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SHARP BOUNDS ON THE SINC FUNCTION

VIA THE FOURIER SERIES METHOD

GABRIEL BERCU

(Communicated by J. Pečarić)

Abstract. In this paper we provide sharp bounds on the sinc function using the Fourier series
method. Refinements of some remarkable trigonometric inequalities involving sinc function are
given as well.

1. Introduction

The sinc function sinc(x) , also called the sampling function is a function that arises
in many areas of mathematics and its applications (in communications engineering, for
example) [11].

The sinc function is defined to be

sinc(x) =

{ sinx
x

, x �= 0

1, x = 0.

In spectral domain, sinc function is the best representative for finite data length
as the convolution kernel. In discrete Fourier transform (DFT), rectangular signal is
transformed to the sinc function in frequency domain. It is related to signal uncertainty
principle. Also sinc is used in wavelet basis functions.

The linear approximation sin(x)=x or, equivalently, sinc(x)=1 for small values
of x is very important in applications.There are some remarkable approximations for
the sinc function through inequalities.

The following result is well known as Jordan inequality [16]:

2
π

� sinc(x) � 1, x ∈
[
0,

π
2

]
. (1.1)

Another famous inequality related to sinc function is the Cusa - Huygens inequality:

1+ cosx
2

� sinc(x) � 2+ cosx
3

, x ∈
[
0,

π
2

]
. (1.2)
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These inequalities have been further refined by many authors in the past few years [4] -
[7]. In [13] Redheffer proposed the inequality

sinc(x) � π2− x2

π2 + x2 , x �= 0. (1.3)

The aim of the present paper is to refine these classical inequalities. The main idea
is that the function sinc is even, therefore it may be expanded in a Fourier series, e.g.,

sinx
x

−1 = a+bcosx+ ccos2x+ ... .

We define the function F(x) by

F(x) = a+bcosx+ ccos2x.

The power series expansion of
sinx
x

−1−F(x) near 0 is

(−a−b− c)+
(

b
2

+2c− 1
6

)
x2 +

1
120

(−5b−80c+1)x4 +
1

5040
(7b+448c−1)x6

+O(x8).

In order to increase the speed of the function F(x) approximating
sinx
x

−1 we vanish

the first coefficients as follows: ⎧⎪⎨
⎪⎩

−a−b− c = 0
b
2

+2c− 1
6

= 0

−5b−80c+1= 0.

We find a =
−11
30

, b =
17
45

, c =
−1
90

and therefore we have

sinx
x

−1+
11
30

− 17
45

cosx+
1
90

cos2x =
−x6

1512
+

29x8

453600
+O(x10).

It follows that

lim
x→0

sinx
x

−1−F (x)

x6 =
−1

1512
.

In particular the speed of the function F(x) approximating
sinx
x

− 1 is given by the

order estimate O(x6) as x = 0.
It is the first aim of our work to establish the following sharpened bounds for the

sinc function.
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THEOREM 1.1. For any x ∈
(
0,

π
2

)
, one has

1− x6

1512
− (1− cosx) (16− cosx)

45
<

sinx
x

<1− x6

1512
+

29x8

453600
− (1− cosx) (16− cosx)

45
(1.4)

As applications of theorem 1.1, it is the second aim of our paper to improve the
inequalities (1.1), (1.2) and (1.3).

2. The proof of theorem 1.1

The left hand side of inequality (1.4) is equivalent to

7560sinx−4872x+168xcos2 x−2856xcosx+5x7 � 0, for all x ∈
[
0,

π
2

]
.

We introduce the function

f (x) = 7560sinx−4872x+168xcos2 x−2856xcosx+5x7.

Easy computation yields

f ′(x) = 7
(
5x6 +408xsinx+24cos2 x−48xsinxcosx+672cosx−696

)
,

f (2)(x) = 42
(
5x5−44sinx−8sin2x+68xcosx−8xcos2x

)
,

f (3)(x) = 42
(
25x4−68xsinx+16xsin2x+24cosx−24cos2x

)
,

f (4)(x) = 168
(
25x3−23sinx+16sin2x−17xcosx+8xcos2x

)
,

f (5)(x) = 168
(
75x2 +17xsinx−16xsin2x−40cosx+40cos2x

)
= 168

[(
75x2−17xsinx−60x2)+

(
60x2−40cosx+40cos2x

)]
.

The function
g(x) = 15x2−17xsinx

has the derivative
g′(x) = 30x+17(sinx+ xcosx) > 0

for all x ∈
(
0,

π
2

)
. Then g is strictly increasing on

(
0,

π
2

)
. As g(0) = 0, we get

g(x) > 0 on
(
0,

π
2

)
. The function

h(x) = 60x2−40cosx+40cos2x

has the derivatives
h′(x) = 20(6x−4sin2x+2sinx)
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and

h(2) = 20(−16cos2 x+2cosx+14) = 20
[
14sin2 x+2cosx(1− cosx)

]
.

Evidently h(2) > 0 on
(
0,

π
2

)
. Using a similar algorithm we obtain h(x) > 0 for all

x ∈
(
0,

π
2

)
. Therefore

f (5)(x) = 168(g(x)+h(x)) > 0 on
(
0,

π
2

)
.

Then f (4) is strictly increasing on
(
0,

π
2

)
. As f (4)(0) = 0, we have f (4) > 0 on(

0,
π
2

)
. Continuing the algorithm, finally we obtain f (x) > 0 for all x ∈

(
0,

π
2

)
.

The right hand side of inequality (1.4) is equivalent to

453600sinx−292320x+10080xcos2 x−171360xcosx−29x9 +300x7 � 0

for all x ∈ [
0, π

2

]
. Let

s(x) = 453600sinx−292320x+10080xcos2 x−171360xcosx−29x9 +300x7.

Then

s′(x) = −3
(
87x8−700x6−57120xsinx+3360xsin2x−94080cosx−1680cos2x

+95760),

s(2)(x) = −72
(
29x7−175x5 +1540sinx+280sin2x−2380xcosx+280xcos2x

)
,

s(3)(x) = 504
(
−29x6 +125x4−340xsinx+80xsin2x+120cosx−120cos2x

)
,

s(4)(x) = 1008
(
−87x5 +250x3−230sinx+160sin2x−170xcosx+80cos2x

)
,

s(5)(x) = 1008
(−435x4 +750x2 +170xsinx−160xsin2x−400cosx+400cos2x

)
,

s(6)(x) = 1008
(−1740x3 +1500x+570sinx−960sin2x+170xcosx−320xcos2x

)
,

s(7)(x) = 1008
(−5220x2−170xsinx+640xsin2x+740cosx−2240cos2x+1500

)
= 1008

[
x(−1110x−170xsinx+640sin2x)+

(−4110x2 +740cosx

−2240cos2x+1500)] .

The function

r(x) = −1110x−170xsinx+640sin2x

has the derivative

r′(x) = −20sin2 x
2

(256cosx+239).
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Evidently r′(x) < 0 on
(
0,

π
2

)
. Then r is strictly decreasing on

(
0,

π
2

)
. As r (0) = 0,

we get r < 0 on
(
0,

π
2

)
. The function

p(x) = −4110x2 +740cosx−2240cos2x+1500

has the derivatives

p′(x) = −8220x−740sinx+4480sin2x

and
p′′(x) = −40sin2 x

2
(896cosx+859) < 0 on

(
0,

π
2

)
.

Using a similar algorithm we have p(x) < 0 for all x ∈
(
0,

π
2

)
. Therefore

s(7)(x) = 1008(xr (x)+ p(x)) < 0 on
(
0,

π
2

)
.

Then s(6) is strictly decreasing on
(
0,

π
2

)
. As s(6)(0) = 0, we obtain s(6) < 0 on(

0,
π
2

)
. Continuing the algorithm, finally we get s(x) < 0 for every x ∈

(
0,

π
2

)
. This

completes the proof of theorem 1.1.

3. Applications of theorem 1.1

In this section we will prove that the bounds for the function sinc(x) obtained in
theorem 1.1 provide better approximations that the classical inequalities (1.1), (1.2),
(1.3).

Firstly we will prove that our sharp bounds improve Jordan’s inequality.

THEOREM 3.1. (i) For every 0 < x <
π
2

, one has

−x6

1512
+

29x8

453600
− (1− cosx) (16− cosx)

45
< 0. (3.1)

(ii) For every 0 < x < 1.5657 , one has

−x6

1512
− (1− cosx) (16− cosx)

45
>

2
π
−1. (3.2)

Proof. (i) The inequality 3.1 is obvious, since

−x6

1512
+

29x8

453600
=

x6
(
29x2−300

)
453600

< 0

on
(
0,

π
2

)
and

−(1− cosx)(16− cosx)
45

< 0
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on
(
0,

π
2

)
.

(ii) The difference

E(x) =
−x6

1512
− 1

45
(1− cosx) (16− cosx)− 2−π

π
has the numerical roots x1 ≈−1.5657, x2 ≈ 1.5657. Since

E(0) =
π −2

π
> 0,

it follows that E(x) > 0 on (0,1.5657). �
In order to improve Cusa - Huygens inequality, we rewrite the double inequality

(1.4) as

1− x6

1512
− (1− cosx)(16− cosx)

45
− 2+ cosx

3
<

sinx
x

− 2+ cosx
3

<1− x6

1512
+

29x8

453600
− (1− cosx) (16− cosx)

45
+1− 2+ cosx

3
.

On the other hand,

− (1− cosx) (16− cosx)
45

+1− 2+ cosx
3

=
−1
45

(cosx−1)2 .

Using again the double inequality (1.4), we find

−x6

1512
− (1− cosx) (16− cosx)

45
+

1− cosx
2

<
sinx
x

− 1+ cosx
2

<
−x6

1512
+

29x8

453600
− (1− cosx)(16− cosx)

45
+

1− cosx
2

or equivalently

−x6

1512
+

(1− cosx)(2cosx+13)
90

<
sinx
x

− 1+ cosx
2

<
−x6

1512
+

29x8

453600
+

(1− cosx) (2cosx+13)
90

.

Therefore we can state the following theorem related to Cusa - Huygens inequality.

THEOREM 3.2. (i) For all x ∈
(
0,

π
2

)
, one has

−x6

1512
− (cosx−1)2

45
<

sinx
x

− 2+ cosx
3

<
−x6

1512
+

29x8

453600
− (cosx−1)2

45
.

(ii) For all x ∈
(
0,

π
2

)
, one has

−x6

1512
+

(1− cosx)(2cosx+13)
90

<
sinx
x

− 1+ cosx
2

<
−x6

1512
+

29x8

453600
+

(1− cosx) (2cosx+13)
90

.
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REMARK 3.1. 1. Since

−x6

1512
+

29x8

453600
=

x6
(
29x2−300

)
453600

< 0

on
(
0,

π
2

)
and

−(cosx−1)2

45
< 0,

it follows that

sinx
x

− 2+ cosx
3

<
−x6

1512
+

29x8

453600
− (cosx−1)2

45
< 0,

hence we improve the second inequality of (1.2).
2. The results from (ii) improve the inequality of (1.2), because

−x6

1512
+

(1− cosx)(2cosx+13)
90

> 0 for every x ∈
(
0,

π
2

)
.

Indeed, the above inequality takes the equivalent form H(x) > 0 for all x ∈
(
0,

π
2

)
,

where
H(x) = −5x6−168cos2 x−924cosx+1092.

We introduce the auxiliary function a :
(
0,

π
2

)
→R , a(x)=

189x4

2
−630x2−168cos2 x−

924cosx+1092. Its derivatives are

a′ (x) = 42
(
9x3−30x+22sinx+4sin2x

)
,

a(2) (x) = 42
(
27x2 +22cosx+8cos2x−30

)
,

a(3) (x) = −84(−27x+11sinx+8sin2x) ,

a(4) (x) = 168sin2 x
2

(32cosx+43).

It is easy to see that a(4) (x) > 0 on
(
0,

π
2

)
. Then a(3) is strictly increasing on

(
0,

π
2

)
.

As a(3) (0) = 0, it follows that a(3) > 0 for all x ∈
(
0,

π
2

)
. Continuing the algorithm,

finally we find that a(x) > 0 for all x∈
(
0,

π
2

)
. Therefore the function H (x) =−5x6−

168cos2 x−924cosx+1092 can be rewritten as

H (x) = a(x)+ x2b(x) ,

where b(x) = −5x4 − 189x2

2
+ 630. The polynomial function b(x) has the real roots

x1,2 = ± 1
2

√
3
√

9569−189
5

≈±2.2854. Since b(0) = 630 > 0, it follows that b(x) >

0 on
(
0,

π
2

)
. Hence we proved that H (x) = a(x)+ x2b(x) > 0 for all x ∈

(
0,

π
2

)
.
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Finally we will prove that lower bound of sinc function from inequality (1.4) pro-
vides a refinement of Redheffer inequality (1.3).

THEOREM 3.3. For all x ∈
(
0,

π
2

)
, one has

1− x6

1512
− (1− cosx) (16− cosx)

45
>

π2− x2

π2 + x2 . (3.3)

Proof. The inequality (3.3) takes the equivalent form

T (x) > 0,

where

T (x) =
2x2

π2 + x2 −
x6

1512
− (1− cosx) (16− cosx)

45
.

Our proof has three steps.
The first step. We will establish the following inequality:

− (1− cosx) (16− cosx)
45

> −x2

6
+

x4

120
for all x ∈

(
0,

π
2

)
.

Indeed, the above inequality can be rewritten as

−3x4 +60x2−128+136cosx−8cos2 x > 0

for all x ∈
(
0,

π
2

)
. The function c(x) = −3x4 +60x2 −128+136cosx−8cos2 x has

the derivatives

c′ (x) = 4
(−3x3 +30x−34sinx+2sin2x

)
,

c(2) (x) = 4
(−9x2−34cosx+4cos2x+30

)
,

c(3) (x) = −8(9x−17sinx+4sin2x) ,

c(4) (x) = −8(cosx−1)(16cosx−1) .

To find critical points of c(4) , we solve the equation c(4) (x) = 0 on
(
0,

π
2

)
. The

solution is x = arccos
1
16

≈ 86◦25′0.042”. Partition the domain
(
0,

π
2

)
into intervals

with endpoints at the critical points:

(
0,arccos

1
16

)
and

(
arccos

1
16

,
π
2

)
. The sign

of c(4) is: c(4) (x) > 0 on

(
0,arccos

1
16

)
and c(4) (x) < 0 on

(
arccos

1
16

,
π
2

)
. Then

c(3) is strictly increasing on

(
0,arccos

1
16

)
and respectively strictly decreasing on(

arccos
1
16

,
π
2

)
. Since c(3) (0) = 0 and c(3)

(π
2

)
=

−8(9π −34)
2

> 0, it follows
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that c(3) (x) > 0 for all x ∈
(
0,

π
2

)
, hence c(2) is strictly increasing on

(
0,

π
2

)
. As

c(2) (0) = 0, we obtain that c(2) (x) > 0 on
(
0,

π
2

)
. Continuing the algorithm, finally

we have c(x) > 0 for all x ∈
(
0,

π
2

)
.

The second step. We will show the following inequality

2x2

π2 + x2 >
2x2

π2 − 2x4

π4 .

Indeed, the above inequality has the equivalent true form: x4 > 0.
The third step. Using the above inequalities, we may write

T (x) > x2 ·d (x) ,

where

d (x) =
(

2
π2 −

1
6

)
+

(
1

120
− 2

π4

)
x2− x4

1512
.

The polynomial function d has the real roots x1,2 ≈±1.6082. Since d (0) =
2

π2 −
1
6

>

0, it follows that d (x) > 0 on
(
0,

π
2

)
, hence T (x) > 0 for all x ∈

(
0,

π
2

)
. �

4. Final remarks

We are convinced that the use of the Fourier series method is suitable for proving
and refining many other analytical inequalities which appear in the fields of engineering
and applied mathematics.
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