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GENERALIZATIONS AND REFINEMENTS OF STEČKIN–TYPE

INEQUALITY FOR TANGENT AND SECANT FUNCTIONS

CHAO-PING CHEN ∗ AND NEVEN ELEZOVIĆ

(Communicated by J. Pečarić)

Abstract. In this paper, we generalize and refine Stečkin-type inequality for the tangent function.
We develop an inequality of Chen and Sándor for the secant function to produce a general form.
We also present some refinements of the inequality for the secant function.

1. Introduction

It is known in the literature that, for 0 < x < π/2,

4/π
π −2x

<
tanx

x
<

π
π −2x

. (1.1)

The left-hand side inequality (1.1) was presented by Stečkin [18], while the right-hand
side inequality (1.1) was proved by Ge [14]. This inequality is now known as Stečkin’s
inequality, see, e.g., [6, p. 246].

Becker and Stark [8] showed that for 0 < x < π/2,

8
π2−4x2 <

tanx
x

<
π2

π2−4x2 , (1.2)

or alternatively (
2
π

)2 2
1− t2

<
tan(πt/2)

πt/2
<

1
1− t2

(1.3)

for 0 < t < 1.
The inequalities (1.2) are shaper than the inequalities (1.1). The Becker-Stark

inequality (1.2) has attracted much interest of many mathematicians and has motivated
a large number of research papers (cf. [7, 9, 11, 13, 16, 19, 20, 21, 22] and the references
cited therein).

Chen and Elezović [10] gave a unified treatment of the inequalities (1.1) and (1.2)
and proved the following result:
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Let p > 0 be a real number. Consider the following inequalities for 0 < x < π/2:

π p

π p− (2x)p <
tanx

x
<

4pπ p−2

π p− (2x)p , (1.4)

or alternatively
1

1− t p <
tan(πt/2)

πt/2
<

(
2
π

)2 p
1− t p (1.5)

for 0 < t < 1. The left-hand side of (1.5) holds if and only if p � π2/4, while the
reversed inequality holds if and only if 0 < p � 2. The right-hand side of (1.5) holds if
and only if p � 3, while the reversed inequality holds if and only if 0 < p � π2/4.

The choice p = 1 in (1.4) yields Stečkin’s inequality (1.1). The choice p = 2
in (1.4) yields Becker-Stark inequality (1.2). The choice p = 3 in (1.4) yields, for
0 < x < π/2,

π3

π3− (2x)3 <
tanx

x
<

12π
π3− (2x)3 , (1.6)

or alternatively
1

1− t3
<

tan(πt/2)
πt/2

<
12/π2

1− t3
(1.7)

for 0 < t < 1.
Recently, Debnath [13] et al. refined Stečkin’s inequality (1.1) and obtained The-

orems 1.1 and 1.2 below.
Theorem 1.1 improves Stečkin’s inequality, on a neighborhood of π/2.

THEOREM 1.1. For every x ∈ (0,π/2) it holds

2
π
− 1

2

(π
2
− x
)

� tanx− 4
π
· x

π −2x
� 2

π
− 1

3

(π
2
− x
)

. (1.8)

Theorem 1.2 presents the following refinement of Stečkin’s inequality which gives
good results near the origin.

THEOREM 1.2. For every x ∈ (0,1) , it holds(
1− 4

π2

)
x− 8

π3 x2 � tanx− 4
π
· x

π −2x
�
(

1− 4
π2

)
x. (1.9)

Chen and Sándor [12, Theorem 3.1(i)] proved in 2015 that for 0 < |x| < π/2,

π2

π2−4x2 < secx <
4π

π2−4x2 , (1.10)

which is an analogous result to (1.2). In 2017, Chen and Paris [11] improved (1.10) and
obtained the following inequalities:

π2 + 28−8π
π x2 + 16π−48

π3 x4

π2−4x2 < secx <
π2− 8−π2

2 x2− 4π3−128
2π3 x4

π2−4x2 (1.11)
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for 0 < x < π/2.
Nishizawa [17] gave some inequalities with power exponential functions derived

from the right hand side of Chen and Sándor’s inequality (1.10).
In this paper, we generalize and refine the inequalities (1.1), (1.8) and (1.9). We

develop (1.10) to produce a general form. We also present some refinements of (1.10).
The numerical values given have been calculated using the computer program

MAPLE 13.

2. Lemmas

The Bernoulli polynomials Bn(x) and Euler polynomials En(x) are defined, re-
spectively, by the generating functions:

text

et −1
=

∞

∑
n=0

Bn(x)
tn

n!
(|t| < 2π) and

2ext

et +1
=

∞

∑
n=0

En(x)
tn

n!
(|t| < π).

The numbers Bn = Bn(0) and En = 2nEn( 1
2 ) , which are known to be rational numbers

and integers, respectively, are called Bernoulli and Euler numbers.
The following lemmas will be useful in our present investigation.

LEMMA 2.1. The following elementary power series expansions hold (see [15,
pp. 42-43]):

tanx =
∞

∑
k=1

22k(22k −1)|B2k|
(2k)!

x2k−1, |x| < π
2

, (2.1)

cotx =
1
x
−

∞

∑
j=1

22 j|B2 j|
(2 j)!

x2 j−1, |x| < π , (2.2)

secx =
∞

∑
j=0

|E2 j|
(2 j)!

x2 j, |x| < π
2

, (2.3)

cscx =
1
x

+
∞

∑
j=1

(22 j −2)|B2 j|
(2 j)!

x2 j−1, |x| < π . (2.4)

LEMMA 2.2. For all n ∈ N := {1,2, . . .} ,

2

(2π)2n (1−2α−2n)
<

|B2n|
(2n)!

� 2

(2π)2n (1−2β−2n
) , (2.5)

with the best possible constants

α = 0 and β = 2+
ln(1−6/π2)

ln2
= 0.6491 . . . . (2.6)
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Lemma 2.2 was proved by Alzer [2]. Lemma 2.2 improves the following inequal-
ities (see [1, p. 805]):

2

(2π)2n <
|B2n|
(2n)!

<
2

(2π)2n (1−21−2n)
, n ∈ N. (2.7)

LEMMA 2.3. For all n ∈ N ,

π2(22n+2−1)
(2n+2)!

|B2n+2| < (22n−1)
(2n)!

|B2n|. (2.8)

The inequality (2.8) can be found in [22].

LEMMA 2.4. For all n ∈ N0 := N∪{0} ,

4n+1

π2n+1

(
1

1+3−1−2n

)
<

|E2n|
(2n)!

<
4n+1

π2n+1 . (2.9)

The inequality (2.9) can be found in [1, p. 805].

LEMMA 2.5. For all n ∈ N ,

|E2n|
(2n)!

>

(
2
π

)2 |E2n−2|
(2n−2)!

. (2.10)

Proof. It is well known that

(−1)nE2n > 0.

Using the series expansion (see [15, p. 592])

E2n(x) = (−1)n 4(2n)!
π2n+1

∞

∑
k=0

sin
(
(2k+1)πx

)
(2k+1)2n+1 ,

we have

|E2n|
(2n)!

=
4n+1

π2n+1

∞

∑
k=0

(−1)k

(2k+1)2n+1 .

We then obtain that

π2|E2n|
(2n)!

− 4|E2n−2|
(2n−2)!

=
4n+1

π2n−1

∞

∑
k=1

(−1)k−1
{

1
(2k+1)2n−1 −

1
(2k+1)2n+1

}

=
4n+1

π2n−1

∞

∑
k=1

(−1)k−1uk(n),
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where

uk(n) =
4k(k+1)

(2k+1)2n+1 , k,n ∈ N.

We find that

uk(n)−uk+1(n) =
4k(k+1)

(2k+1)2n+1 −
4(k+1)(k+2)
(2k+3)2n+1

=
4k(k+1)

(2k+3)2n+1

{(
1+

2
2k+1

)2n+1

−
(

1+
2
k

)}

>
4k(k+1)

(2k+3)2n+1

{(
1+

2
2k+1

)3

−
(

1+
2
k

)}

=
8(k+1)2(4k2 +8k−1)
(2k+1)3(2k+3)2n+1 > 0.

We then obtain that

π2|E2n|
(2n)!

− 4|E2n−2|
(2n−2)!

=
4n+1

π2n−1

{(
u1(n)−u2(n)

)
+
(
u3(n)−u4(n)

)
+ . . .

}
> 0.

The proof is complete. �

LEMMA 2.6. (see [3, 4, 5]) Let −∞ < a < b < ∞ , and let f , g : [a,b] → R be
continuous on [a,b] , differentiable on (a,b) . Let g′ (x) �= 0 on (a,b) . If f ′ (x)/g′ (x)
is increasing (decreasing) on (a,b) , then so are

[ f (x)− f (a)]/ [g(x)−g(a)] and [ f (x)− f (b)]/ [g(x)−g(b)] .

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

3. Generalizations and refinements of (1.8) and (1.9)

Using the expansion (2.2), we find that, for 0 < t < π/2,

cott − 4
π
·

π
2 − t

π −2(π
2 − t)

= cott− 1
t

+
2
π

=
2
π
−

∞

∑
j=1

22 j|B2 j|
(2 j)!

t2 j−1. (3.1)

Replacing t by π
2 − x in (3.1), we obtain that, for 0 < x < π/2,

tanx− 4
π
· x

π −2x
=

2
π
−

∞

∑
j=1

22 j|B2 j|
(2 j)!

(π
2
− x
)2 j−1

, (3.2)

that is,

tanx− 4
π
· x

π −2x
=

2
π
− 1

3

(π
2
− x
)
− 1

45

(π
2
− x
)3

− 2
945

(π
2
− x
)5

− . . . . (3.3)
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REMARK 3.1. It follows by truncation of (3.2) that

tanx− 4
π
· x

π −2x
<

2
π
−

N

∑
j=1

22 j|B2 j|
(2 j)!

(π
2
− x
)2 j−1

(3.4)

for 0 < t < π/2 and N ∈ N . This improves the upper bound of (1.8).

Theorem 3.1 improves the lower bound of (1.8).

THEOREM 3.1. The following inequalities hold:

2
π
− 4

π2

(π
2
− x
)

< tanx− 4
π
· x

π −2x
<

2
π
− 1

3

(π
2
− x
)

, 0 < x <
π
2

, (3.5)

and the constants 4
π2 and 1

3 are the best possible.

Proof. Clearly, the right-hand side of (3.5) holds. We now prove the left-hand
side of (3.5). Replacing x by π

2 − x in the left-hand side of (3.5) leads to equivalent
inequality:

cotx− 1
x

+
4

π2 x > 0, 0 < x <
π
2

. (3.6)

After some elementary computations, (3.6) can be rewritten as the right-hand side of
(1.2).

If we write (3.5) as

4
π2 >

tanx− 4
π · x

π−2x − 2
π

x− π
2

>
1
3
,

we find that

lim
x→0+

tanx− 4
π · x

π−2x − 2
π

x− π
2

=
4

π2 = 0.40528 . . . and lim
x→π/2−

tanx− 4
π · x

π−2x − 2
π

x− π
2

=
1
3
.

Hence, the inequalities (3.5) hold, and the constants 4
π2 and 1

3 are the best possible.
The proof is complete. �

We obtain by (2.1) that, for 0 < x < π/2,

tanx− 4
π
· x

π −2x
= tanx− 4x

π2 ·
1

1− 2x
π

=
∞

∑
j=1

22 j(22 j −1)|B2 j|
(2 j)!

x2 j−1−
∞

∑
j=1

(
2
π

) j+1

x j =
∞

∑
j=1

a jx
2 j−1−

∞

∑
j=1

b jx
j

=(a1−b1)x−b2x
2 +(a2−b3)x3 −b4x

4 + · · ·+(a j −b2 j−1)x2 j−1−b2 jx
2 j + · · · ,

(3.7)
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where

a j =
22 j(22 j −1)|B2 j|

(2 j)!
and b j =

(
2
π

) j+1

. (3.8)

That is,

tanx− 4
π
· x

π −2x
=
(

1− 4
π2

)
x− 8

π3 x2 +
(

1
3
− 16

π4

)
x3− 32

π5 x4 + . . . (3.9)

for 0 < x < π/2.
We find by the left-hand side of (2.5) that, for j ∈ N ,

a j −b2 j−1 >
22 j+1(22 j −1)

(2π)2 j (1−2−2 j)
−
(

2
π

)2 j

=
(

2
π

)2 j

> 0 (3.10)

so that (3.7) is an alternating series for 0 < x < π/2. This fact motivated us to establish
Theorem 3.2. Theorem 3.2 develops Theorem 1.2 to produce a general result.

THEOREM 3.2. For all 0 < x < π/2 and N ∈ N , the following inequalities hold
true:

N

∑
j=1

{
−b2 j−2x

2 j−2 +(a j −b2 j−1)x2 j−1
}
−b2Nx2N

< tanx− 4
π
· x

π −2x
<

N

∑
j=1

{
−b2 j−2x

2 j−2 +(a j −b2 j−1)x2 j−1
}
, (3.11)

where b0 = 0 ,

a j =
22 j(22 j −1)|B2 j|

(2 j)!
and b j =

(
2
π

) j+1

for j ∈ N.

Proof. If we write (3.7) as

tanx− 4
π
· x

π −2x
=
(
(a1−b1)x−b2x

2
)

+
(
(a2−b3)x3 −b4x

4
)

+ · · ·+
(
(a j −b2 j−1)x2 j−1−b2 jx

2 j
)

+ · · · , (3.12)

we find by (3.10) that, for 0 < x < π/2 and j ∈ N ,

(a j −b2 j−1)x2 j−1−b2 jx
2 j =

(
a j −b2 j−1−b2 jx

)
x2 j−1 > 0.

We then obtain the left-hand side of (3.11) by truncation of (3.12).
We now prove the right-hand side of (3.11). Let us denote

S(x) := tanx− 4
π
· x

π −2x
, (3.13)
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b0 = 0, and

cn(x) = −b2n−2x
2n−2 +(an−b2n−1)x2n−1, n � 1.

We should prove

S(x) < SN(x) :=
N

∑
k=1

ck(x), ∀N, ∀0 < x <
π
2

. (3.14)

1) It holds S(x) < c1(x) , that is,

tanx− 4
π
· x

π −2x
<

(
1− 4

π2

)
x, 0 < x <

π
2

. (3.15)

Using the right-hand side of (1.2), we find that for 0 < x < π/2,

tanx
x

− 4
π
· 1

π −2x
−
(

1− 4
π2

)
<

π2

π2−4x2 −
4
π
· 1

π −2x
−
(

1− 4
π2

)

= −
4x
(
2π − (π2−4)x

)
π2(π2−4x2)

< 0.

This proves S(x) < c1(x) .
2) Relation cn(x) < 0 is equivalent to

an

b2n−1
<

π
2x

+1. (3.16)

Using (2.5) we have

an

b2n−1
< 2+

2β+1−2

4n−2β ↓ 2 as n → ∞.

For any x ∈ (0,π/2) , we see that (3.16) is true for sufficiently large n . Therefore,
for each x ∈ (0,π/2) the sequence (cn(x)) became eventually negative for sufficiently
large n .

3) The sequence (cn) changes its sign at most once. We have, using Lemma 2.3.

cn+1(x) = −b2nx
2n +(an+1−b2n+1)x2n+1

= − 2
π

(
2x
π

)2n

+

(
4n+1(4n+1−1)|B2n+2|

(2n+2)!
−
(

2
π

)2n+2
)

x2n+1

< − 2
π

(
2x
π

)2n

+

(
4

π2 ·
4n(4n−1)|B2n|

(2n)!
−
(

2
π

)2n+2
)

x2n+1

=
4x2

π2 cn(x).
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Therefore, (cn) is decreasing while being positive, and remains negative once it takes
negative value.

Denote by n∗(x) the first index n for which cn(x) < 0. Then, ck(x) � 0 for
k < n∗(x) and ck(x) < 0 for k � n∗(x) .

4) We have, ∀N ,

S(x) =
∞

∑
k=1

ck(x) = SN(x)+
∞

∑
k=N+1

ck(x).

Let us take any x , 0 < x < π/2.
a) If n∗(x) � N +1, then ck(x) < 0 for each k � N +1, therefore S(x) < SN(x) .
b) If n∗(x) > N +1, then ck(x) > 0 for each k � N , therefore S(x) < SN(x) since

S(x) < c1(x) .
Theorem is complete. �

REMARK 3.2. For every j ∈ N , the function

x 
−→−b2 jx
2 j +(a j+1−b2 j+1)x2 j+1

change its sign on (0,π/2) .

4. New results related to Stečkin’s inequality

Noting that

lim
x→0

tanx
x

(
π −2x

)
= π

holds, we consider the expansion of function tanx
x − π

π−2x near the origin. Using (2.1),
we have

tanx
x

− π
π −2x

=
tanx

x
− 1

1− 2
π x

=
∞

∑
j=1

22 j(22 j −1)|B2 j|
(2 j)!

x2 j−2−
∞

∑
j=0

(
2
π

) j

x j

=
∞

∑
j=1

22 j+2(22 j+2−1)|B2 j+2|
(2 j +2)!

x2 j −
∞

∑
j=1

(
2
π

) j

x j

=
∞

∑
j=1

{
22 j+2(22 j+2−1)|B2 j+2|

(2 j +2)!
−
(

2
π

)2 j
}

x2 j −
∞

∑
j=1

(
2
π

)2 j−1

x2 j−1,

(4.1)

that is,

tanx
x

− π
π −2x

= − 2
π

x− 12−π2

3π2 x2 − 8
π3 x3− 2(120−π4)

15π4 x4− . . . . (4.2)
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We find from (2.7) that

22 j+2(22 j+2−1)|B2 j+2|
(2 j +2)!

<
2 ·22 j+2(22 j+2−1)

(2π)2 j+2 (1−21−2( j+1)
)

=
(

2
π

)2 j( 2
π

)2

2

(
1+

1
22 j+2−2

)
<

(
2
π

)2 j( 2
π

)2

2

(
1+

1
24−2

)

=
(

2
π

)2 j 60
7π2 <

(
2
π

)2 j

, j ∈ N. (4.3)

We then obtain Theorem 4.1 by truncation of (4.1).

THEOREM 4.1. For 0 < x < π/2 and N ∈ N ,

tanx
x

<
π

π −2x
−

N

∑
j=1

(
2
π

)2 j−1

x2 j−1

−
N

∑
j=1

{(
2
π

)2 j

− 22 j+2(22 j+2−1)|B2 j+2|
(2 j +2)!

}
x2 j. (4.4)

The choice N = 1 in (4.4) yields

tanx
x

<
π

π −2x
− 2

π
x− 12−π2

3π2 x2. (4.5)

Noting that

lim
x→π/2−

tanx
x

(
π −2x

)
=

4
π

holds, we consider the expansion of function tanx
x − 4/π

π−2x , on a neighborhood of π/2.
As x approaches π/2, with x < π/2, we find by Maple,

tanx
x

− 4/π
π −2x

=
4

π2 +
2(12−π2)

3π3

(π
2
− x
)

+
4(12−π2)

3π4

(π
2
− x
)2

+
2(720−π4−60π2)

45π5

(π
2
− x
)3

+
4(720−π4−60π2)

45π6

(π
2
− x
)4

+ . . . . (4.6)

Even though we can obtain as many coefficients as we please in the right-hand
side of (4.6) by using Maple, here we aim at giving a formula for determining these
coefficients.

Replacing x by π
2 − t , it is sufficient to consider the expansion of function cott

π
2 −t −

2
πt near the origin.

For 0 < t < π/2, we have

1
π
2 − t

=
2
π

1

1− 2
π t

=
∞

∑
j=0

(
2
π

) j+1

t j. (4.7)



GENERALIZATIONS AND REFINEMENTS OF STEČKIN-TYPE INEQUALITY 515

We obtain from (2.2) and (4.7) that, for 0 < t < π/2,

cott
π
2 − t

− 2
πt

=
∞

∑
j=0

(
2
π

) j+2

t j −
(

∞

∑
j=0

22 j+2|B2 j+2|
(2 j +2)!

t2 j+1

)
∞

∑
j=0

(
2
π

) j+1

t j

=
∞

∑
j=0

(
2
π

) j+2

t j −
∞

∑
j=0

j

∑
k=0

22k+2|B2k+2|
(2k+2)!

(
2
π

) j−k+1

t j+k+1

=
∞

∑
�=0

(
2
π

)�+2

t�−
∞

∑
�=1

� �−1
2 �

∑
k=0

22k+2|B2k+2|
(2k+2)!

(
2
π

)�−2k

t�

=
4

π2 +
∞

∑
�=1

⎧⎨
⎩
(

2
π

)�+2

−
� �−1

2 �
∑
k=0

22k+2|B2k+2|
(2k+2)!

(
2
π

)�−2k
⎫⎬
⎭ t�,

or alternatively

cott
π
2 − t

− 2
πt

=
4

π2 +
∞

∑
�=1

c�t
�, (4.8)

where

c� =
(

2
π

)�+2

−
� �−1

2 �
∑
k=0

22k+2|B2k+2|
(2k+2)!

(
2
π

)�−2k

, � ∈ N. (4.9)

Setting � = 2 j +1 and � = 2 j in (4.9), respectively, yields

c2 j+1 =
(

2
π

)2 j+3

−
j

∑
k=0

22k+2|B2k+2|
(2k+2)!

(
2
π

)2 j−2k+1

=
(

2
π

)2 j+3
{

1−
j

∑
k=0

π2k+2|B2k+2|
(2k+2)!

}
, j ∈ N0 (4.10)

and

c2 j =
(

2
π

)2 j+2

−
j−1

∑
k=0

22k+2|B2k+2|
(2k+2)!

(
2
π

)2 j−2k

=
(

2
π

)2 j+2
{

1−
j

∑
k=1

π2k|B2k|
(2k)!

}
, j ∈ N0 (4.11)

(an empty sum is understood to be zero).
Uses of (4.10) and (4.11) are easily seen to generate the values

c0 =
4

π2 , c1 =
2(12−π2)

3π3 , c2 =
4(12−π2)

3π4 ,

c3 =
2(720−π4−60π2)

45π5 , c4 =
4(720−π4−60π2)

45π6 , . . . ,
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which are the same coefficients as in (4.6).
Replacing t by π

2 − x in (4.8), we obtain Theorem 4.2.

THEOREM 4.2. For 0 < x < π/2 , we have

tanx
x

− 4/π
π −2x

=
∞

∑
�=0

c�

(π
2
− x
)�

, (4.12)

where the coefficients c� can be calculated using (4.10) and (4.11).

THEOREM 4.3. For all � ∈ N0 , c� > 0 .

Proof. In order to prove Theorem 4.3, it is sufficient to prove that

j

∑
k=1

π2k|B2k|
(2k)!

< 1, j ∈ N. (4.13)

Since

π2k|B2k|
(2k)!

=
2ζ (2k)

4k ,

where ζ (s) denotes the zeta function, it is sufficient to prove that

S =
∞

∑
k=1

ζ (2k)
4k =

1
2
.

Now, interchanging the order of summation we have

S =
∞

∑
j=1

∞

∑
k=1

1
j2k4k =

∞

∑
j=1

1
4 j2 −1

=
1
2

∞

∑
j=1

(
1

2 j−1
− 1

2 j +1

)
=

1
2
.

The proof is complete. �

COROLLARY 4.1. For 0 < x < π/2 and N ∈ N0 ,

N

∑
�=0

c�

(π
2
− x
)�

<
tanx

x
− 4/π

π −2x
, (4.14)

where the coefficients c� can be calculated using (4.10) and (4.11).

The choice N = 1 in (4.14) yields

4/π
π −2x

+
4

π2 +
2(12−π2)

3π3

(π
2
− x
)

<
tanx

x
. (4.15)
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5. A general form of (1.10)

Theorem 5.1 below develops (1.10) to produce a general form.

THEOREM 5.1. Let p > 0 be a real number. Consider the following inequalities:

π p

π p− (2x)p < secx <
2pπ p−1

π p− (2x)p (5.1)

for 0 < x < π/2 , or alternatively

1
1− t p < sec

πt
2

<
( 2

π )p
1− t p (5.2)

for 0 < t < 1 . The left-hand side of (5.2) holds if and only if p � 2 , while the reversed
inequality holds if and only if 0 < p � π/2 . The right-hand side of (5.2) holds if and
only if p � π/2 , while the reversed inequality holds if and only if 0 < p � 1 .

Proof. The left-hand side of (5.2) can be written for p > 0 as

ln
(
1− cos πt

2

)
ln t

< p, 0 < t < 1.

For 0 < t < 1, let

f1(t) = ln
(
1− cos πt

2

)
and f2(t) = lnt,

and let

f (t) =
f1(t)
f2(t)

=
ln
(
1− cos πt

2

)
ln t

.

Then,

f ′1(t)
f ′2(t)

=
π
2

t sin(πt
2 )

1− cos(πt
2 )

=: g(t).

Differentiation yields

g′(t) = −π
2
·

πt
2 − sin(πt

2 )
1− cos(πt

2 )
< 0.

Therefore, the functions g(t) and f ′1(t)/ f ′2(t) are strictly decreasing on (0,1) . By
Lemma 2.6, the function

f (t) =
f1 (t)
f2 (t)

=
f1 (t)− f1(1)
f2 (t)− f2 (1)
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is strictly decreasing on (0,1) . And hence, we have, 0 < t < 1,

π
2

= lim
u→1−

f (u) < f (t) =
ln
(
1− cos πt

2

)
lnt

< lim
u→0+

f (u) = 2. (5.3)

Hence, the left-hand side of (5.2) holds for 0 < t < 1 if and only if p � 2, while the
reversed inequality holds if and only if 0 < p � π/2.

By (5.3), we have, for 0 < t < 1,

1
1− t p1

< sec
πt
2

<
1

1− t p2
, (5.4)

where the constants p1 = 2 and p2 = π/2 are the best possible, in the sense that p1 = 2
can not be replaced by a smaller number, and p2 = π/2 can not be replaced by a larger
number.

By the right-hand side of (5.4) and the monotonically increasing property of func-
tion p 
→ p

1−t p (for p ∈ R), we obtain that, for p � π/2,

sec
πt
2

<
1

1− tπ/2
�

( 2
π )p

1− t p . (5.5)

This shows that, for p � π/2, the right-hand side of (5.2) holds for 0 < t < 1.
As t approaches 0, with t > 0, we find that

sec
πt
2
− ( 2

π )p
1− t p =

π −2p
π

+
1
8

π2t2− 2p
π

t2p + . . . .

It then follows that it is necessary to have p � π/2 for sec πt
2 − ( 2

π )p
1−t p to be negative on

(0,1) . Hence, the right-hand side of (5.2) holds if and only if p � π/2.
We now show that the right-hand side of (5.2) is reversed if and only if 0 < p � 1.

We first prove that
2
π

1− t
< sec

πt
2

. (5.6)

Replacing t by 1−u leads to equivalent inequality:

sin
πu
2

<
πu
2

, 0 < u < 1,

which is true. Hence, (5.6) holds.
By (5.6) and the monotonically increasing property of function p 
→ p

1−t p (for
p ∈ R), we obtain that, for 0 < p � 1,

( 2
π )p

1− t p �
2
π

1− t
< sec

πt
2

.

This shows that, for 0 < p � 1, the right-hand side of (5.2) is reversed.



GENERALIZATIONS AND REFINEMENTS OF STEČKIN-TYPE INEQUALITY 519

As t approaches 1, with t < 1, we find that

sec
πt
2
− ( 2

π )p
1− t p =

1− p
π

+
2+ π2−2p2

12π
(1− t)+O

(
(1− t)2

)
.

It then follows that it is necessary to have p � 1 for sec πt
2 − ( 2

π )p
1−t p to be positive on

(0,1) . Hence, the right-hand side of (5.2) is reversed for 0 < t < 1 if and only if
0 < p � 1. The proof is complete. �

REMARK 5.1. In order to ensure that the lower bound of (5.2) is positive, we
restrict p > 0. In Theorem 5.1, we do not think about the case p = 0, since

lim
p→0+

1
1− t p = ∞.

REMARK 5.2. Computing limit of the upper bound in (5.2) yields

lim
p→0

( 2
π )p

1− t p =
2

π ln(1/t)
. (5.7)

For p = 0, the right-hand side of (5.2) is reversed, which is understood as

sec
πt
2

>
2

π ln(1/t)
, 0 < t < 1. (5.8)

In fact, the right-hand side of (5.2) is reversed for all p � 1.

6. Refinements of (1.10)

Noting that

lim
x→0

secx
(
π2−4x2)= π2

holds, we consider the expansion of function secx− π2

π2−4x2 near the origin.
Using (2.3), we have

secx− π2

π2−4x2 =
∞

∑
j=0

|E2 j|
(2 j)!

x2 j − 1

1− ( 2
π x)2

=
∞

∑
j=0

|E2 j|
(2 j)!

x2 j −
∞

∑
j=0

(
2
π

)2 j

x2 j

=
∞

∑
j=1

{
|E2 j|
(2 j)!

−
(

2
π

)2 j
}

x2 j, (6.1)

that is,

secx− π2

π2−4x2 =
π2−8
2π2 x2 +

5π4−384
24π4 x4 +

61π6−46080
720π6 + . . . . (6.2)
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We find by the left-hand side of (2.9) that

|E2 j|
(2 j)!

−
(

2
π

)2 j

>
4 j+1

π2 j+1

(
1

1+3−1−2 j

)
−
(

2
π

)2 j

=
(

2
π

)2 j (4−π)32n+1−π
π(32 j+1 +1)

> 0, j ∈ N. (6.3)

We then obtain Theorem 6.1 by truncation of (6.1).

THEOREM 6.1. For 0 < x < π/2 and N ∈ N ,

π2

π2−4x2 +
N

∑
j=1

{
|E2 j|
(2 j)!

−
(

2
π

)2 j
}

x2 j < secx. (6.4)

The inequality (6.4) improves the lower bounds of (1.10).
Noting that

lim
x→π/2−

secx
(
π2−4x2)= 4π

holds, we consider the expansion of function secx− 4π
π2−4x2 , on a neighborhood of

π/2. Replacing x by π
2 − t , it is sufficient to consider the expansion of function csc t−

4π
π2−4( π

2 −t)2 near the origin.

Using (2.4), we have, for 0 < t < π/2,

csc t− 4π
π2−4(π

2 − t)2 = csc t − 1
t(1− t

π )

=
1
t

+
∞

∑
j=1

(22 j −2)|B2 j|
(2 j)!

t2 j−1−
∞

∑
j=0

(
1
π

) j

t j−1

=
∞

∑
j=1

(22 j −2)|B2 j|
(2 j)!

t2 j−1−
∞

∑
j=1

(
1
π

) j+1

t j − 1
π

= − 1
π

+
∞

∑
j=1

α jt
2 j−1−

∞

∑
j=1

β jt
j

= − 1
π

+(α1−β1)t−β2t
2 +(α2−β3)t3 −β4t

4

+ · · · +(α j −β2 j−1)t2 j−1−β2 jt
2 j + · · · , (6.5)

where

α j =
(22 j −2)|B2 j|

(2 j)!
and β j =

(
1
π

) j+1

. (6.6)
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We find by the left-hand side of (2.5) that, for j ∈ N ,

α j −β2 j−1 >
2(22 j −2)

(2π)2 j (1−2−2 j)
−
(

1
π

)2 j

=
22 j −3
22 j −1

(
2
π

)2 j

> 0.

so that (6.5) is an alternating series for 0 < x < π/2.
Formula (6.5) motivated us to establish Theorem 6.2.

THEOREM 6.2. For 0 < x < π/2 and N ∈ N0 ,

4π
π2−4x2 +

2N

∑
j=0

(−1) j−1d j

(π
2
− x
) j

< secx

<
4π

π2−4x2 +
2N+1

∑
j=0

(−1) j−1d j

(π
2
− x
) j

, (6.7)

where

d2 j−1 = α j −β2 j−1, j ∈ N and d2 j = β2 j, j ∈ N0, (6.8)

and α j and β j are given in (6.6).

Proof. If we write (6.5) as

csc t− 4π
π2−4(π

2 − t)2 +
1
π

=
(
(α1 −β1)t−β2t

2
)

+
(
(α2 −β3)t3−β4t

4
)

+ · · ·+
(
(α j −β2 j−1)t2 j−1−β2 jt

2 j
)

+ · · · , (6.9)

we find by the left-hand side of (2.5) that, for j � 2,

(α j −β2 j−1)t2 j−1−β2 jt
2 j =

(
α j −β2 j−1−β2 jt

)
t2 j−1

>

{
α j −β2 j−1−β2 j

(π
2

)}
t2 j−1 =

{
(22 j −2)|B2 j|

(2 j)!
− 3

2

(
1
π

)2 j}
t2 j−1

>

{
2(22 j −2)

(2π)2 j (1−2−2 j)
− 3

2

(
1
π

)2 j}
t2 j−1 =

22 j −5
22 j+1−2

(
1
π

)2 j

t2 j−1 > 0.

Noting that

(α1 −β1)t−β2t
2 =

(
1
6
− 1

π2

)
t − 1

π3 t2 > 0

holds, we obtain that

(α j −β2 j−1)t2 j−1−β2 jt
2 j > 0 for all j ∈ N.
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Replacing t by π
2 − x in (6.9), we obtain, by truncation of (6.9), the left-hand side of

(6.7).
If we write (6.5) as

csc t− 4π
π2−4(π

2 − t)2 = −
(

1
π
− (α1−β1)t

)
−
(

β2t
2− (α2−β3)t3

)
−·· ·−

(
β2 jt

2 j − (α j+1−β2 j+1)t2 j+1
)
−·· · , (6.10)

we find by the right-hand side of (2.5) that, for j ∈ N0 ,

β2 jt
2 j − (α j+1−β2 j+1)t2 j+1 =

(
β2 j − (α j+1−β2 j+1)t

)
t2 j

>

{
β2 j − (α j+1−β2 j+1)

(π
2

)}
t2 j

=

{
3
2

(
1
π

)2 j+1

− (22 j+2−2)|B2 j+2|
(2 j +2)!

(π
2

)}
t2 j

�
{

3
2

(
1
π

)2 j+1

− 2(22 j+2−2)

(2π)2 j+2 (1−2β−2( j+1)
) (π

2

)}
t2 j

=
22 j+2 +4−3 ·2β

2
(
22 j+2−2β

) (
1
π

)2 j+1

t2 j > 0,

where β is given in (2.6).
Replacing t by π

2 − x in (6.10), we obtain, by truncation of (6.10), the right-hand
side of (6.7). The proof is complete. �

We now consider the expansion of function secx
(
π2−4x2

)
near the origin. Using

(2.3), we have

secx
(
π2−4x2)=

∞

∑
j=0

π2|E2 j|
(2 j)!

x2 j −
∞

∑
j=0

4|E2 j|
(2 j)!

x2 j+2

= π2 +
∞

∑
j=1

{
π2|E2 j|
(2 j)!

− 4|E2 j−2|
(2 j−2)!

}
x2 j. (6.11)

Noting that (2.10) holds, we obtain Theorem 6.3 by truncation of (6.11).

THEOREM 6.3. For 0 < x < π/2 and N ∈ N ,

1
π2−4x2

{
π2 +

N

∑
j=1

(
π2|E2 j|
(2 j)!

− 4|E2 j−2|
(2 j−2)!

)
x2 j

}
< secx. (6.12)

The choice N = 2 in (6.12) yields

π2 + π2−8
2 x2 + 5π2−48

24 x4

π2−4x2 < secx. (6.13)
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There is no strict comparison between the two lower bounds in equations (1.11) and
(6.13).

We now consider the expansion of function secx
(
π2 − 4x2

)
, on a neighborhood

of π/2. Replacing x by π
2 − t , it is sufficient to consider the expansion of function

csc t
(

π2−4
(π

2 − t
)2)

near the origin. Using (2.4), we have

csc t

(
π2−4

(π
2
− t
)2
)

= csc t
(
4πt−4t2

)
=4π −4t +

∞

∑
j=1

4π(22 j −2)|B2 j|
(2 j)!

t2 j −
∞

∑
j=1

4(22 j −2)|B2 j|
(2 j)!

t2 j+1

=4π −4t +
∞

∑
j=1

λ jt
2 j −

∞

∑
j=1

μ jt
2 j+1

=λ0− μ0t + λ1t
2− μ1t

3 + λ2t
4− μ2t

5 + · · · + λ jt
2 j − μ jt

2 j+1 + · · · , (6.14)

or alternatively

secx
(
π2−4x2)

=λ0− μ0

(π
2
− x
)

+ λ1

(π
2
− x
)2

− μ1

(π
2
− x
)3

+ λ2

(π
2
− x
)4

− μ2

(π
2
− x
)5

+ · · · + λ j

(π
2
− x
)2 j

− μ j

(π
2
− x
)2 j+1

+ · · · , (6.15)

where

λ0 = 4π , μ0 = 4,

λ j =
4π(22 j −2)|B2 j|

(2 j)!
and μ j =

4(22 j −2)|B2 j|
(2 j)!

for j ∈ N. (6.16)

If we write (6.14) as

csc t

(
π2−4

(π
2
− t
)2
)

=
(

λ0− μ0t
)

+
(

λ1t
2− μ1t

3
)

+
(

λ2x
4 − μ2t

5
)

+ · · ·+
(

λ jt
2 j − μ jt

2 j+1
)

+ · · · ,
(6.17)

we find that, for j ∈ N0 ,

λ jt
2 j − μ jt

2 j+1 =
(

λ j − μ jt
)
t2 j >

{
λ j − μ j

(π
2

)}
t2 j =

2π(22 j −2)|B2 j|
(2 j)!

t2 j > 0.

We obtain by truncation of (6.17) that, for 0 < t < π/2 and N ∈ N0 ,

csc t

(
π2−4

(π
2
− t
)2
)

>λ0− μ0t + λ1t
2− μ1t

3 + λ2x
4− μ2t

5 + · · ·+ λNt2N − μNt2N+1. (6.18)
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If we write (6.14) as

csc t

(
π2−4

(π
2
− t
)2
)

=λ0−
(

μ0t−λ1t
2
)
−
(

μ1t
3−λ2x

4
)
−·· ·−

(
μ j−1t

2 j−1−λ jt
2 j
)
−·· · , (6.19)

we find by (2.8) that for j � 2,

μ j−1t
2 j−1−λ jt

2 j =
(

μ j−1−λ jt
)
t2 j−1 >

{
μ j−1−λ j

(π
2

)}
t2 j−1

=
4(22 j−2−2)|B2 j|

(2 j−2)!

{ |B2 j−2|
|B2 j| − π2(22 j −2)(2 j−2)!

2(22 j−2−2)(2 j)!

}
t2 j−1

>
4(22 j−2−2)|B2 j|

(2 j−2)!

{
π2(22 j −1)(2 j−2)!

(22 j−2−1)(2 j)!
− π2(22 j −2)(2 j−2)!

2(22 j−2−2)(2 j)!

}
t2 j−1

=
2π2(22 j−2−2)|B2 j|

(2 j)!

{
16 j −12 ·4 j +8

(22 j−2−1)(4 j −8)

}
t2 j−1 > 0.

Noting that

μ0t−λ1t
2 = 4t− 2π

3
t2 > 0, 0 < t <

π
2

holds, we obtain by truncation of (6.19) that, for 0 < t < π/2 and N ∈ N0 ,

csc t

(
π2−4

(π
2
− t
)2
)

<λ0− μ0t + λ1t
2− μ1t

3 + λ2x
4−·· ·−μN−1t

2N−1 + λNt2N . (6.20)

Replacing t by π
2 − x in (6.18) and (6.20), we obtain Theorem 6.4.

THEOREM 6.4. For 0 < x < π/2 and N ∈ N0 ,

P2N+1(x)
π2−4x2 < secx <

P2N(x)
π2−4x2 , (6.21)

with

P2N(x) = λ0− μ0

(π
2
− x
)

+ λ1

(π
2
− x
)2

− μ1

(π
2
− x
)3

+ λ2

(π
2
− x
)4

−·· ·−μN−1

(π
2
− x
)2N−1

+ λN

(π
2
− x
)2N

and

P2N+1(x) = P2N(x)− μN

(π
2
− x
)2N+1

,

where λ j and μ j are given in (6.16).
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The choice N = 1 in (6.21) yields

1
π2−4x2

{
4π −4

(π
2
− x
)

+
2π
3

(π
2
− x
)2

− 2
3

(π
2
− x
)3
}

<secx <
1

π2−4x2

{
4π −4

(π
2
− x
)

+
2π
3

(π
2
− x
)2
}

. (6.22)
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[21] L. ZHU, A refinement of the Becker-Stark inequalities, Math. Notes 93 (2013), 421–425.
[22] L. ZHU AND J. K. HUA, Sharpening the Becker-Stark inequalities, J. Inequal. Appl. 2010, Article ID

931275, 4 pages.

(Received October 5, 2017) Chao-Ping Chen
School of Mathematics and Informatics

Henan Polytechnic University
Jiaozuo City 454000, Henan Province, China

e-mail: chenchaoping@sohu.com

Neven Elezović
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