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SOME OSTROWSKI TYPE INEQUALITIES FOR p—-CONVEX
FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
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(Communicated by J. Pecari¢)

Abstract. In this paper, some new Ostrowski type inequalities for generalized fractional inte-
grals are obtained. An identity via generalized fractional integrals and differentiable mappings,
together with a new concept are used.

1. Introduction

During the last decades fractional calculus, differential equations and inequalities
have been studied extensively. As a matter of fact, fractional derivatives and integrals
provide a more excellent tool for the description of memory and hereditary properties of
various materials and processes than integer derivatives. Engineers and scientists have
developed new precisely models which involved fractional equations and inequalities.
These models have been applied successfully, e.g., in physics, biomathematics, blood
flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electro-
dynamics of complex medium, electrical circuits, electron-analytical chemistry, control
theory, etc. For a systematic development of the topic, we refer the books [1]-[7]. As
an important issue for the theory of fractional differential equations, the existence of
solutions to kinds of initial and boundary value problems has attracted many scholars
attention, and lots of excellent results have been obtained by means of fixed point the-
orems, upper and lower solutions technique, differential and integral inequalities and
so forth. Fractional differential/integral inequalities are an important tool to investigate
properties of solutions of various fractional problems, such as existence, uniqueness,
boundedness, stability, asymptotic behavior, and oscillation etc. A variety of results on
initial and boundary value problems of fractional differential equations and inclusions
can easily be found in the literature on the topic. For some recent results, we can refer
to [8]-[16] and references cited therein.

In recent years, Ostrowski type inequalities and Hermite-Hadamard type inequal-
ities were studied extensively by many researchers and numerous generalizations, ex-
tensions and variants of them appeared in a number of papers [21]-[26] and references
therein.

In [24] Set established a new fractional integral identity via differentiable map-
pings and Riemann-Liouville fractional integrals.
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LEMMA 1.1. Let f: [a,b] — R be a differentiable mapping on (a,b) with a < b.
If ' € L|a,b], then the following equality for fractional integrals holds

= a)z i— ib ) fx)— F(bOC_+a1) [Retyf (@) + riJgy £ (D))
(x —a)**! w

b—a

1
g /0 t%f (tx+ (1 —1t)b)dt,

— 7/()ltaf/(tx+(l—t)a)dt—

where RLJC‘,’Sr f and RLJlf‘_ f denote the left-sided and right-sided Riemann-Liouville
fractional integrals of order o0 € R defined by

(RLJEf)(x) = ﬁ /:(x—t)o‘_lf(t)dt, 0<a<x<b,

and 1 b
Jo :_/ t—x)f(t)dr, 0<a<x<b,
(E 1) = gy [ =07 10) a<x
respectively.

By using the above established integral identity in Lemma 1.1 via s-convex mappings in
the second sense, Set [24] established many Ostrowski type inequalities for Riemann-
Liouville fractional integrals, which generalized the classical Ostrowski inequality (see
[27] or [28]).

Recently, Wang et al. in [20], established a new identity for Hadamard fractional
integrals, which is similar to the identity of Lemma 1.1 for Riemann-Liouville fractional
integrals.

LEMMA 1.2. Let f:[a,b] — R be a differentiable mapping on (a,b) with 0 <
a<b. If f' € Lla,b], then the following equality for fractional integrals holds
(logx —loga)* + (logh — logx)“
logh —loga

TNoa+1)

f) = logh —log

, (a5 f(a)+ulZ f(b)]

_ (logx - loga)a+1 /1 taetlogx+(1—t)logaf/ (etlogx+(1—t)loga) dt
logb —loga 0
B (logb - Ing)a+1 /1 taetlogx+(l—t)logbf/ (etlogx+(l—t)logb)dt
logh—1loga Jo ’

where gJi, [ and gJf [ denote the left-sided and right-sided Hadamard fractional
integrals of order oo € R™ defined by

X o—1 d
(Hféﬁf)(X):ﬁ/u <log§> f(t)Tt, 0<a<x<b,

and | , e "
W00 = gy | (oeg) 10T, 0<asx<p

respectively.
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Some new Ostrowski type inequalities for Hadamard fractional integrals were estab-
lished in [26], by using the new concept “s-e-condition”defined as follows:

DEEINITION 1.1. A function f:1C (0,00) — R is said to satisfy s-e-condition if
f(elir(lfl)y) < A‘Yf(ex) + (1 _ l)“'f(ey)
Sforall x,y €1, A €10,1] and for some fixed s € (0,1].

If f:1C (0,0) — R is a nondecreasing and convex function, then f satisfies the
above s-e-condition. We say that f : [a,b] — R is convex if it satisfies the following
inequality

flox+ (1 =1)y) <tf(x)+(1=1)f(y)

where ¢ € [0,1] and x,y € [a,b].

In [18] Iscan gave the definition of p-convex function as follows:

DEFINITION 1.2. Let I C (0,00) be a real interval and p € R\ {0}. A function
f i1 — R issaid to be p-convex, if

P67+ (1=0p)P) <af @)+ (1=0f ), (1.1)

Sforall x;y €I and t € [0,1]. If the inequality (1.1) is reversed, then f is said to be
p-concave.

According to Definition 1.2, it can be easily seen that for p =1 and p = —1,
p-convexity reduces to ordinary convexity and harmonically convexity of functions
defined on I C (0,), respectively. For some results related to p-convex functions and
its generalizations, we refer the reader to [19, 20] and references cited therein.

In this paper, by using Definition 1.2, we will establish a new identity for general-
ized fractional integrals (known as Katugampola integral), introduced in [17], which is
similar to the identities in Lemmas 1.1 and 1.2 for Riemann-Liouville and Hadamard
fractional integrals.

DEFINITION 1.3. [17] The left-sided and right-sided generalized Riemann-
-Liouville fractional integrals of order oo € R™ of a function f are defined by

o p=* P l(x
(PIE f)(x) = F(a)/a (xp_fp()l)adf’ x>a, a>0, p>0,

and

. o b gp-lp(p
(Plb,f)(x)le_(a)/x (Tp_xp()l)_adr, x<b, >0, p>0.
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REMARK 1.1. From the above definition it follows that when p =1 we arrive
at the standard Riemann-Liouville fractional integral, which is used to define both the
Riemann-Liouville and Caputo fractional derivatives, while when p — 0 we have

. Lty el f(s)
Nim PIf(r) = m/o (ro3)" s

which is the famous Hadamard fractional integral. See [17].

2. Identity via generalized fractional integrals and differentiable mappings

LEMMA 2.1. Let f:[a,b] — R be a differentiable mapping on (a,b) with a <b
and p € R\ {0}. If f € L|a,b], then the following equality holds:

e [ ar+ =05 (Wi (=00 a

—%/Olt“(tbhr(l—t)xp)lff/( ;bp+(1_t)xp> dt

(" —aP)*f(a) + (P —x)*f(b)  T(a+1)

=~ e + =2 (1 ) )+ ()

Proof. By integrating by parts, we have

/lta(tap—i- (1 —t)xP)FTPf’ < tar + (1 —t)xl’> dt

0

dt

B pto‘f( tal’—|—(1—t)x1’> 1 /1poct°‘1f< tal’—l—(l—t)xl’)
B o

aP — xP aP — xP

0

pfla) /1 paza—1f< tap+(1_t)xp>
0

ar —xp ab — xP

_ pfla) p’a /xa (xp_up>a1f(u) w du [uzm}

aP —xP  xP —aP xP — aP xP —aP

dt

pf(a) pla X . -
S (xp—ap)a+1L (= uP)* f(u)ul~ du

pf(a) pral(e) — p"* pr o
:al’—xp pl=%(xP — ar)o+1 F(Oc)/u u? l(xp_”p) lf(”)d”

pfla)  p"oT(a+1)p'= < "
T ar—ap (xP —ap)o+1 F(a)/a P~ (P — ) f(u)du
1+O€l" + 1 o
B al;f_(?p lzxp - L(l?)aﬂ) (P13 ) (x). 2.1)
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By a similar way we find

/Olt“(tprr(l—t)x”)liTpf’<{/m>dt
b 2 b p_ wp\ 01 p—1
- bl;f_(x)p_bf_“xp/x (Zp_;) Flu) 2 du [uz{’/tbﬁ-i-(l—t)xﬁ}

bP — xP
_pflb)  pa
bP — xP (bP —xp)

pf(b) p*ol(a)  p'=® b v
T —xr pl=%(bP — xP)o+1 () /X WP (P —xP) 4 f (u)du

o [ )

IO R Vi
P —xP (bP —uP)o+1 T(ar) Jx uP = (uP —xP)* f (u)du
_ pfb)  ptOUT(a+1) .
T obr—xp (bP —xP)o+] (", f)(x)- (2.2)
) ) ) (xp _ap)OHrl (bp _xp)ochl
Multiplying both sides of (2.1) and (2.2) by P b —a) an ST a) re-
spectively, we have
(xp _aP)OH-l 1 F_)p ,
7pl+a(b_a)/0ta(tap—i—(l—t)xp)1 f( taP+(l—t)xP>dt
(W —a)f(@)  T(at1) .
- p*(b—a) + b—a) ( Ia+f) (x), (2.3)
and
(bP — xP)ott 1 ) e
B P — P —1)xP
(b —a) /Ot (tb” + (1 —1)x") 7 f( tb? + (1 t)x)dt
(bP —xP)*f(b) T(a+1) b
= - ] : 2.4
p*(b—a) (b—a) ( bff) (x) 2.4)
From (2.3) and (2.4) we have the desired result. The proof is completed. O

3. Ostrowski type inequalities via generalized fractional integrals

THEOREM 3.1. Let f : [a,b] C (0,00) — R be a differentiable mapping on (a,b)
with a < b such that f' € Lla,b]. In addition, assume that |f'| is p-convex function,
|/ (x)] < M,¥x € [a,b] and o > 0.

(i) If p € (1,00), then the following inequality holds

BB 00 + 0 )

alpr (xp _ap)a+l + (bp _xp)a+l
S opte(at1) [ (b—a) ’

x € (a,b). (3.1)
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(i) If p € (—e0,0)U(0,1), then we have
(7 —a?) fla) + (60~ ) (b) Tt 1)

e - S (g ) )+ 1) )]
bl-rm (xP —aP)ot+! 4 b”—x”)"“rl
X p1+a(a+1) |: (b Cl (32)
Proof. To prove (i), from Lemma 2.1, we have
(x? —aP)*f(a)+ (b? —xP)* f(b) T(o+1) o o
'— - TRALAS [<P1a+f><x>+<"1b_f><x>]\
a+1 1-p
< %/Olt“ (ta? + (1 —1)x")7" /<{’/ta1’+(1—t)x1’>‘dt
+%/0 (b 4 (1— 1)) o f’({/tbl’—i—(l—t)xl’)'dt
(xp_ap)a+l Lp / /
< mfo 1 (ta? + (L=0)xP) 7 [t|f ()| + (L =1)|f'(x)]] dr
—yPyorl ol 1-p
ey ) @ (=0 7 @)+ -0l )l ar
Since if p € (1,), we deduce that
(tb? +(1 —t)xp) "< (ta”+ (1 —t)xp)Tp <a'p, (3.3)

which implies that the inequality in (3.1) holds via

1 1
/t“dt:—.
0 oa+1

To prove (ii), let p € (—e=,0)U (0, 1), then we obtain the requested inequality in
(3.2) by applying the fact that

(ta” + (1 —1)xP) < < (tb? + (1 —1)xP) 0 <br (3.4)
The proof is completed. ]
THEOREM 3.2. Let f :[a,b] C (0,00) — R be a differentiable mapping on (a,b)

with a < b such that f' € Lla,b]. Suppose that |f'|7 is p-convex function, |f'(x)| <
M Nx € [a,b] and given constants o. >0 and r > 1.

(i) If p € (1,00), then the following inequality is true

ey B R 180+ O )

- alpr (xp _ ap)ochl + (bp _xp)OHrl
= oplte(l4ro)t/r b—a ’

€ (a,b). (3.5)
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(ii) If p € (—e,0)U(0,1), then the following inequality is satisfied

(xP — al’)aflgg)(;_(lz:— xP)%f(b) F(ba_—kal) (P12 1) (x) + (P12 ) (%))
bl-rpm |:(x17_a17)06+1 +(bP — xP)t]

< 7
pHo (14 ra)l/r b—a

x € (a,b). (3.6)

Proof. Since r > 1, then there exists a constant ¢ such that 1/r+1/g=1.
We prove (i), for If p € (1,00). Applying Lemma 2.1, relation (3.3), and using the well
known Holder inequality, we have

(7 =0 (@ + (B =) (B) | T(@+1) [y "
- 50 a) + S D 00+ 010

< %/Olr“(muu—ﬂxﬂ)%” 7 (Ve v =) |as
+%/Olt“obp+<l—t>xp>‘f 7 (Y =) ar

1/q

a'=P(xP —aP)o+! 1 Vr o q

< - - =7 roe ! 14 _ P ‘
Db —a) (/Ot dt) (/0 f( tal + (1 t)x) dt)
1-p bP — xP o+1 1 1/r 1
+(1 1( X ) (/ tradt) (/
p'T¥(b—a) 0 0
Since |f|7 is p-convex and |f’(x)| < M,Vx € [a,b], we get

/

7 ( P+ (1 —t)xl’> ’th> "

f’( tal7+(1—t)x1’>|th < /O1 ltf'(a)+ (1—1)f'(x)|"dt

1
<M’1/ [t +(1—1)|"dr
0

< MY,

and
1
J

1
Then we obtain the inequality in (3.5) using / t"dt =
0

f < th? + (1 —t)xl’> )th <Me.

ra+1°
The Case (ii) can be proved by using the above process with relation (3.4). The

proof is completed. U
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REMARK 3.1. Theorem 3.2 can be proved also by using the power mean inequal-
ity.
To prove this, by Lemma 2.1, relation (3.3) and applying the well known power mean
inequality, we have

(= @) fla) + (B =) (B) | T(@+1) (g .
'— e e [<P1a+f><x>+<ﬂfb_f><x>]\

< UL [ e+ (-0 |7 (Y (0
+%/Olr“<rbp+<l—r>xp>lf f’(«/m)|dz

<y ([ (o))

1/q

1- +1 1
+_a PP —xP)* (/ 124
0

p“‘o‘(b _ a)

f’( ’ tbl’—i-(l—t)xl’)‘th)

Since |f’|7 is p-convex and |f’(x)| < M,Vx € [a,b], we get

! o / q ! og+1 | ¢/ ! o /
/O 1% f( tal’—l—(l—t)xl’)‘ dtg/o 1oat ]f(a)]thJr/O 11— 1) | f(x)|" ar
@, e
og+2  (og+1)(ag+2)
M4

< —,
oag+1

and

/Oltaq’f/((j/tbp+(l—t)x1’)’th < M

og+1°

It follows that inequality in (3.5) is fulfilled. Similarly, the bound (3.6) holds proving
by power mean inequality with relation in (3.4).

THEOREM 3.3. Let f : [a,b] C (0,00) — R be a differentiable mapping on (a,b)
with a < b such that f' € L[a,b|. Assume that |f'| is p-convex function, |f'(x)| <
M,Vx € [a,b] and constants o« >0, r,q > 1 such that 1/r+1/q= 1.

(i) If p € (1,00), then we obtain inequality as

O B R 180+ )
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o o+l _ ypyotl I=pyr
P —a) g (b ) [(a ) M_q] € (a,b). 3.7)

= pite(b—a) r(or+1) + q

(ii) If p € (—0,0)U(0,1), then we get the estimate
(

PIE ) () + (L f) ()]

(O~ @) fla) + (7 ~2)f) Tt 1)

p*(b—a) b—
(xP_aP)a+l_|_(bp_x )a+1 (blfp)r M4
< p1+0‘(b—a) [r(ar—H) +7] , XE (a,b). (3.8)

Proof. According to the well-know Young’s inequality,
X" o v4 1 1
XY<—+—, VX, Y >0, ng>1, —+-=1,
r q roq
with Lemma 2.1 and relation (3.3), we have

‘_(X”—a”)“f(a) (bF —x)*f(b)  T(a+1) (
p%*(b—a) b—a

< (xp—a”)aﬂ/ (l
= p1+0‘(b—a) o \r
(bp_xp)oc+l L /1
metrear by (Gl
_ (xp_ap)OH-l /1 (tocr
= p1+a(b_a) 0 r
(bp_xp)ochl 1 1o
+p1+a(b—a)/o < r
- (xp_ap)a+l+(bp_xp)a+l |: (alfp)r +M_q:|
pite(b—a) rlar+1)  q |’

PIE ) () + (P f) ()]

1—
1% (ta? + (1 —1)xP) 7

! ( ta? + (1 —t)xl’> )q) dt

(tbp—l—(l—t)xp)Tp ’( tbP+(1—t)xP))q> dt

1
4=
q

vv 41— (x |)

(ta? +(1 —t)xp

—P
p

(tb”+(1—t)x1’) |t\f )+ (=) (x |)

which means that the first part of this theorem holds.
To prove the second part, we use the above method with relation (3.4). This com-

pletes the proof. ]

THEOREM 3.4. Let f :[a,b] C (0,00) — R be a differentiable mapping on (a,b)
with a < b such that f' € L|a,b]. In addition, we suppose that |f’| is p-convex function,
|f'(x)| < M,Vx € [a,b] and constants o > 0, r,q > 0 such that r+q = 1.

(i) If p € (1,00), then we deduce that the following inequality hold

(" —aP)*f(a) + (P —xP)*f(b) T(a+1) (
p%*(b—a) b—a

(xp_ap)a+l+(bp_xp)a+l ralfp
e [y ) et o9

PIZ ) () + (P f) ()]
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(ii) If p € (—0,0)U(0,1), then we have the relation

(& —aP)* f ;Z)( ; _(l;”) —xP)f(b) F(bajal) (P12 ) (%) + (I f) (%)]
<t ] om0

Proof. By using the well-know Weighted AM-GM inequality,
XYI<rX+qY, VX, Y>0, rg>0, r+q=1,

with Lemma 2.1 and relation (3.3), we have

‘_(xl’_al’)aflgz)(;_(l;l;_xl’)af(b) T 1"(boc_+a1) (1% 1) (x) + ("I ) (x)]
< %/01 [t (zal’-i-(l—t)xI’)Tp} {f/( , lal’-l—(l—t)xﬁﬂth
-i-%/o1 {ta(tbp—k(l —t)xl’)lpp}r [f’( P+ (1 —t)xpﬂth

(xp )a+1

gm{/lﬂ (tap—l—(l—t)xp) P dl—l—/ qf m)dt]
“(1bP 4 (1—0)P) 7 dt+/ af’ {/m>dt]

dt+/ dt]
(bp xp)oc+1 /l o
- t th? + (1 —1t)xP ‘dt
+p1+°‘(b @) o r </ +( )x )
(xp_ap)OH-l /1 1—
< “Prt%dt / t 1—1¢ dt
P (b—a) |Jo rttat+ ‘1| (@) +( ) (x H
bp xp o+1 1 1
S a) /o I’rt“dt+/ qltlf () + (1 —1)|f (x |dt}
(xp_ap)a+l+(bp_xp)a+l ral P
pito(b—a) {OH—I

—P

tal + (1 —1)x") P

P o+1 1
< 7()6 ) rta
= p1+0‘(b a) 0

/taP + (1 — t)xl’>

(tb? + ( l—txp

—|—Mq].

Thus the first part of this theorem is derived.
For the second part, we use the same method to prove (i) with relation (3.4). O

REMARK 3.2. For p =1 the results of cases (i) and (ii) in the above theorems
are identical.
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