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SOME NEW NONLINEAR POWERED GRONWALL–BELLMAN TYPE

RETARDED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

ZIZUN LI AND WU-SHENG WANG

(Communicated by Q.-H. Ma)

Abstract. The purpose of the this paper is to establish some new retarded integral inequalities of
Gronwall-Bellman type, which generalizes some known integral inequalities. The inequalities
given here can be used in the analysis of the qualitative properties of certain classes of differential
equations and integral equations. We apply our result to the boundedness of the solutions of
integral equations.

1. Introduction

The integral inequalities provide explicit upper bound on unknown functions and
play an important role in the study of qualitative properties of solutions of differential
equations and integral equations, various generalizations of Gronwall-Bellman integral
inequality and their applications have attracted great interests of many mathematicians
(such as [1-11] and references therein). Gronwall [1] and Bellman [2] established the
integral inequality

u(t) � c+
∫ t

a
f (s)u(s)ds, t ∈ [a,b],

for some constant c � 0, obtained the estimation of unknown function

u(t) � cexp

(∫ t

a
f (s)ds

)
, t ∈ [a,b].

Pachpatte [3] introduced the integral inequality

u(t) � a(t)+g(t)
∫ t

0
f (s)u(s)ds, t ∈ [0,∞),
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where u, f ,g are real-valued nonnegative continuous functions defined on [0,∞) , a(t)
be a positive, monotonic nondecreasing continuous function defined on [0,∞) , then the
upper bound estimation of unknown function is that

u(t) � a(t)
[
1+g(t)

∫ t

0
f (s)exp(

∫ s

0
g(τ) f (τ)dτ)ds

]
.

Pachpatte [4] studied the following integral inequality

u(t) � c+
∫ t

0
[ f (s)u(s)+ p(s)]ds+

∫ t

0
f (s)(

∫ s

0
g(τ)u(τ)dτ)ds, t ∈ [0,∞),

where c > 0. Owaidy et al. [5] discussed the integral inequality

u(t) � u0 +
∫ t

0
f (s)

[
xp(s)+

∫ s

0
g(τ)u(τ)dτ

]
ds, t ∈ [0,∞),

where 0 � p < 1. Lipovan [6] studied the retarded integral inequality

u(t) � a+
∫ t

t0
f (s)w(u(s))ds+

∫ α(t)

α(t0)
g(s)w(u(s))ds, t0 � t < t1,

where u, f ,g ∈ C([t0,T ),R+), and w ∈ C(R+,R+) be nondecreasing with w(u) > 0
for u > 0. Agarwal et al. [7] investigated the inequality

u(t) � a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
gi(t,s)wi(u(s))ds, t0 � t < t1,

where wi(i = 1, · · · ,n) are continuous and nondecreasing functions on [0,∞) and are
positive on (0,∞) such that w1 ∝ w2 · · · ∝ wn, fi(t,s) are continuous and nonnegative
functions on [t0, t1)× [t0,t1). Lipovan [8] discussed the retarded integral inequality

u(t) � k(t)+a(t)
∫ α(t)

0
b(s)w(u(s))ds, t � 0,

where k,a,b∈C(R+,R+), α ∈C1(R+,R+) , w∈C(R+,R+) is a nondecreasing func-
tion with w(t) > 0 for t > 0. Agarwal et al. [9] discussed the retarded integral inequal-
ity

ϕ(u(t)) � c+
n

∑
i=1

∫ αi(t)

αi(t0)
uq(s)[ fi(s)ϕ(u(s))+gi(s)]ds,

where c is a constant. Abdeldaim et al. [10] studied the inequality

u(t) � u0 +
∫ t

0
[ f (s)u(s)+q(s)]ds+

∫ t

0
f (s)u(s)[u(s)+

∫ s

0
g(λ )u(λ )dλ ]ds,t ∈ [0,∞),

where u, f ,q,g are nonnegative real valued continuous functions defined on [0,∞).
Zhou et al. [11] studied the following retarded integral inequality

u(t) � a(t)+
n

∑
i=1

{∫ bi(t)

bi(t0)
gi(t,s)wi(u(s))ds

}pi , t0 � t < ∞,



SOME NEW NONLINEAR POWERED GRONWALL-BELLMAN TYPE 555

where n∈ N, pi � 1, and all a,bi, fi,φi and u are nonnegative continuous functions for
i = 1,2, · · · ,n. Besides the results mentioned above, a lot of investigators have discov-
ered many useful and new integral inequalities, mainly inspired by their applications in
various branches of differential equations (see [12-30] and the references cited therein).

However, in some situations, such as some classes of delay differential equations
with power and delay integral equations, it is desirable to find some new delay inequal-
ities, in order to achieve a diversity of desired goals. In this paper, we discuss a class
of retarded integral inequalities with power. We use some analysis techniques to get
the explicit estimations of the unknown function in the inequality. Finally, we give one
example to illustrate the application of our results.

2. Main results

Throughout this paper, R denotes the set of real numbers and R+ = [0,∞) is the
given subset of R, and C(M,S) denotes the class of all continuous functions defined
on set M with range in the set S.

The following lemmas are very useful in the procedures of our proof in our main
results.

LEMMA 1. Let a � 0, p � q � 0 and p �= 0 , then

a
q
p � q

p
a+

p−q
p

. (2.1)

Proof. It is the case of K = 1 in [17]. �

LEMMA 2. Suppose that a(t), f (t),g(t) are continuous positive functions on
[t0,∞) , α(t) is differentiable, with α(t) � t,α(t0) = t0 , u(t) is a nonnegative continu-
ous function on [t0,∞), satisfying the integral inequality

u(t) � a(t)+
∫ α(t)

t0
f (s)u(s)ds+

∫ α(t)

t0
g(s)u2(s)ds, (2.2)

then the following estimate hold

u(t) � 1

exp(−a1(t))−
∫ α(t)
t0

g(s)ds
, (2.3)

where a1(t) = ln(a(t))+
∫ α(t)
t0

f (s)ds, exp(−a1(t))−
∫ α(t)
t0

g(s)ds > 0.

Proof. Let

z(t) = a(t)+
∫ α(t)

t0
f (s)u(s)ds+

∫ α(t)

t0
g(s)u2(s)ds, (2.4)
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then z(t) is a nondecreasing function and u(t) � z(t) , z(t0) = a(t0) . Differentiating
(2.4) with respect to t , we have

z′(t) = a′(t)+ α ′(t) f (α(t))u(α(t))+ α ′(t)g(α(t))u2(α(t))
� a′(t)+ α ′(t) f (α(t))z(α(t))+ α ′(t)g(α(t))z2(α(t)), (2.5)

from (2.5), we have

z′(t)
z(t)

� a′(t)
z(t)

+
α ′(t) f (α(t))z(α(t))

z(t)
+

α ′(t)g(α(t))z2(α(t))
z(t)

� a′(t)
a(t)

+
α ′(t) f (α(t))z(α(t))

z(α(t))
+

α ′(t)g(α(t))z2(α(t))
z(α(t))

=
a′(t)
a(t)

+ α ′(t) f (α(t))+ α ′(t)g(α(t))z(α(t)). (2.6)

Integrating (2.6) with respect to t from t0 to t , we have

ln(z(t)) � ln(a(t))+
∫ α(t)

t0
f (s)ds+

∫ α(t)

t0
g(s)z(s)ds

� a1(t)+
∫ α(t)

t0
g(s)z(s)ds,

where a1(t) = ln(a(t))+
∫ α(t)
t0

f (s)ds. Let

θ (t) = ln(z(t)),

z1(t) = a1(t)+
∫ α(t)

t0
g(s)z(s)ds, (2.7)

then z(t) = ln(θ (t)),θ (t) � z1(t),z(t) � exp(z1(t)), z1(t) is a nondecreasing function.
Differentiating (2.7) with respect to t , we obtain

z′1(t) � a′1(t)+ α ′(t)g(α(t))z(α(t))
� a′(t)+ α ′(t)g(α(t))exp(z1(α(t))), (2.8)

from (2.8), we have

z′1(t)
exp(z1(t))

� a′1(t)
exp(z1(t))

+
α ′(t)g(α(t))z(α(t))

exp(z1(t))

� a′1(t)
exp(a1(t))

+
α ′(t)g(α(t))exp(z1(α(t)))

exp(z1(α(t)))

=
a′1(t)

exp(a1(t))
+ α ′(t)g(α(t)). (2.9)

Integrating (2.9) with respect to t from t0 to t , we have

z1(t) � ln
( 1

exp(−a1(t))−
∫ α(t)
t0

g(s)ds

)
, (2.10)

by u(t)� z(t),z(t)� exp(z1(t)), from (2.10), we obtain the required estimation (2.3). �
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THEOREM 2.1. Let a(t), f (t)∈C([t0,∞),R+) , u(t)∈C([t0,∞),R+) and let α(t)
be a continuous, differentiable and increasing function on [t0,+∞) with α(t) � t,α(t0)
= t0. p,m,n ∈ (0,1] are positive constants. If u(t) satisfies the inequality

u(t) � a(t)+
∫ α(t)

t0
f (s)

[
um(s)+

∫ s

t0
g(τ)un(τ)dτ

]p
ds, (2.11)

then, we have

u(t) � a(t)+A(t)exp
(∫ α(t)

t0
pm f (s)ds+

∫ α(t)

t0
p f (s)(

∫ s

t0
ng(τ)dτ)ds

)
, (2.12)

for t ∈ R+ , where

A(t) =
∫ α(t)

t0
f (s)

[
(1− p)+ p

(
ma(s)+ (1−m)

)]
ds

+
∫ α(t)

t0
p f (s)

∫ s

t0
g(τ)

[
na(τ)+1−n

]
dτds.

Proof. by Lemma 1, we obtain

[
um(s)+

∫ s

t0
g(τ)un(τ)dτ

]p
� p

[
um(s)+

∫ s

t0
g(τ)un(τ)dτ

]
+(1− p), (2.13)

substituting (2.13) to (2.11), we have

u(t) � a(t)+
∫ α(t)

t0
f (s)

[
p
(
um(s)+

∫ s

t0
g(τ)un(τ)dτ

)
+(1− p)

]
ds. (2.14)

Define a function w(t) by

w(t) =
∫ α(t)

t0
(1− p) f (s)ds+

∫ α(t)

t0
p f (s)um(s)ds

+
∫ α(t)

t0
p f (s)

∫ s

t0
g(τ)un(τ)dτds. (2.15)

We can conclude that w(t) is a nondecreasing function, from (2.14) and (2.15), we have

u(t) � a(t)+w(t). (2.16)

By Lemma 1 and (2.16), we obtain

um(t) �
(
a(t)+w(t)

)m � m(a(t)+w(t))+1−m, (2.17)

un(t) �
(
a(t)+w(t)

)n � n(a(t)+w(t))+1−n, (2.18)
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Substituting the inequality (2.17) and (2.18) into (2.15) we have

w(t) �
∫ α(t)

t0
(1− p) f (s)ds+

∫ α(t)

t0
p f (s)

[
m

(
a(s)+w(s)

)
+1−m

]
ds

+
∫ α(t)

t0
p f (s)

∫ s

t0
g(τ)

[
n(a(τ)+w(τ))+1−n

]
dτds

�
∫ α(t)

t0
f (s)

[
(1− p)+ p

(
ma(s)+ (1−m)

)]
ds

+
∫ α(t)

t0
p f (s)

∫ s

t0
g(τ)

[
na(τ)+1−n

]
dτds

+
∫ α(t)

t0
pmf (s)w(s)ds+

∫ α(t)

t0
p f (s)

∫ s

t0
ng(τ)w(τ)dτds

� A(t)+
∫ α(t)

t0
pm f (s)w(s)ds+

∫ α(t)

t0
p f (s)

∫ s

t0
ng(τ)w(τ)dτds,

� A(T )+
∫ α(t)

t0
pm f (s)w(s)ds+

∫ α(t)

t0
p f (s)

∫ s

t0
ng(τ)w(τ)dτds, (2.19)

where t ∈ [t0,T ],T ∈ R+ and

A(t) =
∫ α(t)

t0
f (s)

[
(1− p)+ p

(
ma(s)+ (1−m)

)]
ds

+
∫ α(t)

t0
p f (s)

∫ s

t0
g(τ)

[
na(τ)+1−n

]
dτds.

Setting

z(t) = A(T )+
∫ α(t)

t0
pm f (s)w(s)ds+

∫ α(t)

t0
p f (s)

∫ s

t0
ng(τ)w(τ)dτds, (2.20)

Then, z(t) is a nondecreasing function, and w(t) � z(t) , z(t0) = A(T ) , from (2.20), we
have

z′(t) = α ′(t)pm f (α(t))w(α(t))+ α ′(t)p f (α(t))
∫ α(t)

t0
ng(s)w(s)ds

� w(t)
(
α ′(t)pm f (α(t))+ α ′(t)p f (α(t))

∫ α(t)

t0
ng(s)ds

)

� z(t)
(
α ′(t)pm f (α(t))+ α ′(t)p f (α(t))

∫ α(t)

t0
ng(s)ds

)
, (2.21)

from (2.21), we have

z′(t)
z(t)

= α ′(t)pm f (α(t))w(α(t))+ α ′(t)p f (α(t))
∫ α(t)

t0
ng(s)w(s)ds

� α ′(t)pm f (α(t))+ α ′(t)p f (α(t))
∫ α(t)

t0
ng(s)ds, (2.22)
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Integrating the inequality (2.22) from t0 to t, we obtain the estimation

z(t) � A(T )exp
(∫ α(t)

t0
pm f (s)ds+

∫ α(t)

t0
p f (s)(

∫ s

t0
ng(τ)dτ)ds

)
. (2.23)

From w(t) � z(t) and (2.16), (2.23), we have

u(t) � a(t)+A(T)exp
(∫ α(t)

t0
pm f (s)ds+

∫ α(t)

t0
p f (s)(

∫ s

t0
ng(τ)dτ)ds

)
,

then, we have

u(T ) � a(T )+A(T )exp
(∫ α(T)

t0
pm f (s)ds+

∫ α(T )

t0
p f (s)(

∫ s

t0
ng(τ)dτ)ds

)
,

by the arbitrariness of T , we obtain

u(t) � a(t)+A(t)exp
(∫ α(t)

t0
pm f (s)ds+

∫ α(t)

t0
p f (s)(

∫ s

t0
ng(τ)dτ)ds

)
.

This completes the proof. �
REMARK 1. If α(t) = t,a(t) = c, p = n = 1, Theorem 2.1 reduces to the Theo-

rem 3 in [5], if α(t) = t,a(t) = c, p = 1, Theorem 2.1 reduces to Theorem 4 in [5], if
α(t) = t,m = p = 1, Theorem 2.1 reduces to Theorem 5 in [5].

REMARK 2. If a(t)= u0+
∫ α(t)
0 f (s)p(s)ds, p =m = n = 1, Theorem 2.1 reduces

to Theorem 2.1 in [12].

THEOREM 2.2. Let a(t), f (t),h(t)∈C([t0,∞),R+) , u(t) is a nonnegative contin-
uous function on [t0,∞) , α(t) is a continuous, differentiable and increasing function on
[t0,+∞) with α(t) � t,α(t0) = t0. Let p ∈ (0,1] is positive constant. If u(t) satisfies
the inequality

u(t) � a(t)+
∫ α(t)

t0
f (s)u(s)

[
h(s)+u(s)+

∫ s

t0
g(τ)u(τ)dτ

]p
ds, (2.24)

we have

u(t) � 1

exp(−A(t))− ∫ α(t)
t0

G(s)ds
, (2.25)

where A(t) = ln(a1(t))+
∫ α(t)
t0

F(s)ds, exp(−A(t))− ∫ α(t)
t0

G(s)ds > 0, and

a1(t) =
∫ α(t)

t0
f (s)a(s)

[
p(h(s)+a(s))+

∫ s

t0
g(τ)a(τ)dτ +(1− p)

]
ds,

F(t) = p f (t)a(t)+ p f (t)a(t)(
∫ t

t0
g(s)ds)+ f (t)

[
p(h(t)+a(t))

+
∫ t

t0
g(s)a(s)ds+(1− p)

]
,

G(t) = p f (t)+ p f (t)(
∫ t

t0
g(s)ds). (2.26)
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Proof. By Lemma 1, from (2.24), we have

[h(t)+u(t)+
∫ t

t0
g(s)u(s)ds]p � p

(
h(t)+u(t)+

∫ t

t0
g(s)u(s)ds

)
+(1− p), (2.27)

from (2.27), (2.24) can be rewritten as

u(t) � a(t)+
∫ α(t)

t0
f (s)u(s)

[
p
(
h(s)+u(s)+

∫ s

t0
g(τ)u(τ)dτ

)

+(1− p)
]
ds. (2.28)

Denoting by

v(t) =
∫ α(t)

t0
f (s)u(s)

[
p
(
h(s)+u(s)+

∫ s

t0
g(τ)u(τ)dτ

)
+(1− p)

]
, (2.29)

then v(t) is a nonnegative and nondecreasing continuous function, and

u(t) � a(t)+ v(t), v(t0) = 0. (2.30)

From (2.29) and (2.30), we have

v(t) �
∫ α(t)

t0
f (s)(a(s)+ v(s))

[
p
(
h(s)+ (a(s)+ v(s))+

∫ s

t0
g(τ)(a(τ)+ v(τ))dτ

)

+(1− p)
]

�
∫ α(t)

t0
f (s)a(s)

[
p(h(s)+a(s))+

∫ s

t0
g(τ)a(τ)dτ +(1− p)

]
ds

+
∫ α(t)

t0
p f (s)a(s)v(s)+

∫ α(t)

t0
p f (s)a(s)(

∫ s

t0
g(τ)v(τ)dτ)ds

+
∫ α(t)

t0
f (s)v(s)

[
p(h(s)+a(s))+

∫ s

t0
g(τ)a(τ)dτ +(1− p)

]
ds

+
∫ α(t)

t0
p f (s)v2(s)+

∫ α(t)

t0
p f (s)v(s)(

∫ s

t0
g(τ)v(τ)dτ)ds

�
∫ α(t)

t0
f (s)a(s)

[
p(h(s)+a(s))+

∫ s

t0
g(τ)a(τ)dτ +(1− p)

]
ds

+
∫ α(t)

t0
p f (s)a(s)v(s)+

∫ α(t)

t0
p f (s)a(s)(

∫ s

t0
g(τ)dτ)v(s)ds

+
∫ α(t)

t0
f (s)

[
p(h(s)+a(s))+

∫ s

t0
g(τ)a(τ)dτ +(1− p)

]
v(s)ds

+
∫ α(t)

t0
p f (s)v2(s)+

∫ α(t)

t0
p f (s)(

∫ s

t0
g(τ)dτ)v2(s)ds, (2.31)

then, (2.31) can be written as

v(t) � a1(t)+
∫ α(t)

t0
F(s)v(s)ds+

∫ α(t)

t0
G(s)v2(s)ds, (2.32)
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where a1(t),F(t),G(t) are defined in (2.26). Since (2.32) has a similar form of (2.2),
and the functions of (2.2) satisfy the conditions of Lemma 2. Consequently, by using a
similar procedure of Lemma 2, we can get the desired estimation (2.25). The proof is
completed. �

3. Applications

In this section, we apply our result to study the boundedness of the solution of
integral equations. We consider the following Volterra type retarded integral equation

x(t)−
∫ α(t)

t0
f (s)

[
x(s)+

∫ s

t0
g(τ)x(τ)dτ

] 1
2
ds = h(t), (3.1)

which arises very often in various problems, especial describing physical processes
with aftereffects.

COROLLARY 1. Let x(t), f (t),g(t) and h(t) be continuous functions on [0,+∞) ,
and let α(t) be continuous, differentiable and increasing functions on [0,+∞) with
α(t) � t,α(t0) = t0 . If x(t) satisfies the equation (3.1) , we have

|x(t)| � u(t) � |h(t)|+B(t)exp
(1

2

∫ α(t)

t0
| f (s)|ds+

1
2

∫ α(t)

t0
| f (s)|

∫ s

t0
|g(τ)|dτds

)
,

where

B(t) =
∫ α(t)

t0

(1
2
| f (s)|+ 1

2
| f (s)||h(s)|)ds+

1
2

∫ α(t)

t0
| f (s)|(

∫ s

t0

(|g(τ)||h(τ)|)dτ)ds.

Proof. From (3.1), we obtain

|x(t)| � |h(t)|+
∫ α(t)

t0
| f (s)|

[
|x(s)|+

∫ s

t0
|g(τ)||x(τ)|dτ

] 1
2
ds. (3.2)

Let |x(t)| = u(t), then, (3.2) can be written as

u(t) � |h(t)|+
∫ α(t)

t0
| f (s)|

[
u(s)+

∫ s

t0
|g(τ)|u(τ)dτ

] 1
2
ds. (3.3)

By Lemma 1, from (3.3), we obtain

[
u(s)+

∫ s

t0
|g(τ)|u(τ)dτ

] 1
2 � 1

2

[
u(s)+

∫ s

t0
|g(τ)|u(τ)dτ

]
+

1
2
, (3.4)

from (3.2) and (3.4), we have

u(t) � |h(t)|+
∫ α(t)

t0
| f (s)|

[1
2

(
u(s)+

∫ s

t0
|g(τ)|u(τ)dτ

)
+

1
2

]
ds. (3.5)
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Setting

z(t) =
∫ α(t)

t0

1
2
| f (s)|ds+

∫ α(t)

t0

1
2
| f (s)|u(s)ds

+
∫ α(t)

t0

1
2
| f (s)|

∫ s

t0
|g(τ)|u(τ)dτds. (3.6)

Then, z(t) is a nondecreasing function, from (3.5) and (3.6), we have

u(t) � |h(t)|+ z(t). (3.7)

Substituting the inequality (3.7) into (3.6), we have

z(t) �
∫ α(t)

t0

1
2
| f (s)|ds+

∫ α(t)

t0

1
2
| f (s)|(|h(s)|+ z(s)

)
ds

+
∫ α(t)

t0

1
2
| f (s)|(

∫ s

t0
|g(τ)|(|h(τ)|+ z(τ)

)
dτ)ds

�
∫ α(t)

t0

(1
2
| f (s)|+ 1

2
| f (s)||h(s)|)ds+

∫ α(t)

t0

1
2
| f (s)|

∫ s

t0

(|g(τ)||h(τ)|)dτds

+
∫ α(t)

t0

1
2
| f (s)|z(s)ds+

∫ α(t)

t0

1
2
| f (s)|

∫ s

t0
|g(τ)|z(τ)dτds

� B(t)+
1
2

∫ α(t)

t0
| f (s)|z(s)ds+

1
2

∫ α(t)

t0
| f (s)|

∫ s

t0
|g(τ)|z(τ)dτds,

� B(T )+
1
2

∫ α(t)

t0
| f (s)|z(s)ds+

1
2

∫ α(t)

t0
| f (s)|

∫ s

t0
|g(τ)|z(τ)dτds, (3.8)

where t ∈ [t0,T ],T ∈ R+ and

B(t) =
∫ α(t)

t0

(1
2
| f (s)|+ 1

2
| f (s)||h(s)|)ds+

1
2

∫ α(t)

t0
| f (s)|(

∫ s

t0

(|g(τ)||h(τ)|)dτ)ds.

(3.8) has the same form of (2.19), then, by the result of Theorem 2.1, we can obtain

u(t) � |h(t)|+B(t)exp
(1

2

∫ α(t)

t0
| f (s)|ds+

1
2

∫ α(t)

t0
| f (s)|

∫ s

t0
|g(τ)|dτds

)
.

This completes the proof. �
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