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Abstract. The harmonic index of a graph G is defined as the sum of the weights 2
d(u)+d(v) of

all edges uv of G , where d(u) denotes the degree of the vertex u in G . A graph G is called
quasi-tree, if there exists u ∈ V (G) such that G− u is a tree. The graphs called two-trees are
defined by recursion. The smallest two-tree is the complete graph on two vertices. A two-tree
on n + 1 vertices (where n � 2) is obtained by adding a new vertex adjacent to the two end
vertices of one edge in a two-tree on n vertices. In this work, the sharp lower and upper bounds
on the harmonic index of quasi-tree graphs are presented. Furthermore, the lower bound on the
harmonic index of two-trees is presented, and the two-trees with the minimum and the second
minimum harmonic index, respectively, are determined.

1. Introduction

Throughout this paper we consider only simple connected graphs. Such a graph
will be denoted by G = (V (G),E(G)) , where V (G) and E(G) are the vertex set and
edge set of G , respectively. The degree of a vertex u is denoted by dG(u) (d(u) for
short). Suppose Graph is the collection of all graphs. A mapping Top : Graph →
R is called a topological index, if G ∼= H implies that Top(G) = Top(H) . Many
topological indices are closely correlated with some physicochemical characteristics of
the underlying compounds. The harmonic index of G is defined in [2] as

H(G) = ∑
uv∈E(G)

2
d(u)+d(v)

,

where d(u) denotes the degree of the vertex u in G . As a variant of the Randić index
which is the most successful molecular descriptor in structure-property and structure-
activity relationships studies, the harmonic index has better correlations with physical
and chemical properties comparing with the well known Randić index. The harmonic
index has good correlation with some physicochemical properties of alkanes: boiling
points(experimental), kova’ts index, enthalpies of formation, chromatographic reten-
tion times(for vapour pressure), surface area, solubility in water, etc.
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Let G = (V (G),E(G)) be a graph of order n (n � 3) . For a vertex v of a graph G ,
we denote the neighborhood of v by NG(v) . The graph that arises from G by deleting
the vertex u ∈ V (G) or the edge uv ∈ E(G) will be denoted by G− u or G− uv ,
respectively. Similarly, the graph G+uv arises from G by adding an edge uv /∈ E(G)
between the endpoints u,v ∈ V (G) . A graph G is called a quasi-tree graph, if there
exists a vertex u′ ∈ V (G) such that G− u′ is a tree. As usual, we use Cn to denote a
cycle of order n . Let Yn denote the graph arises from complete bipartite graph K2,n−2

by joining an edge between the two non-adjacent vertices of degree n− 2. Let Zn

denote the graph obtained from the graph Yn−1 by adding a new vertex and two new
edges adjacent to the new vertex such that one edge is incident to a vertex of degree 2
in Yn−1 and the other is incident to a vertex of degree n−2 in Yn−1 (see Fig. 1.1).

The two-tree is defined as follows.

Step 1. When t = 0, let T0 = K2 , where K2 (an edge) is a two-tree with 2 vertices.

Step 2. Let Tt be a two-tree generated at the t -th step. Then, Tt+1 generated at the
(t + 1) step is the graph obtained from Tt by adding a new vertex adjacent to the two
end vertices of one edge. Clearly, Tt+1 has t +3 vertices.

The two-tree has a very important structure in complex networks. It is known that
the small-world Farey graph [22], fractal scale-free networks [23], the pseudofractal
scale-free web [24] and the generalized Farey graph [25] are some special classes of
two-tree networks.
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Fig. 1.1. The graphs Yn (left) and Zn (right)

The harmonic index was extensively studied recently. Zhong [1,4,5] determined
the minimum and maximum values of the harmonic index for simple connected graphs,
trees, unicyclic graphs and bicyclic graphs, respectively. Some upper and lower bounds
on the harmonic index of a graph were obtained by Lli ć [8]. Xu [7] and Deng et al. [10]
established some relationship between the harmonic index of a graph and its topological
indices, such as Randi ć index, Atom-bond connectivity index and radius, respectively.
Wu et al. [3] determined the graph with minimum harmonic index among all the graphs
(or all triangle-free graphs) with minimum degree at least two. For other related results
see [6,12,13,16-21]. Here we give the sharp lower and upper bounds on the harmonic
index of quasi-tree graphs. We also present the lower bound on the harmonic index
of two-trees, and determine the two-trees with the minimum and the second minimum
harmonic index, respectively. For terminology and notations not defined here, we refer
the readers to [15].
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2. The harmonic index of quasi-tree graphs

2.1. Preliminaries

We begin with some useful lemmas.

LEMMA 2.1. [1] Let G be a connected graph of order n. Then

H(G) � n
2

with equality if and only if G is a regular graph.

LEMMA 2.2. Let

g(x) =
1
2

+
6

1+ x
− 4

2+ x
− 2

x
.

Then g(x) is monotonous decreasing for x � 4 .

Proof. Note that for x � 4

g′(x) = 2(
1
x2 +

2
(2+ x)2 −

3
(1+ x)2 ) =

2(−2x3 +3x2 +12x+4)
x2(x+1)2(x+2)2 < 0.

Then g(x) is monotonous decreasing for x � 4. �
In a similar way, we can get the following Lemma 2.3 and 2.4.

LEMMA 2.3. Let

l(x) =
4
15

+
5
x
− 3

x−1
− 2

x+1
.

Then l(x) is monotonous increasing for x � 6 and l(6) ≈ 0.2143 > 0 .

LEMMA 2.4. Let

q(x) =
1

x+2
+

2
x
− 3

1+ x
.

Then q(x) is monotonous decreasing for x � 2 .

LEMMA 2.5. Let

p(x,y) =
1+ x
1+ y

+
y− x−1

y+2
− x

y
− y− x−1

y+1
,

where x � 1 and y � 2 . Then p(x,y) is monotonous decreasing in x .



482 X. SUN, Y. GAO AND J. DU

Proof. Since

∂ p(x,y)
∂x

=
2

y+1
− 1

y
− 1

y+2
=

−2
y(y+1)(y+2)

< 0,

so p(x,y) is monotonous decreasing in x . �

LEMMA 2.6. Let G = (V,E) be a graph of order n with δ (G)= 2 and let u,v1,v2 ∈
V (G) with N(u) = {v1,v2} , v1v2 ∈ E(G) , d1 = d(v1) � 3 and d2 = d(v2) � 3 . Then

H(G) � H(G−u)+ f (d1,d2),

where f (d1,d2) = 2( 3
1+d1

+ 3
1+d2

− 3
2+d1

− 3
2+d2

+ 1
d1+d2

− 1
d1+d2−2 ) , and f (d1,d2) �

f (n−1,n−1) = 12
n − 12

n+1 + 1
n−1 − 1

n−2 .

Proof. Denote N(v1)\{u,v2} = {x1,x2, · · · ,xd1−2}, N(v2)\{u,v1} =
{y1,y2, · · · ,yd2−2} . From the definition of harmonic index and δ = 2, we have

H(G)−H(G−u)

=
2

2+d1
+

2
2+d2

+
2

d1 +d2
+

d1−2

∑
i=1

2
d1 +d(xi)

+
d2−2

∑
j=1

2
d2 +d(y j)

− 2
d1 +d2−2

−
d1−2

∑
i=1

2
d1 +d(xi)−1

−
d2−2

∑
j=1

2
d2 +d(y j)−1

=
2

2+d1
+

2
2+d2

+
2

d1 +d2
− 2

d1 +d2−2
−

d1−2

∑
i=1

2
(d1 +d(xi))(d1 +d(xi)−1)

−
d2−2

∑
j=1

2
(d2 +d(y j))(d2 +d(y j)−1)

� 2
2+d1

+
2

2+d2
+

2
d1 +d2

− 2
d1 +d2−2

− 2(d1−2)
(1+d1)(2+d1)

− 2(d2−2)
(1+d2)(2+d2)

=2(
3

1+d1
+

3
1+d2

− 3
2+d1

− 3
2+d2

+
1

d1 +d2
− 1

d1 +d2−2
).

Now we show that for d1,d2 ∈ [3,n−1] , f (d1,d2) attains its minimum value for
d1 = d2 = n−1. Note that

∂ f (d1,d2)
∂d1

= 2(
3

(2+d1)2 −
3

(1+d1)2 +
1

(d1 +d2−2)2 −
1

(d1 +d2)2 ),

∂ 2 f (d1,d2)
∂d1∂d2

= 4(
1

(d1 +d2)3 − 1
(d1 +d2−2)3 ) < 0.

So

∂ f (d1,d2)
∂d1

� ∂ f (d1,3)
∂d1

= 2(
3

(2+d1)2 − 2
(1+d1)2 − 1

(3+d1)2 ) < 0.
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By symmetry, we have ∂ f (d1,d2)
∂d2

< 0 for d1,d2 ∈ [3,n−1] . This implies that f (d1,d2)�
f (n−1,n−1) = 12

n − 12
n+1 + 1

n−1 − 1
n−2 . �

Let G be a quasi-tree graph and u′ ∈V (G) such that G−u′ is a tree. If d(u′) = 1,

then G is a tree and then 2(n−1)
n � H(G) � 4

3 + n−3
2 (n � 3) (see [1]). Hence, in the

following, we only consider the case of d(u′) � 2. Denote
QT (n) = {G|G is a quasi-tree graph of order n with d(u′) � 2} ,

h(n) =
5
2

+
4

n+1
− 6

n
,

and PV = {u0 ∈V (G)|d(u0) = 1} .

• • • • • • • • •
�
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Fig. 2.1. The graphs and their harmonic indices in QT (4) .
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Fig. 2.2. The graphs and their harmonic indices in QT (5) .

LEMMA 2.7. Let G ∈ QT (n) with n � 4 . If PV = /0 , then H(G) > h(n) .

Proof. We prove the result by induction on n . If n = 4 or 5, then h(4) =
1.8, h(5) = 1.9667, and the lemma holds obviously (see Fig. 2.1 and 2.2). Since G is a
quasi-tree and PV = /0 , there exists u∈V (G) such that d(u) = 2. Let N(u) = {v1,v2} ,
d(v1) = d1 and d(v2) = d2 . Now we consider the following two cases.

Case 1. v1v2 /∈ E(G) .
In this case, we have 2 � d1,d2 � n− 2. Since G′ = G− u+ v1v2 ∈ QT (n− 1) ,

by the induction hypothesis, we have

H(G) = H(G′)+
2

2+d1
+

2
2+d2

− 2
d1 +d2

� h(n−1)+
2

2+d1
+

2
2+d2

− 2
d1 +d2
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= h(n)+h(n−1)−h(n)+
2

2+d1
+

2
2+d2

− 2
d1 +d2

= h(n)+
10
n

− 6
n−1

− 4
n+1

+
2

2+d1
+

2(d1−2)
(2+d2)(d1 +d2)

� h(n)+
10
n

− 6
n−1

− 4
n+1

+
2
n

= h(n)+
2(n+2)(n−3)
n(n−1)(n+1)

> h(n).

Case 2. v1v2 ∈ E(G) .
Let G′ = G−u . Then G′ ∈QT (n−1) . Denote N(v1)\{u,v2}= {x1,x2, · · · ,xd1−2} ,

N(v2)\{u,v1} = {y1,y2, · · · ,yd2−2} .
Subcase 2.1. d1 = 2, d2 � 3 or d2 = 2, d1 � 3.
Without loss of generality, we assume that d1 = 2, d2 � 3. Then N(v1\{u,v2}) =

/0 and we have

H(G) =H(G′)+
1
2

+
4

2+d2
+

d2−2

∑
j=1

2
d2 +d(y j)

− 2
d2

−
d2−2

∑
j=1

2
d2 +d(y j)−1

�h(n)+
10
n
− 6

n−1
− 4

n+1
+

1
2

+
4

2+d2
− 2

d2
− 2(d2−2)

(d2 +1)(d2 +2)

=h(n)+
10
n
− 6

n−1
− 4

n+1
+

1
2

+
6

1+d2
− 4

2+d2
− 2

d2
. (2.1)

If d2 = 3, by Lemma 2.3 and (2.1), we have

H(G) �h(n)+2(
5
n
− 3

n−1
− 2

n+1
+

4
15

) � h(n)+0.4286 > h(n).

If d2 � 4, by Lemma 2.2 and (2.1), we have

H(G) �h(n)+
10
n

− 6
n−1

− 4
n+1

+
1
2

+
6
n
− 4

n+1
− 2

n−1

�h(n)+
n3−n−32

2n(n−1)(n+1)
> h(n).

Subcase 2.2. d1,d2 � 3.
By the induction hypothesis and Lemma 2.6, we have

H(G) �h(n)+
10
n
− 6

n−1
− 4

n+1
+2(

3
1+d1

+
3

1+d2
− 3

2+d1
− 3

2+d2

+
1

d1 +d2
− 1

d1 +d2−2
)

�h(n)+
10
n
− 6

n−1
− 4

n+1
+

12
n

− 12
n+1

+
1

n−1
− 1

n−2

=h(n)+
22
n
− 5

n−1
− 16

n+1
− 1

n−2
= h(n)+

9n2−43n+44
n(n−1)(n+1)(n−2)

>h(n). �
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LEMMA 2.8. Let G ∈ QT (n) with n � 5 and PV �= /0 . Let u ∈ PV and v be the
neighbor of u. Denote d(v) = d and N(v)\{u} = {x1,x2, · · · ,xd−1} . If d(xi) � 2 for
i = 1,2, · · · ,d−1 , then H(G) > h(n) .

Proof. We prove the result by induction on n . If n = 5, then the lemma holds
obviously (see Fig. 2.2). Since u ∈ PV and v is the neighbor of u , 2 � d � n−1. Let
G′ = G−u . Then G′ ∈ QT (n−1) . By the induction hypothesis, we have

H(G) =H(G′)+
2

d +1
+

d−1

∑
i=1

(
2

d +d(xi)
− 2

d +d(xi)−1
)

�h(n)+
10
n

− 6
n−1

− 4
n+1

+
2

d +1
− 2(d−1)

(d +1)(d +2)

=h(n)+
10
n

− 6
n−1

− 4
n+1

+
6

(1+d)(2+d)

�h(n)+
10
n

− 6
n−1

− 4
n+1

+
6

n(n+1)
= h(n)+

16
n

− 6
n−1

− 10
n+1

=h(n)+
4(n−4)

n(n−1)(n+1)
> h(n). �

LEMMA 2.9. Let G ∈ QT (n) with n � 5 and PV �= /0 . Let u ∈ PV and v be the
neighbor of u. Denote d(v) = d and N(v)\{u} = {x1,x2, · · · ,xd−1} . If d � n−2 and
there exists some xi , say x1 , such that d(x1) = 1 , then H(G) > h(n) .

Proof. We prove the result by induction on n . If n = 5, then the lemma holds
obviously (see Fig. 2.2). Let G′ = G− u . Then G′ ∈ QT (n− 1) . Without loss of
generality we assume that d(x1) = d(x2) = · · · = d(xk) = 1, where k � 1. By the
induction hypothesis, we have

H(G) =H(G′)+
2

d +1
+

d−1

∑
i=1

(
2

d +d(xi)
− 2

d +d(xi)−1
)

�H(G′)+
2

d +1
− 2k

d(d +1)
− 2(d−1− k)

(d +1)(d +2)

�h(n)+
10
n

− 6
n−1

− 4
n+1

+2(
1+ k
d +1

− k
d
− d− k−1

d +1
+

d− k−1
d +2

). (2.2)

If d � n−3, then k � d−2. For n � 6, by Lemma 2.4, 2.5 and (2.2), we have

H(G) �h(n)+
10
n

− 6
n−1

− 4
n+1

+2(
1

d +2
+

2
d
− 3

d +1
)

�h(n)+
10
n

− 6
n−1

− 4
n+1

+2(
1

n−1
+

2
n−3

− 3
n−2

)

=h(n)+2(
5
n

+
2

n−3
− 2

n−1
− 2

n+1
− 3

n−2
)
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=h(n)+
4(n2 +10n−15)

n(n−1)(n+1)(n−2)(n−3)
> h(n).

If d = n−2, since G ∈QT (n) , then k � n−5. By Lemma 2.5 and (2.2), we have

H(G) �h(n)+
10
n

− 6
n−1

− 4
n+1

+2(
2
n

+
3

n−2
− 5

n−1
)

=h(n)+2(
7
n

+
3

n−2
− 8

n−1
− 2

n+1
) = h(n)+

4(n+7)
n(n−1)(n+1)

> h(n). �

2.2. Main result

•

•
•

•
•

•�
��

�
���

�
��

����
����

...

}
n-3

Fig. 2.3. QT ∗(n) .

Let n be positive integer with n � 3. The quasi-tree graph QT ∗(n) with n vertices
is obtained from the star graph K1,n−1 by connecting two pendent vertices of K1,n−1

(see Fig. 2.3). Clearly,

H(QT ∗(n)) = h(n) =
5
2

+
4

n+1
− 6

n
.

Let G be a quasi-tree graph and u′ ∈ V (G) such that G− u′ is a tree. We only
consider the case of d(u′) � 2. Now we give our main result in this section.

THEOREM 2.10. Let G ∈ QT (n) with n � 3 . Then

h(n) � H(G) � n
2
.

The left equality holds if and only if G ∼= QT ∗(n) and the right equality holds if and
only if G ∼= Cn .

Proof. By Lemma 2.1, we have H(G) � n
2 and the equality holds if and only if G

is a regular graph. Since Cn is the only regular graph in QT (n) , so H(G) = n
2 if and

only if G is a cycle of order n . In the following proof, we just show that h(n) � H(G)
and equality holds if and only if G ∼= QT ∗(n) . We prove this result by induction on n .

If n = 3, the theorem holds clearly. If n = 4,5, then the theorem holds obviously
(see Fig. 2.1 and 2.2). Assume that G ∈ QT (n) with n � 6. By Lemma 2.7, we only
consider the case of PV �= /0 . Let u∈ PV and v be the neighbor of u . Denote d(v) = d
and N(v)\{u}= {x1,x2, · · · ,xd−1} . Then d � 2. Let G′ = G−u , then G′ ∈QT (n−1) .
By Lemma 2.8 and 2.9, we suppose that there exists some i (1 � i � d− 1) such that
d(xi) = 1 and d = n−1.
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Without loss of generality we assume that d(x1) = d(x2) = · · · = d(xk) = 1 and
d(xi) � 2 for k + 1 � i � d − 1, where k � 1. By the induction hypothesis and d =
n−1, we have

H(G) =H(G′)+
2

1+d
+

d−1

∑
i=1

(
2

d +d(xi)
− 2

d +d(xi)−1
)

�h(n−1)+
2

1+d
+

d−1

∑
i=1

(
2

d +d(xi)
− 2

d +d(xi)−1
)

�h(n)+
10
n
− 6

n−1
− 4

n+1
+2(

1+ k
d +1

− k
d
− d− k−1

d +1
+

d− k−1
d +2

)

=h(n)+
10
n
− 6

n−1
− 4

n+1
+2(

3+2k
n

− k
n−1

− k+3
n+1

)

=h(n)+2(
8+2k

n
− 3+ k

n−1
− 5+ k

n+1
) = h(n)+

4(n− k−4)
n(n−1)(n+1)

� h(n). (2.3)

Now suppose that equality holds in (2.3). Then all inequalities in the above ar-
gument must be equalities. Hence we have H(G′) = h(n− 1) and k = n− 4. By the
induction hypothesis, G′ ∈ QT ∗(n− 1) . Note that G′ has a unique vertex of degree
greater than 3, hence G ∼= QT ∗(n) . This completes the proof of Theorem 2.10. �

3. The harmonic index of two-trees

3.1. Some Lemmas

Here we give some useful lemmas in the following paper.

LEMMA 3.1. Let

f (x,d) =
1

x+d
− 1

x−1+d
,

where d � 2, x � 3 . Then f (x,d) is monotonous increasing for d � 2 .

Proof. Note that for d � 2,

∂ f (x,d)
∂d

=
2x+2d−1

(x+d)2(x+d−1)2 > 0.

Then f (x,d) is monotonous increasing for d � 2. �

LEMMA 3.2. Let

g(x,y) =
3

(x+1)(x+2)
+

3
(y+1)(y+2)

+
1

x+ y
− 1

x+ y−2
,

where x � 3 and y � 3 . Then g(x,y) is monotonous decreasing in x (resp. y).
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Proof. We have

∂g(x,y)
∂x

=
−3(2x+3)

(x+1)2(x+2)2 +
4(x+ y−1)

(x+ y)2(x+ y−2)2

=
−(2x+3)

(x+1)2(x+2)2 +
−2(2x+3)

(x+1)2(x+2)2 +
2(2x+2y−2)

(x+ y)2(x+ y−2)2 ,

and

(2x+3)(x+ y)2(x+ y−2)2− (2x+2y−2)(x+2)2(x+1)2

=6x4y−15x4 +12x3y2 −24x3y−18x3 +8x2y3−6x2y2−46x2y+14x2

+2xy4 +4xy3−28xy2 +16x+3y4−12y3 +12y2−8y+8

=(5yx4−15x4)+ (8yx3y−24x3y)+ (2y2x3−18x3)+ (x2yx2 +8y2yx2

−46yx2)+14x2 +(2xx2y2 −6x2y2)+ (2y2xy2 +4yxy2−28xy2)

+16x+3y4−12y3 +12y2−8y+8.

Since for x,y � 3, (5yx4 − 15x4) � 0, (8yx3y− 24x3y) � 0, (2y2x3 − 18x3) � 0,
(x2yx2 + 8y2yx2 − 46yx2) > 0, (2xx2y2 − 6x2y2) � 0, (2y2xy2 + 4yxy2 − 28xy2) > 0,
14x2 + 16x > 0, 3y4 − 12y3 + 12y2 − 8y + 8 > 0 (since the maximum root of 3y4 −
12y3 + 12y2 − 8y + 8 is 2.7835 < 3, it follows that 3y4 − 12y3 + 12y2 − 8y + 8 �
(3y4−12y3 +12y2−8y+8)

∣∣
y=3 = 11 > 0 for y � 3), then (2x + 3)(x+ y)2(x + y−

2)2 − (2x + 2y− 2)(x + 2)2(x + 1)2 > 0, and −2(2x+3)
(x+1)2(x+2)2 + 2(2x+2y−2)

(x+y)2(x+y−2)2 < 0. Thus,
∂g(x,y)

∂x < 0. So g(x,y) is monotonous decreasing in x . By symmetry, g(x,y) is
monotonous decreasing in y . �

LEMMA 3.3. Let

h(x,y) =
3x+11

(x+1)(x+2)(x+3)
+

3y+11
(y+1)(y+2)(y+3)

+
1

x+ y
− 1

x+ y−2
,

where x � 3 and y � 3 . Then h(x,y) is monotonous decreasing in x (resp. y).

Proof. We have

h(x,y) =
3(x+3)+2

(x+1)(x+2)(x+3)
+

3(y+3)+2
(y+1)(y+2)(y+3)

+
1

x+ y
− 1

x+ y−2

=
3

(x+1)(x+2)
+

3
(y+1)(y+2)

+
1

x+ y
− 1

x+ y−2

+
2

(x+1)(x+2)(x+3)
+

2
(y+1)(y+2)(y+3)

=g(x,y)+
2

(x+1)(x+2)(x+3)
+

2
(y+1)(y+2)(y+3)

.

By Lemma 3.2, we can get that h(x,y) is monotonous decreasing in x (resp. y). �
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LEMMA 3.4. Let

l(n) =
12

n+1
+

8
n−1

− 18
n

− 2
n+2

+
1

n−2
− 1

n−3
+

2
2n−5

− 2
2n−3

,

where n � 5 . Then l(n) > 0 .

Proof. We have

l(n) =
44n5−287n4 +154n3 +2231n2−5094n+3240

n(n−1)(n+1)(n+2)(n−2)(n−3)(2n−5)(2n−3)
.

Let l1(n) = 44n5−287n4 +154n3+2231n2−5094n+3240. Since the maximum root
of l1(n) is 4 < 5, then l1(n) � l1(5) = 10920 > 0. Thus, l(n) > 0. �

3.2. Main results

In this section, the lower bound on the harmonic index of two-trees is presented,
and the two-trees with the minimum and the second minimum harmonic index, respec-
tively, are determined.

THEOREM 3.5. Let G be a two-tree with n � 4 vertices. Then

H(G) � 4− 12
n+1

+
1

n−1

with equality holds if and only if G ∼= Yn .

Proof. We prove this result by induction on n . Let Gn be a two-tree of order n .
If n = 4, the two-tree Gn is a unique graph obtained from the complete graph of

order 4 by deleting an edge. Obviously, H(G4) = 29
15 = 4− 12

5 + 1
3 , as desired. Assume

that the result holds for n−1. Choose one vertex of degree 2 from the graph Gn , say w .
Then Gn −w is a two-tree of order n−1. By the induction hypothesis, H(Gn −w) �
H(Yn−1) with equality holds if and only if Gn −w ∼= Yn−1 . In the following we prove
that H(Gn) � H(Yn) .

Let u and v be two vertices adjacent to the vertex w in Gn . Let dGn(u) = x ,
dGn(v)= y and NGn(u)\{v,w}= {u1,u2, · · · ,ux−2} , NGn(v)\{u,w}= {v1,v2, · · · ,vy−2} .
Clearly, 3 � x,y � n−1. By the induction hypothesis and Lemma 3.1, 3.2, we have

H(Gn) =H(Gn−w)+
2

x+2
+

2
y+2

+
2

x+ y
− 2

x+ y−2
+

x−2

∑
i=1

(
2

x+d(ui)

− 2
x+d(ui)−1

)+
y−2

∑
j=1

(
2

y+d(v j)
− 2

y+d(v j)−1
)

�H(Yn−1)+
2

x+2
+

2
y+2

+
2

x+ y
− 2

x+ y−2
− 2(x−2)

(x+1)(x+2)
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− 2(y−2)
(y+1)(y+2)

=H(Yn−1)+
6

(x+1)(x+2)
+

6
(y+1)(y+2)

+
2

x+ y
− 2

x+ y−2

�H(Yn−1)+
12

n(n+1)
+

1
n−1

− 1
n−2

=H(Yn),

where the equality holds if and only if Gn −w ∼= Yn−1 , x = y = n−1 and dGn(ui) = 2
( i = 1,2, · · · ,n−3), which implies Gn

∼= Yn . This completes the proof. �

THEOREM 3.6. Let G be a two-tree with n � 5 vertices and G �∼= Yn . Then

H(G) � 22
5

− 6
n+1

− 8
n

+
2

n+2
+

2
2n−3

with equality holds if and only if G ∼= Zn .

Proof. We prove this result by induction on n . Let Gn be a two-tree of order n
and Gn �∼= Yn .

If n = 5, it can be seen that Gn
∼= Yn or Gn

∼= Zn . Since Gn �∼= Yn , then Gn
∼=

Zn . Obviously, H(G5) = 83
35 = 22

5 − 1− 8
5 + 4

7 , as desired. Assume that the result
holds for n− 1. It is well known that a two-tree has at least two vertices of degree
2. Furthermore, Gn �∼= Yn . We choose one vertex w of degree 2 from the graph Gn

such that Gn−w �∼= Yn−1 . Then Gn−w is a two-tree of order n−1. By the induction
hypothesis, H(Gn −w) � H(Zn−1) with equality holds if and only if Gn −w ∼= Zn−1 .
In the following we prove that H(Gn) � H(Zn) .

Let u and v be two vertices adjacent to the vertex w in Gn . Since n � 5, by the
definition of two-tree, there must exist a vertex p which is adjacent to u and v with
dGn(p) � 3 (otherwise, Gn−w ∼=Yn−1 ). Let dGn(u) = x , dGn(v) = y , dGn(p) = z and
NGn(u) \ {v,w, p} = {u1,u2, · · · ,ux−3} , NGn(v) \ {u,w, p} = {v1,v2, · · · ,vy−3} . Then
3 � x,y,z � n−1. Without loss of generality we assume that x � y .

If max{x,y,z} = z . Since vertex p is not adjacent to the vertex w , then z � n−2.
Thus x � y � n−2. By the induction hypothesis and Lemma 3.1, 3.3, 3.4, we have

H(Gn) =H(Gn −w)+
2

x+2
+

2
y+2

+
2

x+ y
− 2

x+ y−2
+

2
x+ z

− 2
x+ z−1

+
2

y+ z
− 2

y+ z−1
+

x−3

∑
i=1

(
2

x+d(ui)
− 2

x+d(ui)−1
)

+
y−3

∑
j=1

(
2

y+d(v j)
− 2

y+d(v j)−1
)

�H(Zn−1)+
2

x+2
+

2
y+2

+
2

x+ y
− 2

x+ y−2
+

2
x+3
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− 2
x+2

+
2

y+3
− 2

y+2
− 2(x−3)

(x+1)(x+2)
− 2(y−3)

(y+1)(y+2)

=H(Zn−1)+2
3x+11

(x+1)(x+2)(x+3)
+2

3y+11
(y+1)(y+2)(y+3)

+
2

x+ y
− 2

x+ y−2

=H(Zn−1)+2(
4

x+1
− 5

x+2
+

1
x+3

)+2(
4

y+1
− 5

y+2
+

1
y+3

)

+
2

x+ y
− 2

x+ y−2

�H(Zn−1)+4(
4

n−1
− 5

n
+

1
n+1

)+
1

n−2
− 1

n−3

=
22
5

− 26
n

+
8

n−1
+

6
n+1

+
2

2n−5
+

1
n−2

− 1
n−3

=H(Zn)+
12

n+1
+

8
n−1

− 18
n

− 2
n+2

+
1

n−2
− 1

n−3

+
2

2n−5
− 2

2n−3
>H(Zn).

If max{x,y,z} = y . Then y � n−1 and max{x,z} � n−2 (Otherwise Gn
∼= Yn ).

By the induction hypothesis and Lemma 3.1, 3.3, we have

H(Gn) =H(Gn −w)+
2

x+2
+

2
y+2

+
2

x+ y
− 2

x+ y−2
+

2
x+ z

− 2
x+ z−1

+
2

y+ z
− 2

y+ z−1
+

x−3

∑
i=1

(
2

x+d(ui)
− 2

x+d(ui)−1
)

+
y−3

∑
j=1

(
2

y+d(v j)
− 2

y+d(v j)−1
)

�H(Zn−1)+
2

x+2
+

2
y+2

+
2

x+ y
− 2

x+ y−2
+

2
x+3

− 2
x+2

+
2

y+3
− 2

y+2
− 2(x−3)

(x+1)(x+2)
− 2(y−3)

(y+1)(y+2)

=H(Zn−1)+2
3x+11

(x+1)(x+2)(x+3)
+2

3y+11
(y+1)(y+2)(y+3)

+
2

x+ y
− 2

x+ y−2

=H(Zn−1)+2(
4

x+1
− 5

x+2
+

1
x+3

)+2(
4

y+1
− 5

y+2
+

1
y+3

)

+
2

x+ y
− 2

x+ y−2
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�H(Zn−1)+2(
4

n−1
− 5

n
+

1
n+1

)+2(
4
n
− 5

n+1
+

1
n+2

)

+
2

2n−3
− 2

2n−5
=H(Zn),

where the equality holds if and only if Gn−w ∼= Zn−1 , x = n−2, y = n−1, z = 3 and
dGn(ui) = dGn(v j) = 2 ( i = 1,2, · · · ,n−3; j = 1,2, · · · ,n−2), which implies Gn

∼= Zn .
This completes the proof. �

3.3. Concluding remark
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vn−2 vn

n is even n is odd

Fig. 3.1. The graphs with H(G) = n
2 − 59

420

From Theorems 3.5 and 3.6, we determine the two-trees with the first two smallest
harmonic index, but the two-trees with the maximum harmonic index are still unknown,
this seems to be a more difficult problem. For the maximum harmonic index, we con-
jecture the following result: For a two-tree G of order n � 6, H(G) � n

2 − 59
420 . The

graph attained this bound is shown in Fig. 3.1.
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