lournal of
athematical
nequalities
Volume 13, Number 2 (2019), 565-583 doi:10.7153/jmi-2019-13-37

EQUALITY CONDITIONS OF REVERSE SCHWARZ AND
GRUSS INEQUALITIES IN INNER PRODUCTSPACES

ZDZISE.AW OTACHEL

(Communicated by J. Pecari¢)

Abstract. The cases of equality for reverse Schwarz inequalities and Griiss type inequalities are
detailed studied. Necessary and sufficient conditions for them are given. Moreover, we introduce
an unification of two reverse Schwarz inequalities obtained by S.S. Dragomir [S.S. Dragomir,
Advances in Inequalities of the Schwarz, Griiss and Bessel Type in Inner Product Spaces, Chap.
I, th. 1, 6. Nova Science Publishers, New York 2005] and, as an application, we gain more
general versions of Griiss inequalities.

1. Introduction and motivation

Let (V,{(-,-)) be an inner product space over the real or complex number field F
(F =R or C), where ||v||> = (v,v), v € V. The inequality

[ [ < Iyl %y eV, (D

is known in the literature as Schwarz’s (or Cauchy - Schwarz or Cauchy - Bunyakovsky
- Schwarz) inequality. The equality holds in (1) if and only if the vectors x and y are
linearly dependent. Reverses of the Schwarz inequality usually establish upper bounds
for one of the following nonnegative quantities
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We recall few well known examples of such inequalities.

Let x;,yi,w; i = 1,...,n be positive numbers.

IfO<a<xi<A<e and 0 <b <y; < B < for some constants a,A,b, B, then
the following inequalities are valid:

Pdlya - Szego [21] (probably the oldest reverse of Schwarz’s inequality)
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Shisha - Mond [22]
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Ozeki [20]

IfO0<a< ’yﬂ < A < oo, then we have next examples:
Cassel inequality [23]

(X wixd) (S wiv?) < (A+a)?
SE L wixiyi = 4aA

Klamkin - McLenaghan inequality [16]

zl=1W1xl _Zl 1W1.X1yl (\/Z—\/E)27

Ywixyi X wiy?

Further classical examples include the weighted version of Polya-Szegd’s inequal-
ity known as Greub - Reinboldt’s inequality [ 13] and Diaz - Metcalf’s inequalities [3].

In the present, there is a lot of reverses of the Schwarz inequality under various
conditions in the literature. For discrete variants of these inequalities see [4]. Other
results and supplements are accessible in monographs [17, chap.V], [6]. Counterparts
for integrals, isotone functionals and other extensions in the context of inner product
spaces are considered in [1],[2],[6],[71,[8], [9] and references therein. Moreover, there
exist many generalizations of mentioned reverse Schwarz inequalities in more abstract
structures, see [10], [11], [12], [14], [15], [18], [19] and references therein.

Recently, Dragomir (see e.g. [6, th. 1]) obtained the following result

| ( 7\
XYl = | (o) [ < IyI*, x,y eV, 2)

if scalars T,y satisfy
Re(Ty—x,x—17yy) >0 3)

or, equivalently,

T+
H __yyH LT @

On the assumptions (3) or (4), the same author proved also that (see e.g. [0, th. 6])

T+7]

X < X, y Xy EV7 5
eyl < 5 Re(l”)_/)|< 1%y (5)
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if, in addition, scalars I',y satisfy Re(I'y) > 0. The above result generalizes directly
Pélya - Szego’s and Cassel’s inequalities (see e.g. [9]). An equivalent reformulation of
(5) is as follows

el - | |22 x,y € V. ©)

’FH

The inequalities (2) and (6) have a plain geometric interpretation. According to
(4), considering r = 1[I —¥||ly| as a circle radius the right hand side of (2) can be

expressed as 7°||y||?. For inequality (6), the quantity ‘%’; is the sine of an angle in

a right triangle with the length of the hypotenuse equals 3|T'+ ¥|[|y|| and the opposite
side equal to r.

In the paper we obtain an inequality which simultaneously generalizes inequalities
(2) and (6). The constants 1/4 and 1/2 apparent on the left in (2) and (5) are sharp,
i.e. there exist nonzero vectors x and y that realize equalities in these inequalities (see
[6, theorems 1, 6] and their proofs). However, general conditions for equality in (2) and
(6) seem to be omitted. The paper fills this gap.

A brief outline of the paper is as follows. Theorem 1 presents our new reverse
Schwarz inequality. In theorem 2 necessary and sufficient conditions for equality in
this inequality are derived. As a consequence we complement Dragomir’s results by
adding conditions of equality for inequalities (2) and (6) (see corollary 1, 2). Applica-
tions to Griiss’ inequality are included in theorem 3 and corollaries 3, 4. Conditions of
equality for these new variants of Griiss’ inequality are given as well (see proposition
1, 2). Generalizations and complements of known results are included in remark 3 and
corollaries 5, 6.

2. Reverses of Schwarz’s inequality and equality conditions

THEOREM 1. Let c¢y,c},c2,ch €Fand 0#veV.
If
lx = el < [ei[[v]] and [ly—cov]| < [c][Iv]], ™
then for x,y € V the following inequalities hold
0 < [Ix|PIyl* = [ ¢xo0) )
(et + e mingleal, 5 1) VPV S e2 0 (v1) ®

min{|c[?[[y[1%, e3P [lx]2} V% er,e2=0. (v2)

Proof. 1If x=0 or y =0, the inequalities hold. Let y # 0. For any ¢ € F we have
the estimate

|5

y ’ <lx—eyll = llx=cw+erw —eyll < e —ervl| + e —evll.
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Letting ¢ = "m;) and ¢ # 0, we obtain

(x.y) _ et

Hszy HX ClvH +|c1 ||)C CIVH + lea| 2
Obviously, chv— CH E yH |lcov — éy|| for any ¢ € F. Next, substituting consecu-
tively ¢:=0 and ¢:=1 gives

2 (ny)
cv— < T < minf|ea[[|v][; le2v =y}
Hence
o= f23h| < v ervll+ e minleallivl leaw - v}
< (141 + & min{eal 5]} ) 01,
by the hypothesis (7).
Finally,

2 2
= L E o) 1Tl i) e
=T T e S Ualt g minteblels Fvi

Multiplying the both of sides by [|y||> > 0 we get the first variant of the inequality.
If ¢; =0 = ¢y, then the hypothesis (7) takes the form ||x|| < |¢}|[|v|| and [y|| <
|c5]|v]] - Hence, we have as follows

/12 2 2
2014112 2 2014112 [ I
X — [ {x < lx <
(1]l | Qo) |7 < x| 71y \{|c’22||x2v||2

This is nothing but the second variant of the inequality. [
The particular cases of the inequality presented in theorem 1 are well known.

REMARK 1. Setting in theorem 1 (v1):
A. v=y and consequently ¢; = 1 and ¢, = 0 for arbitrary scalars ¢|,c| € F we obtain

2 2 2 2 4
lx = eyl < [yl = O < IxIFIyI7 = [4ey) P < Jei Pyl xy € V.

It is exactly Dragomir’s result: (4) or, equivalently, (3) implies (2) for ¢; = F_ery and

¢ = F%Y, where T,y € F;
B. v =1 and consequently ¢; = 1 and ¢} = 0 for arbitrary scalars ¢;,c} € F such that
5| < |ea| we get

\I2

2 2 2 2
Iy —eaxll < lealllxll = O < [l yll® — [ fx,3) |I° < HXII IY[IF, x,y e V.

This is inequality (6) under assumptions (4) or, equivalently, (3) for ¢; = %’ and

= %’, where I,y € F. Let us note, |c5| < |c2| is equivalent to Re(T7) > 0. O
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The example below illustrates how inequality (8) works.

EXAMPLE 1. Consider [, the space of all complex sequences z = (z1,22,...)
such that ¥ |z;|? < eo, with the inner product (x,y) = ¥ x;3; and norm ||x|| = /{x,x),
x,yel?.

Fix v = (v{,v2,...) € I> with nonzero entries, c|,c, € C and choose p; >0, i =
1,2. Let r; :piHVH, [ = |Ci‘HV||7 i=1,2.

Given x,y € [?, let

<Pl; and ’&_CZ ganizlaza""
V:

1

Xi
— -
i

Multiplying the above inequalities by |v;| > 0, i = 1,2, respectively, taking the square,
summing over i and extracting the square root of both of sides gives

lx—cv|]| <r and |ly—cov| <12
Applying theorem | we obtain
< [Pyl =1 Gy [P )
(ri+ & min (2.2} ) IR 2 20 ©
min{A||y[12,B[x]%} . e1.c2 = 0.
Setting v =y and consequently ¢co = 1 and r, =0 we get (c.f. (2))
e —eyll <r = 0 < [IxPIIyl* = e 3) [P < Ayl

If r, <lp,ie. py <|cz|, then inequality (9) can be rewritten as

< IHPIYIP = [ Gey) P < (r+ Disine)?[Jy]1,

where, for the interpretation, 0 < p2/|cz| < 1 is assumed to be equal sino, 0 < o <
/2.
Now, substituting v=x and ¢; = 1, I} = ||x|| and r; =0 we obtain (c.f. (6))

ly — x| < r2 = O < Ix[PfIyl[> = [ ¢x,x) > < sin® x|y

‘We omit the details. O

The upper bounds of the quantity ||x||?||y||*> — | (x,y) |*, presented in theorem I,
are attainable. More precisely, there exist nonzero vectors x and y fulfilling (7) such

that inequalities (8) become equalities. We will show even more.

THEOREM 2. Let c1,c¢},c2,c5 €F and x,y,v €V with v # 0 satisfy (7).
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c1#0,c) €F ,
Alf £ 0.¢r 40 and |c5| < |ca|, then
214112 2 _ (eidh|+[cheal)? oy o
[l lyll™ = [ e, |7 = 2|02|21 = lvl
i)
ey Jull =1, {u,y) =0, "
u : /
y = cav— vl = evv 2L ] v
c1#0,c) €F ,
>
B.If &£ 0.2 0 and |ch| = |ca|, then

(PN = 1 ey) 1P = (el + ey DIV

(y,v) =0, x = (1—!— Li:)
C.If c1cy =0 and cc2 # 0, then
Il 12 = 1 Gey) 2= [eh PIvIPIvIP

lul| =1, (u,y) =0,

JueV:
{ye V, x=cv+c}|v|u.

D.If c; =0 and c; =0, then

200012 2 20 ul2 2 ull =1, (u,y) =0,
[x[IZ Y1 = [ ) |7 = [er Iyl vl <= HMEV-{yev’x:c/lv”u’

and

200012 2 20w l12 2 S ull =1, (u,x) =0,
PR = ) = PP <= Swev: {108 m o

Proof. A. Sufficiency. Since y = c2v — c||v|ju and (u,y) =0,

c1
cv=—(y+ch|vlu),
I

/
c , cichlea| L, ca ( lcille 2|> /
= —(+o|v||u)+ —————"|ci||v|lu=—y+— | 1+ CHl||v||u.
o O sl 2l = Doy T (1 e ) v

Consequently,

e ey (ealls +icilles)? o
e

Iyl = (le2* = ) IIVII* > 0, 1> =
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\Cl|2 4
() [ = W\\yll :

Finally, usage of gathered above facts gives

2 ey P (elldgl+Icllea)? o
H)C” - Hy||2 ‘62‘2 HV” )

as required.
A. Necessity. Condition (7) and |c5| < |c2| ensure that y # 0. In this way

() P (lereh] +]ejeal)?
el = = = v,

iz |c2f?

or, equivalently,
Xx— <)C y> ‘C1C2‘+‘C1C2‘” H

]2 [5)

Therefore, the all following obvious inequalities are, in fact, equalities:
e ]| < =2 == gl < e + Ehlleav =yl
< eIy H+}§;‘\c’2\Hvll-
Moreover, the below identities must be met
lx—cvll = [ellv]| and [ly —cov| = | [Iv])- (10)

Now, one can define u = 'H Hy . Itis clear that ||u|| = 1. Equivalently
@

y=cav—hlv||u. (11)
If [[(x—c1v) + Z(cav =y = [lx—crvl| + | (c2v —y) ||, then there exists A >0 such
that c
x—cwz?tc—l(czv—y). (12)
2

Hence ||x—cv|| =2 t‘} |lcav — y||. Taking into account (10) we get

/
_ |C1HC/2" (13)
le1] |5
Linking (11), (12) and (13) gives
c1chle
xzclv+127‘2|-|c'1|||vHu. (14)
Sy
By (11) and (14) we obtain
x— Sy = et 222 el vl — & (eav — vl = & - (G +1) chllv]a
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On the other hand, since HX - %y

’ =|x— %y\\,we have <x— %y,y> =0. Thus
(u,y) =0, (15)

m%me%(hwﬂ Q%MM¢QCmd@mﬂhﬂ@mﬂﬂﬁw%mmwmmmm

ler]lc
should be shown.

B. Sufficiency. At first we observe if (y,v) =0, then [|y[|> < (|c5]? — |e2]?)||v||? is
equivalent to ||y — cav|| < |ch|||v]]. Moreover, if |c2| < |c}]|, then there exist vectors y
fulfil (7) which are nonzero.

Now, let y be such as above. According to our assumptions, ||x|> = (|c1| +
|ci[)?||v]|> and (x,y) = 0. Therefore

211112 2 201011211 l12
I lZ VI = e y) 15 = (ea |+ DIV I I,
as required.
B. Necessity. The case y = 0 is trivial. Let y # 0 and [Jx||> — HJHZ = (|e1]+

|ci[)?||v||*. In this way, the following evident estimations become equalities

2 — e =\x—%y < [l =l = ev) + vl < (e —eavll + [lew])?

’2
< (ler + ey D2 [IvI.

_ )
TR

llc1v||)? is equivalent to x —c1v = Acyv forany A >0, w;lere |lx — c1v|| must be equal

2
In particular, ’ = ||x[|? gives (x,y) =0, |[(x—cv) +cv||> = (|x —cv|| +

to |c}|||v]]. Thus A =|c}|/|c1|. Finally, x = clv—i-cl%v. Hence (y,v) = 0, since

(x,y) =0.
C. Sufﬁciency It is clear for ¢; = 0, because (u,y) =0 leads to (x,y) =0 and
1% = [¢4 P [vIP.

When ¢, =0 we have y = c,v and then (u,y) =0 gives (u,v) =0. Hence

2 2 2 1,012 — 2
lel1? = (ler P+ 15 IR I = lea P,
() = (v + e[Vl cav) = exczlvl®, | ey) P = ler Plea v
Thus [[x]*[[yII? = [ (x,9) [ = [ PIWIP - le2 PIVI? = le Plv]] - HYII2
C. Necessity. Firstly, for ¢; = 0 we observe that, ||x||> < |¢}|?|[v||>. So, if y # 0,
then 5 5
2 [y 22 L) |
I = =7 < el IvilF = ==
[yl Iyl

= |} [*||v||?, we get {x,y) = 0 and, consequently, ||x| = |c} |||

e ?
HVHZ
Hence one can set u = x/c||v||. The case y =0 is trivial.

Secondly, let ¢, = 0. Then by (7) we have y = cv. Since ||x[|?[[y[*> — | (x,y) |> =

|t 2y 12 |Iv[|%, the below evident inequalities

s P [ )
Il =

IvII? [ly[|?

Since [|x|? —

2 2
(&}
o < H— —2yH — = el < LRIV
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are, in fact, equalities. Hence, in particular, (x —cv,y) =0 and [lx—cv|| = |c}||]v]|-

Setting u = HCIHV we get what was required.

D. The proof of the first equivalence is analogous to the proof of the item C, the
case c¢; = 0. The second one is a consequence of the first by changing x <y and
¢l dh.

The proof is complete. [

REMARK 2. The initial assumptions in items A,B,C of theorem 2 guarantee that
the quantity |c}|+ 1% min{|ca,|c}|} # 0, provided ¢, # 0.

lea]
Analogous variants for the case ¢; # 0 we obtain by the symmetric replacement
Xy e and ¢| < ¢ as follows.

A 70 ¢ #0 and |c}| <|c1], then

cheF,c#0
204112 2 (adsl+leiel)? 2
1=y (1= =1 ey | = T” x[I%[Ivl
(;
WV Hqulv (u,x>:07 ,
u :
x=crv=clvlu, y = cav+ 2L | |]u.

Baf © 7 9970 a1 > Jeal, then

heF,c #0

[P0 = 1 e, y) 12 = (leal + [eg)? [1x 21 ]1?

() =0, y=es (144
C’.If ¢;1c¢h, #0 and ¢|c; =0, then
I[PIYNZ = 1 ey} [ = e Pl vl

lulf =1, {u,x) =0,

JuEV: {er, y=cov+chv||u.

Theorem 2 gives the following supplements of Dragomir’s results [6, th. 1,6].

COROLLARY 1. Let ¢,c’ € F, ¢ #0, x,y €V and ||x—cy|| < |c|||y||. Then

20012 22 Nl =1, (u,y) =0,
PR = ) P = Pl e 3ue v s {1420 ) =

Farticularly, if U,y € F, T' # y and x,y € V satisfy (3) or (4), then

I Jull = 1, {u3) =0,
2014112 2 2|1y 114

X2 II1F = ) P = =T =72y @EIuEV:{ r T
[P = T3 7= Z 1T =77y x= Ty DYy,
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Proof. Make use of theorem 2 C with specifications v:=y, ¢; =1, ¢, =0 and

c1:=c, | = . Next substitute ¢ = F%ﬂ = F%Y O

COROLLARY 2. Let 0 # c,c’ € F and x,y € V with || <|c| and ||x—cy| <
['l[Iyl]. Then

/12
2010112 > e 201012 ul| =1, (u,x) =0,
X — | (x, =—|x < duev:
APV = ) = S I {xzcy_cly”w

Farticularly, if T,y € F, Rel'y > 0 and x,y € V satisfy (3) or, equivalently, (4),
then

eI~ e.9) 2 = | 2 el
Juel = 1, {ux) =0,
JueVv: r
{ Sy + S lyfu.

Proof. Firstly, apply the statement A’ (remark 2) for v:=y, ¢c; =1, ¢, =0 and
¢y =c, ¢ =c. Secondly, set ¢ = rzi/, d= F%y and observe that |¢/| < |c| is equivalent
to Rely > 0 what ensures I"+ 7 0. At the end we note that the vector u can always

be replaced by cu, where |ci| =1, ¢c; €F,e.g. c;=—-1. O

3. Applications to Griiss’ inequality

Let x,y and z # 0 be vectors in an inner vectors space V. Griiss’ type inequalities
state upper bounds for the quantity | (x,y) — ) lzy) B H2 | Usually but not necessarily ||z|| =
1.

Applying classic Schwarz’s inequality for the vectors x — ﬁ ng and y— ﬁ ng and

taking into account that

(x,2) g\ (D))
< ey H >_<x’y> (A

H (x.2 ‘ — el ez ?
HZH2 B I2II? ’
|y ]| = el
ll2I1> R ’

we have the initial estimate

(x.z

VIRIPIEP = 166,2) PV IRl = 10520 P

IIZII2 ‘ h 2l

(16)

<x7y> -

By the equality condition for Schwarz’s inequality, the equality holds in (16) if

and only if x — %z and y — ﬁ ng are linearly dependent. In the sequel, the following

auxiliary lemma is useful. Its elementary proof we omit.
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LEMMA 1. Let x,y,z€V, z#0.

(x,y) — ,2) @) | _ VIKIPIIP = 1 ,2) Py P = [(,2) 2

= a7
][> ][>
)
dim span{x,y,z} <2
Beginning with (16), theorem 1 directly produces Griiss type inequalities.
THEOREM 3. Let ¢;,c¢i €F, i=1,2,3 and x,y,z,v €V, z,v #0.
If
e —ewll <[4Vl lly —eavll < leafl|vil and lz—esvl| <[5Vl (18)
then the inequalities
(X2 (z2,y)
(x,y) — lI12
(19)

41+ minglesl, 41} ) (1ehl+ 2 minlesl, e} ) [v]2,

2
51+ g mingleal, e ) (Jeb| + 3 mingleals e} ) B,

are valid, where c3 #£ 0 or, respectively, c1,c; # 0.

Proof. Apply respectively inequality (8) (v1) to triples of vectors x,z,v and y,z,v
and make use of the estimate (16). [

Obvious specifications of theorem 3 give detailed variants of Griiss’ inequality.

COROLLARY 3. Let ¢i,c; € F, i=1,2,3, c3#0, x,y,z,v €V, z,v #0 and (18)
is met.

Then
- (|ClHC3|+\61HC3‘2(“202HC3‘+|62HC3‘) . Hv”2 if |C/3‘ < |03| (Vl)
Con) =S | < (el Hletheal + 1D - V2 if [ch] > fesl, (v2) - (2O
‘C/1|‘C/2|HV||2 if c1,c0=0. (v3)

COROLLARY 4. Let ¢j,c € F, i =1,2,3, ci,c2 #0, x,y,z,v €V, z,v # 0 and
(18) is met.
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Then
_ &z
<x7y> HZHZ

Uerllesefllealealics icsllel) b2 5 [ I3l <leal

le1]lea] [l2]]2 |ch| < ez

(lelles+el lesD (leal+eD  llvlv]2 . J eyl < el 2D

- e E if AR (v2)

)2l v o [ lel = lel
(les[+1c50) 212 if )] = |es] (v3)

2 .

EARE 7“"”}};“‘!” it c3=0. (v4)

REMARK 3. Let I',7,®,¢ € F and e € V with |le|| = 1. Specifying ¢; = 212,
=22 = s =Y and z=v=r¢, c3=1, ¢y =0 in corollary 3 (v1) we get
Dragomir’s result [6, theorem 15,16]:

P49 I'+vy 1
|22 < oot [y 2 < -

then
| (x,3) — (x.e) (e, y) | < |<D O[T —vl.

Similarly, setting z=v =e¢, c3 =1, ¢ =0 and |c}| < |¢;|, i = 1,2 in corollary 4
(v1) gives other Dragomir’s result [6, theorem 21]:

[x—cre|| <|c}| and ||y —cze|| <|ch]

implies
/

[ {x3) = (xe) (&) | <

O

Theorem 2 yields conditions of equality for Griiss type inequalities (19). We start
from such conditions for inequalities of the specific form (20).

PROPOSITION 1. Let ¢j,c} € F, i=1,2,3, x,y,z,v €V, z,v # 0 and conditions
(18) are met.

A.Ifcl,
(,2) 2y | _ (eillesl+Ici ez (ealles] +[ehlles]) oo
<xay>_ Hsz = 3 - ‘63‘2 - 2 : HV” (22)
(i
ey (=L @0 el -
u . ciexle [ Xels
x=cv+ \cil\i |3C3 \cl||| u, y = C2V+|Cz|‘if3|3c3 \C/z\HVHu
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B.If ci,c2 #0 and || > |c3| > 0, then

)= %' — (lex |+ 14 ) (eal + el - v

ﬁ ).

/
2

c
)v,yzcz<l+

2

/
<Z,V>:O,)CZC1 <1+ C_l

&
C.If c1ch,cocly =0 and ¢, c,c3 # 0, then

() — (x,2) (z,)

I2II>

i)

HMH =1l= |061| = |062|, <M7Z> = 07
x=cv+c)|vl|oau, y=cr+dvl|oou, ze V.

2
\ — (i ich)- ol

EIuEVHal,aze]F:{

D.Ifc; =0,¢},c2 # 0 and 0 < |c}| < |c3], then

w2 @y | lallellesl+chlle]) o2
<.X, > HZHQ - |C3| : HV”

)

Jul| = 1 =|ou| = |eal, (u,2) =0, z=c3v—c4||v|onu,
cadiles)
lealesle3

Fue V3o, o €F: {x:c’l"llalu, y=cw+

[ehllv] ou.
E.If c; =0, ¢|,c2 #0 || > |c3| > 0, then

(o) — (x,2) (z,9)

Iz]1?

2
'= ¢k 1(leal + 1e4l) - vl

)

Jo €T, |a|=1 :x:ac’lv,y:cQ<l+

<
2

)u =0,

Proof. At first we observe that in case of B or E, if (z,v) =0, then

2 2 2 2
I12l® < (151" = les[)IVI® <= llz—cavll < les[lv]].

577

(24)

(25)

(26)

27)

(28)

(29)

(30)

€1V

Therefore, since |c3| < ||, there exist nonzero vectors z orthogonal to v fulfilling

(18).
Let

_ lejes|+ |cjes]

v |cs] s Loj = (|ejl + 1<), Laj =i, j=1,2,
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Ly = Lsy = L3y, Lyp = L2, Lsp = L.

Firstly, utilizing the same scheme, we show the implications (n+1)=>(n), where
(n+1)=(23), (25), (27), (29), (31).

It is easily seen that dim span{x,y,z} is not greater than 2, if one of the con-
ditions (23), (25), (29), (31) holds. In case of C, if c’3 =0, then z = c3v, by (18).
Hence (27) ensures span{x,y,z} = span{u,z}. If ¢1,c; =0, then (27) directly gives
span{x,y,z} = span{u,z}. Anyway, dim span{x,y,z} = dim span{u,z} = 2, since
(u,z) = 0. Therefore, dim span{x,y,z} <2 in any case and consequently (17) is ful-
filled, by Lemma 1.

Applying twice theorem 2, firstly for vectors x and z, secondly for y and z (more
exactly: variants A and A, B and B, C and C, C and A, C and B to (23), (25), (27), (29),
(31), resp.) we obtain the following identities:

\/HX||2||Z||2—‘<X,Z>|2 ZIHZHHVH =1 2,3,4 5. (32)
VI =02 F = Lol
Now, linking (17) with (32) we get (22),(24),(26),(28),(30), respectively.
Now, we can use one pattern for converse implications (n) = (n+1), (n)=(22), (24),
(26), (28), (30).
On the suitable assumptions of A, B, C, D and E, by (16) and theorem 1 (v1)
employed to pairs of vectors x,z and y,z we have for i =1,2,3,4,5

VIR — ,2) P < Lallz] V],
VISIPIIP -1 <y, >|2 < Lozl
‘<x 3y — e | o VPP i) \2\/\\yH =102
’ Eia

< - La 2y H) (LaallzllIvI]) -

On the assumption (n), the all above inequalities are, in fact, equalities. In particular,
the equalities (32) are met. Hence, applying theorem 2 to vectors x,z and to y,z (more
exactly: utilizing of variants A and A, B and B, C and C, C and A, C and B of the
theorem, consecutively, ensures what follows.

In case of A: there exist unit vectors u; and u, such that

(ui,z) =0, i=1,2, z=c3v—c||v|]jur = c3v — &|v||uz
ClC3\C3| caches)
le1]lcsles le2[lc5les

x=cv+ Jehll[vllur, y=cav+ |5l [[v]]a2-
Clearly, u; = up. This is exactly (23).
In case of B: obviously, (25) holds.

In case of C: there exist unit vectors #; and u, such that

<ui7Z> =0,i=1,2,
x=cv+ci|vlur, y=cov+|vl|uz, z€ V.

Moreover, dim span{u,u3,z} < 2, by Lemma 1. Since (u,z) = 0, it can be assumed
that span{u,us,z} = span{u,z}, where |ju|| =1 and (u,z) = 0. Hence, it easily fol-
lows u; = oyu for certain o; € F, |og| =1, i =1,2.
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In case of D: there exist unit vectors u; and uy such that

(ui,z) =0, i=1,2,

J
x:C“WHW7y=cgq_Q%M|

lea (I3

leallvllua, 2= esv = c[vua.

Moreover, by Lemma 1, dim span{x,y,z} < 2 and the above forms of x,y,z force that
span{x,y,z} = span{u17u27z} Hence, since (u1,z) =0, dim span{uj,us,z} =2. One
can assume that span{u;,us,z} = span{u,z}, where |lu|| =1 and (4,z) =0. Ina
consequence, u; = o;u for certain oy € F, |0;| =1, i = 1,2, as required.

In case of E: there exists an unit vector u such that

(u,z2) =0, x=c}|vllu, y=c2 <1 +

2 )\/7 (v,z) =0.
Moreover, by Lemma 1, dim span{x,y,z} <2 and the above conditions on vectors x,y,z
gives span{x,y,z} = span{u,v,z}. Hence dim span{u,v,z} = 2, since (v,z) =0. Thus
span{u,v,z} = span{v,z} and furthermore, u is linearly dependent of v, since (u,z) =
0. Consequently, the unit vector u has the form u = ﬁv for certain o € F, |a| = 1.
Finally, x = ac/ v, what is desired.

The proof is completed. []

The following corollary complements Dragomir’s result [6, theorem 15,16].

COROLLARY 5. Let Ty, @, ¢ € F and e € V with ||e|| = 1.
If
O+
e AU B

or, equivalently,

Re (®e — x,x — ¢pe) > 0 and Re (Te —y,y —ye) > 0
then

[0}~ ) (e} | = g0 I~

)

Jul =1 =fou| = |og], (u,e) =0,
Jue V3o, on €F: -
u 1,002 {x:q)%eJr%alu,y_F”e-yr Yoo

. o r
Proof. Use proposition 1 C for ¢; = =+, ¢} = Td)’ = %’, ¢y =
z=v=e,c3=1,¢;=0. O

Conditions of equality for Griiss type inequalities (21) are presented below.

r
%’ and

PROPOSITION 2. Let ¢j,c; € F, i =1,2,3, x,y,z,v € V, z,v # 0 and conditions
(18) are met.
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A If0<|cl| <|eil, i=1,2 and ¢3 #0, then

(o) — (0,2) @y | _ (erllesl +1eilles])(ealles] + [ehlles)) ey llivi®

= (33)
122 lc1]]ez] 122
(i
HuH:17 <uax>,|:‘0=<u’}’>, o
Juev:{ x=crv—c-FE u y=cv—cy et |v]u (34)
_ ey el e
Z=c3v+ ﬁ . m . m |5 v .
B.If |cl] > |ci] >0, i=1,2 and ¢3 #0, then
(x,2) (z,¥) e 1R
(,y) == | = (el + 3" — o — (35)
122 122
(i
x,y — linearly dependent
o AT (36)
<.X,V>— —<y,V>,Z—C3 + o V.
C.If c1,¢2,¢5 #0 and ¢3 =0, then
(x,2) (z,) e IR
(,y) = | =lal — o — (37)
122 ’ 122
(i
x,y — linearly dependent
JueV: 38
{u =1, (02) =0= (), = & ]| o9

Proof. At the beginning we observe that in case of B, if (x,v) =0, then
el < (1P = let PP = llx=cwll < [el ][IVl

In this way, since |c| < |¢}|, there exist nonzero vectors x orthogonal to v fulfilling
(18). The same holds for y.
Let

lejchl +cjes]

1j= , My = (|es| +c5]), M3;=|c5], j=1,2.

¢l
(n+1)=-(n), (n+1)=(34), (36), (38).
The same argumentation proves these all implications.
Namely, if (n+1) holds, then dim span{x,y,z} < 2 and consequently (17) is ful-
filled by Lemma 1. Applying theorem 2 A’,B’,C’ (see remark 2) (more exactly: A’,B’,C’
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for (34), (36), (38), resp.), firstly for vectors x and z, secondly for y and z we obtain
the following identities:

\/Hx||2||z||2_ | <)C,Z> ‘2 leXHH H _ 1 2 3. (39)
VIYIPII? =1 (,2) P = Millyll|lv H

Now, linking (17) with (39) we get (33), (35), (37), respectively.

(m)=(n+1), (n)=(33), (35), (37).

As before, the proofs run in the similar manner.

Under suitable assumptions of A, B, C, by (16) and theorem 1 (v1) employed to
pairs of vectors z,x and z,y we have for i =1,2,3

VIRl = ¢, 2) 2 < Mallx|[1v]),
VIV =16 >|2 < My lllIvI],
‘<x 5y — 226 | o VPP 6Py DERE-T0P

Il | = [HR

< g M=) - (2 Iy v -

On the assumption (n), the all above inequalities are, in fact, equalities. In particular,
the equalities (39) are met. Now, theorem 2, A’,B’,C’ (see remark 2) ensures what
follows.

In case of A: there exist unit vectors u; and uy such that (u;,x) =0= (uz,y) =0
and

x—clv—c’1|| l|lui, v zczv—c’szHuz,
let | (5]
C3v+|2‘ Iccl’lq |C3H‘v||u1—Z—C3v—|—|C3‘ Icc%lcfz‘cnguuz
J| A
Hence |,I‘ I ‘U = |2|‘ 2| -up. Atlast, setting u —u1/| —ug/‘ccl,‘lccll| we come to (34).
1
IncaseofB:

/
c
l ) .
3
Moreover, by Lemma 1, dim span{x,y,z} < 2. Hence we conclude that x and y are
linearly dependent, since (x,v) =0= (y,v).
In case of C: there exist unit vectors #; and u, such that

(x,v) =0=(y,v), z=c3 <1+

(ur,x) = 0= (u2,y), Ss||vl|ur = 2= |v||uz.

Clearly, u; = up. Furthermore, by Lemma 1, dim span{x,y,z} < 2. Hence we infer
that x and y are linearly dependent, since (x,z) =0 = (y,z).
The proof is entirely finished. [J

REMARK 4. If (33) holds in proposition 2 A, then necessarily H % This

is a consequence of the condition (x,u) =0 = (y,u). Furthermore, since x = ¢;(v —
22 }gz\ [Iv]|u) and y = cp(v — m|c—|| v|ju), the vectors x and y are then linearly de-

pendent. O

s eyl
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Using of proposition 2 A for z=v =e, c¢3 =1, ¢j =0 and remark 4 leads to the

following supplement of Dragomir’s result [0, theorem 21].

xye €V, e =1.If |x—ciell <|c}| and [ly—cze]| <)

COROLLARY 6. Given 0 # c¢j,c; € F with 0 <r = |c}|/|ci| <1, i =1,2 and
, then

[, ) = (x,e) e,y = r2le] [y

if and only if
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