Ωt(Q;P;U) :

1
Rs+1

(
R+1

2

)s−t−1

[(4− s)R+ s] Ωt(Q;P;U) � ζs(Q;P;U)

� 1
rs+1

(
r+1

2

)s−t−1

[(4− s)R+ s]Ωt(Q;P;U), 0 � s � 4, t � −1.

(48)

(x) ζs(Q;P;U)and ζt(P;Q;U) :



NON-SYMMETRIC DIVERGENCE MEASURES AND INEQUALITIES 461

1
Rs+1

(
R+1

2

)s−t( (4− s)R+ s
tR+4− t

)
ζt(P;Q;U) � ζs(Q;P;U)

� 1
rs+1

(
r+1

2

)s−t ( (4− s)r+ s
tr+4− t

)
ζt(P;Q;U), 2 � s � 4,2 � t � 4.

(49)

Proof. (i) Let us consider

g(ψs,φt)(x) =
ψ ′′

s (x)
φ ′′

t (x)
=

1
4x3

(
x+1
2x

)s−2

xt−2 =
1

4xt+1

(
x+1
2x

)s−2

, (50)

For all x ∈ (0,∞).
From (50) one has

g
′
(ψs,φt)(x) = −

(
x+1
2x

)s−2 x(t +1)+ t + s−1
4xt+2(x+1)

{
� 0 t � −1,s+ t � 1

� 0 t � −1,s+ t � 1.
(51)

In view of (51) we conclude the followings

m = inf
x∈[r,R]

g(ψs,φt)(x) =

{
1

4rt+1

(
r+1
2r

)s−2
s+ t � 1,t � −1

1
4Rt+1

(
R+1
2R

)s−2
s+ t � 1,t � −1

(52)

and

M = sup
x∈[r,R]

g(ψs,φt )(x) =

{
1

4Rt+1

(
R+1
2R

)s−2
s+ t � 1,t � −1

1
4Rt+1

(
r+1
2r

)s−2
s+ t � 1,t � −1.

(53)

Now (51) and (53) together with (26) give the inequalities (33) and (34).
The proof of other parts (ii)-(x) follows on similar lines. �
PARTICULAR CASES. Here we have considered some particular cases of the in-

equalities (33)-(49) given below:
Take t = 1

2 , s = 2 in (35) or in (37), one gets

r �
3
√

χ2(P;Q;U)2

4 3
√

h(P;Q;U)2
� R.

Take t = 1
2 , s = 2 in (34) or t = 1

2 , s = 2 in (40), one gets

r � 4 3
√

h(P;Q;U)2

3
√

χ2(Q;P;U)2
� R.

Take t = 2 , s = 2 in (34) or in (40) or in (41) or in (43) or in (48) or in (49) or
t = −1 , s = 2 in (35) or in (37), one gets

r �
3
√

χ2(P;Q;U)
3
√

χ2(Q;P;U)
� R.

Take t = 1 , s = 2 in (35) or in (37), one gets
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r � χ2(P;Q;U)
2K(P;Q;U)

� R.

Take t = 0 , s = 2 in (34) or in (40), one gets

r � 2K(Q;P;U)
χ2(Q;P;U)

� R.

Take t = 1 , s = 2 in (34) or in (40), one gets

r �
√

2K(P;Q;U)√
χ2(Q;P;U)

� R.

Take t = 0 , s = 2 in (35) or in (37), one gets

r �
√

χ2(P;Q;U)√
2K(Q;P;U)

� R.

Take t = 0 , s = 0 in (41), one gets

r � F(Q;P;U)
F(P;Q;U)

� R.

Take t = 1 , s = 1 in (41), one gets

r �
√

G(Q;P;U)√
G(P;Q;U)

� R.

Take t=2, s= -1 in (34) or t=2, s=0 in (40) or (47) or in (48) or t= -1, s=2 in (41) or
in (43), one gets

r �
3
√

4χ2(P;Q;U)− 3
√

Δ(P;Q;U)
3
√

Δ(P;Q;U)
� R.

Take t= -1, s= -1 in (33) or in (35) t= -1, s=0 in (37) or t=2, s= -1 in (41) or t=2,
s=0 in (43) or in (45) or t= -1, s=2 in (45) or in (48), one gets

r �
3
√

Δ(P;Q;U)
3
√

4χ2(Q;P;U)− 3
√

Δ(P;Q;U)
� R.

Take t=0, s=1 in (34), one gets

r � K(Q;P;U)−2G(P;Q;U)
2G(P;Q;U)

� R.

Take t=1, s=1 in (34), one gets

r � 2G(Q;P;U)
K(P;Q;U)−2G(P;Q;U)

� R.
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Take t=1, s=0 in (34), one gets

r �
√

K(P;Q;U)−√F(P;Q;U)√
F(P;Q;U)

� R.

Take t=0, s=0 in (34), one gets

r �
√

F(Q;P;U)√
K(Q;P;U)−√F(Q;P;U)

� R.

Take t=1, s= -1 in (41) or in t=1, s=0 in (43) or (44), one gets

r �
√

Δ(P;Q;U)
4
√

G(P;Q;U)−√Δ(P;Q;U)
� R.

Take t= -1, s=1 in (41) or t=1, s=0 in (47) or in (48), one gets

r � 4
√

G(Q;P;U)−√Δ(P;Q;U)√
Δ(P;Q;U)

� R.

Take t= 0, s= -1 in (41 or t=0, s=0 in (43) or in (45), one gets

r � Δ(P;Q;U)
8F(P;Q;U)−Δ(P;Q;U)

� R.

Take t= -1, s= 0 in (41) or t=0, s=0 in (47) or in (48), one gets

r � 8F (P;Q;U)−Δ(P;Q;U)
Δ(P;Q;U)

� R.

Take t=1, s=1 in (47), one gets

r � 6G(Q;P;U)−D(P;Q;U)
D(P;Q;U)−2G(Q;P;U)

� R.

Take t=1, s=1 in (45), one gets

r � D(Q;P;U)−2G(P;Q;U)
6G(P;Q;U)−D(Q;P;U)

� R.

Take t= -1, s= 1 in (33) or t=1, s=2 in (45), one gets

r � 4G(P;Q;U)
χ2(Q;P;U)−4G(P;Q;U)

� R.

Take t= 0, s= 1 in (33) or t=1, s=2 in (45), one gets

r � F (P;Q;U)
D(Q;P;U)−3F (P;Q;U)

� R.

Take t= -1, s= 0 in (33) or t=0, s=2 in (45), one gets
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r �
√

2F(P;Q;U)√
χ2(Q;P;U)−√2F(P;Q;U)

� R.

Take t=0, s=1 in (43), one gets

r �
√

4D(P;Q;U)+9F(P;Q;U)−3
√

F(P;Q;U)
2
√

F(P;Q;U)
� R.

Take t=0, s=1 in (48), one gets

r � 2
√

F(Q;P;U)√
4D(Q;P;U)+9F(Q;P;U)−3

√
F(Q;P;U)

� R.

Take t=1, s=0 in (41), one gets

r � 2
√

F(Q;P;U)√
8G(Q;P;U)+F(Q;P;U)−√F(Q;P;U)

� R.

Take t=0, s=1 in (41), one gets

r �
√

8G(Q;P;U)+F(P;Q;U)−√F(P;Q;U)
2
√

F(P;Q;U)
� R.

Take t=0, s=1 in (35), one gets

r � 2
√

G(Q;P;U)√
2K (Q;P;U)+G(Q;P;U)−√G(Q;P;U)

� R.

Take t=1, s=1 in (34), one gets

r �
√

2K (P;Q;U)+G(P;Q;U)−√G(P;Q;U)
2
√

G(P;Q;U)
� R.

Take t= -1, s=1 in (43), one gets

r �
√

8D(P;Q;U)+ Δ(P;Q;U)−2
√

Δ(P;Q;U)√
Δ(P;Q;U)

� R.

Take t= -1, s=1 in (45) or in (48), one gets

r �
√

Δ(P;Q;U)√
8D(Q;P;U)+ Δ(P;Q;U)−2

√
Δ(P;Q;U)

� R.

Take t=2, s=1 in (47), one gets

r � 5
√

χ2 (P;Q;U)−
√

16D(P;Q;U)+ χ2(P;Q;U)√
16D(P;Q;U)+ χ2(P;Q;U)−

√
χ2 (P;Q;U)

� R.
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