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ON INNER AND OUTER RADII IN MINKOWSKI SPACES
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Abstract. Some sharp bounds for the inner radius and the outer radius of the unit ball of a
Minkowski space with respect to its isoperimetrix are known. To find more such bounds is a
challenging problem. Related to this, we derive new relations between inner and outer radii as
well as cross-section measures for the Holmes-Thompson and Busemann measures.

1. Introduction

This paper refers to the geometry of finite dimensional real Banach spaces, also
called Minkowski spaces, and to classical convexity. More precisley, the notions of
different cross-section measures from classical convexity are used to obtain new results
on unit balls and isoperimetrices of Minkowski spaces.

We recall that a convex body K in R
d ,d � 2, is a compact, convex set with

nonempty interior, and that K is said to be centered if it is symmetric with respect
to the origin o of R

d . As usual, Sd−1 denotes the standard Euclidean unit sphere in
R

d . We write λi for the i -dimensional Lebesgue measure (volume) in R
d , where

1 � i � d , and instead of λd we simply write λ . We denote by u⊥ the (d − 1)-
dimensional subspace orthogonal to u ∈ Sd−1 , and by lu the 1-subspace parallel to
u .

For a convex body K ⊂ R
d we denote by λd−1(K,u⊥) and λ1(K,u) the (d−1)-

dimensional and 1-dimensional inner cross-section measures of K , i.e., the maximal
measure of a hyperplane section of K normal to u ∈ Sd−1 , and the maximal chord
length of K in the direction u , respectively. Furthermore, λ1(K|lu) denotes the width
of K at u , and λd−1(K|u⊥) the (d − 1)-dimensional outer cross-section measure or
brightness of K at u ∈ Sd−1 , where K|u⊥ is the orthogonal projection of K onto u⊥ .
These notions can be found in the monograph [3]. In [11] and [16] the following results
for cross-section measures were derived.

For a convex body K in R
d , d � 2, and every direction u ∈ Sd−1 we have

λ (K) � λd−1(K|u⊥)λ1(K,u) � dλ (K),
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and both sides are sharp.
On the other hand, for each u ∈ Sd−1 a convex body K in R

d , d � 2, satisfies

λ (K) � λd−1(K,u⊥)λ1(K|lu) � dλ (K),

again with sharpness on both sides.

Our main purpose is to establish connections between cross-section measures and
inner/outer radii for centered convex bodies. The inner radius and outer radius of the
unit ball with respect to its isoperimetrix in Minkowski spaces (for Holmes-Thompson
and Busemann measures) will be used to obtain these connections. Thus, our main
results will be related to finite dimensional real Banach spaces as well.

For a convex body K in R
d , the polar body K◦ of K is defined by

K◦ = {y ∈ R
d : 〈x,y〉 � 1,x ∈ K}.

We identify R
d and its dual space R

d∗ by using the standard basis. In that case, λi

and λ ∗
i coincide in R

d . The symbol εi stands for the volume of the standard Euclidean
unit ball in R

i .

For a convex body K in R
d and u ∈ Sd−1 , the support function of K is defined by

hK(u) = sup{〈u,y〉 : y ∈ K},
and with o as an interior point of K its radial function ρK(u) is defined by

ρK(u) = max{α � 0 : αu ∈ K}.
It is well known that

ρK◦(u) =
1

hK(u)
, u ∈ Sd−1 .

If K is a centered convex body, then 2ρK(u) = λ1(K∩ lu) , and 2hK(u) = λ1(K|lu)
for any u ∈ Sd−1 .

The projection body ΠK of a convex body K in R
d is defined by hΠK(u) =

λd−1(K|u⊥) for each u ∈ Sd−1 (see [3, Chapter 4]). Note that any projection body is
a zonoid (i.e., a limit of vector sums of segments) centered at the origin. In particular,
if K is a polytope, then its projection body is a zonotope centered at the origin (see
[15] and [4] for many properties and applications of this interesting class of convex
bodies). We also refer to [1], [6], [7], and [12] for affine isoperimetric inequalilties
related to projection bodies. The intersection body IK of a convex body K ⊂ R

d is
defined by ρIK(u) = λd−1(K∩u⊥) for each u ∈ Sd−1 (cf. [5] and [3, Chapter 8]). If K
is a centered convex body, then IK is also a centered convex body (see [2]).

We write (Rd , || · ||) = M
d for a d -dimensional real Banach space, i.e.,

a Minkowski space with unit ball B which is a centered convex body; see [17]. The
unit sphere of M

d is the boundary ∂B of the unit ball.
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2. Isoperimetrices and inner/outer radii in Minkowski spaces

A Minkowski space M
d possesses a Haar measure μ , and this measure is unique

up to multiplying the Lebesgue measure by a constant, i.e., μ = σBλ .

The following notions are well known; see [17, Chapter 5]. The d -dimensional
Holmes-Thompson volume of a convex body K in M

d is defined by

μHT
B (K) =

λ (K)λ (B◦)
εd

, i.e., σB =
λ (B◦)

εd
,

and the d -dimensional Busemann volume of K is defined by

μBus
B (K) =

εd

λ (B)
λ (K), i.e. , σB =

εd

λ (B)
(and μBus

B (B) = εd).

In order to define the Minkowski surface area of a convex body, one has to define
σB similarly in M

d−1 . That is, for the Holmes-Thompson measure we have σB(u) =
λd−1((B∩ u⊥)◦)/εd−1 , and for the Busemann measure σB(u) = εd−1/λd−1(B∩ u⊥)
(see [17, pp. 150-151]). The Minkowski surface area of K can be also defined in terms
of mixed volumes (see [14] for notation and more about mixed volumes) by

μB(∂K) = dV (K[d−1], IB),

where IB is that convex body whose support function is σB(u). For the Holmes-
-Thompson measure, IB is given by IHT

B = Π(B◦)/εd−1 (cf. [17, p. 150 and p. 157] for
detailed explanation), and therefore it is a centered zonoid. For the Busemann measure
we have IBus

B = εd−1(IB)◦ (see again [17, pp. 150-151]). Among all homothetic images
of IB a unique one is specified, which is called the isoperimetrix ÎB and is determined by
μB(∂ ÎB) = dμB(ÎB) . The isoperimetrix for the Holmes-Thompson measure is defined
by

ÎHT
B =

εd

λ (B◦)
IHT
B =

εd

εd−1

1
λ (B◦)

ΠB◦ , (1)

and the isoperimetrix for the Busemann measure by

ÎBus
B =

λ (B)
εd

IBus
B =

εd−1

εd
λ (B)(IB)◦; (2)

see [17, Chapter 5].

If K and L are convex bodies in M
d , the inner radius of K with respect to L is

defined by r(K,L) := max{α : ∃x ∈ M
d with αL ⊆ K + x}, and the outer radius of K

with respect to L is defined by R(K,L) := min{α : ∃x ∈ M
d with αL ⊇ K + x}.

One should notice that r(K, ÎB) and R(K, ÎB) can also be defined in terms of the
support functions of the involved sets. In particular, if K is a centered convex body,
then r(K, ÎB) is the maximum value of α such that α � hK(u)/hÎB

(u) for all u∈ Sd−1 .

Similarly, R(K, ÎB) is the minimum value of α such that α � hK(u)/hÎB
(u) for all

u ∈ Sd−1 (see [13] and [18]).
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3. Cross-section measures and inner/outer radii

For a convex body K , we denote by wB(K) and DB(K) the Minkowskian thickness

(i.e., wB(K) = min
u∈Sd−1

2w(K,u)
w(B,u)

, where w(K,u) is the Euclidean width of K in the

direction u ) and the Minkowskian diameter (i.e., the maximum of this Minkowskian
width function of K ), respectively.

One can easily see that r(ÎHT
B ,B) =

1

R(B, ÎHT
B )

and R(ÎHT
B ,B) =

1

r(B, ÎHT
B )

. Also,

it is easy to establish that if K is a centered convex body in M
d , then r(K,B) =

wB(K)
2

and R(K,B) =
DB(K)

2
.

We recall that some sharp bounds for r(B, ÎHT
B ) and R(B, ÎHT

B ) are known (see [8],
[9], and also the next section). Below we show the connection between cross-section
measures and the outer radius R(B, ÎHT

B ) .
Our first theorem refers to cross-section measures of polars of unit balls and outer

radii of isoperimetrices for the Holmes-Thompson measure.

THEOREM 1. Let B be the unit ball of M
d . Then

a) R(B, ÎHT
B ) � 1 if and only if min

u∈Sd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

� 2εd−1

εd
.

b) R(B, ÎHT
B ) � 1 if and only if

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

� 2εd−1

εd
for all u∈ Sd−1 .

Proof. As we know,

2

R(B, ÎHT
B )

= 2r(ÎHT
B ,B) = wB(ÎHT

B ).

We can expand wB(ÎHT
B ) as follows:

wB(ÎHT
B ) = min

u∈Sd−1

2w(ÎHT
B ,u)

w(B,u)
= min

u∈Sd−1

2hÎHT
B

(u)

hB(u)

= min
u∈Sd−1

2εd

λ (B◦)
hIHT

B
(u)ρB◦(u) = min

u∈Sd−1

2εd

εd−1

hΠB◦(u)ρB◦(u)
λ (B◦)

= min
u∈Sd−1

εd

εd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

.

Therefore,

2εd−1

εd
= R(B, ÎHT

B ) min
u∈Sd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

.

Hence, the results follow. �
From Theorem 1 the following result can be easily deduced:
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COROLLARY 2. Let B be the unit ball of M
d . Then

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

�
2εd−1

εd
for all u ∈ Sd−1 if and only if B ⊆ ÎHT

B .

We can also use Theorem 1 to get a characterization of ellipsoids.

THEOREM 3. Let B be the unit ball of M
d . Then

max
u∈Sd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

=
2εd−1

εd

if and only if B is an ellipsoid.

Proof. As mentioned above,

2

r(B, ÎHT
B )

= 2R(ÎHT
B ,B) = DB(ÎHT

B ) .

Then, from the expansion of DB(ÎHT
B ) similar to wB(ÎHT

B ) , one gets

DB(ÎHT
B ) = max

u∈Sd−1

εd

εd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

.

Thus,

2εd−1

εd
= r(B, ÎHT

B ) max
u∈Sd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

.

It is known that r(B, ÎHT
B ) � 1 with equality if and only if B is an ellipsoid. Hence

we have the result. �

It is known that there exists u ∈ Sd−1 such that

λd−1(B|u⊥)λ1(B∩ lu)
λ (B)

� 2εd−1

εd
,

with equality for all u ∈ Sd−1 if and only if B is an ellipsoid (cf. [8]).

Also, some sharp bounds for r(B, ÎBus
B ) and R(B, ÎBus

B ) are known (see [8], [9], or
our next section). Below we discuss the connection between cross-section measures
and r(B, ÎBus

B ) as well as R(B, ÎBus
B ) .

THEOREM 4. Let B be the unit ball of M
d . Then

a) R(B, ÎBus
B ) � 1 if and only if max

u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

� 2εd−1

εd
.

b) R(B, ÎBus
B ) � 1 if and only if

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

� 2εd−1

εd
for all u ∈ Sd−1 .
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Proof. As we know,

2

R(B, ÎBus
B )

= 2r(ÎBus
B ,B) = wB(ÎBus

B ) ,

and wB(ÎBus
B ) can be expanded as follows:

wB(ÎBus
B ) = min

u∈Sd−1

2hÎBus
B

(u)

hB(u)
= min

u∈Sd−1

2λ (B)εd−1h(IB)◦(u)
εdhB(u)

=
2εd−1

εd
min

u∈Sd−1

λ (B)
ρIB(u)hB(u)

=
2εd−1

εd
min

u∈Sd−1

2λ (B)
λd−1(B∩u⊥)λ1(B|lu) .

Therefore,

εd

2εd−1
= R(B, ÎBus

B ) min
u∈Sd−1

λ (B)
λd−1(B∩u⊥)λ1(B|lu)

= R(B, ÎBus
B )

λ (B)
maxu∈Sd−1 λd−1(B∩u⊥)λ1(B|lu) ,

and hence

max
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

= R(B, ÎBus
B )

2εd−1

εd
.

Thus, our results are confirmed. �
The next result can be easily deduced from Theorem 4.

COROLLARY 5. Let B be the unit ball of M
d . Then

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

�
2εd−1

εd
for all u ∈ Sd−1 if and only if B ⊆ ÎBus

B .

Now we combine inner radii of isoperimetrices for the Busemann measure with
cross-section measures.

THEOREM 6. If B is the unit ball of M
d , then

a) r(B, ÎBus
B ) � 1 if and only if min

u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

� 2εd−1

εd
,

b) r(B, ÎBus
B ) � 1 if and only if

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

� 2εd−1

εd
for all u ∈ Sd−1 .

Proof. By expanding DB(ÎBus
B ) (similar to wB(ÎBus

B )), we obtain

DB(ÎBus
B ) =

2εd−1

εd
max

u∈Sd−1

2λ (B)
λd−1(B∩u⊥)λ1(B|lu) .

Since DB(ÎBus
B ) =

2

r(B, ÎBus
B )

, we get

εd

2εd−1
= max

u∈Sd−1

λ (B)
λd−1(B∩u⊥)λ1(B|lu) r(B, ÎBus

B ).
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Hence, the results follow from the following equality:

min
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

= r(B, ÎBus
B )

2εd−1

εd
. �

COROLLARY 7. Let B be the unit ball of M
d . Then

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

�
2εd−1

εd
for all u ∈ Sd−1 if and only if ÎBus

B ⊆ B.

The following proposition refers to cross-section measures of centered convex
bodies.

PROPOSITION 8. Let B be a centered convex body in R
d . Then

a) max
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu) � max
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu),

b) min
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu) � min
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu).

Proof. a) In [10] it was proved that R(B, ÎBus
B ) · r(B◦, ÎHT

B◦ ) � 1. Thus, by using the
equalities

R(B, ÎBus
B ) =

εd

2εd−1
max

u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

,

r(B◦, ÎHT
B◦ ) =

2εd−1

εd

λ (B)
maxu∈Sd−1 λd−1(B|u⊥)λ1(B∩ lu)

,

the result follows.

b) In [10] it was also proved that R(B◦, ÎHT
B◦ ) · r(B, ÎBus

B ) � 1. Thus, by

R(B◦, ÎHT
B◦ ) =

2εd−1

εd
min

u∈Sd−1

λ (B)
λd−1(B|u⊥)λ1(B∩ lu)

and

r(B, ÎBus
B ) =

εd

2εd−1

minu∈Sd−1 λd−1(B∩u⊥)λ1(B|lu)
λ (B)

,

we have the result. �
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4. Inclusion results

One of the challenging open problems of Minkowski Geometry is the question
whether for d � 3 the homothety of the unit ball and the normalized solution of the
isoperimetric problem implies that the unit ball must be an ellipsoid (see [3], [14], and
[17]). For Minkowski planes, apart from ellipses, other curves (such as Radon curves)
have this property as well. Related to this, we clarify now the inclusions between the
unit ball B and ΠB◦ , and between B and (IB)◦ . We start with the inclusions referring
to the projection body.

PROPOSITION 9. If B is a Minkowskian ball of M
d with λ (B) = 1 , then the

following exact inclusions hold:

B◦ ⊆ 2ΠB ⊆ dB◦.

Proof. By the definitions of the inner and outer radii we have

r(B, ÎHT
B )ÎHT

B ⊆ B ⊆ R(B, ÎHT
B )ÎHT

B .

We recall the following exact bounds for the inner radius and the outer radius:
2εd−1

dεd
� r(B, ÎHT

B ) � 1,

R(B, ÎHT
B ) � 2εd−1

εd
.

Therefore, using (1) we get
2εd−1

dεd

εd

λ (B◦)
ΠB◦

εd−1
⊆ B ⊆ 2εd−1

εd

εd

λ (B◦)
ΠB◦

εd−1
.

Thus
2
d

ΠB◦ ⊆ λ (B◦)B ⊆ 2ΠB◦.

Hence, the results follow by setting B to be B◦ , and λ (B) = 1. �
Analogously, we obtain for the intersection body

PROPOSITION 10. Let B be a Minkowskian ball of M
d with λ (B) = 1 . Then the

following exact inclusions hold:

B◦ ⊆ 2IB ⊆ dB◦.

Proof. Again we have

r(B, ÎBus
B )ÎBus

B ⊆ B ⊆ R(B, ÎBus
B )ÎBus

B .

From the exact bounds
εd

2εd−1
� r(B, ÎBus

B ), R(B, ÎBus
B ) � dεd

2εd−1

and (2) we have
εd

2εd−1

λ (B)
εd

εd−1(IB)◦ ⊆ B ⊆ dεd

2εd−1

λ (B)
εd

εd−1(IB)◦.
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Thus
λ (B)

2
(IB)◦ ⊆ B ⊆ dλ (B)

2
(IB)◦.

Setting λ (B) = 1, we have
2
d

IB ⊆ B◦ ⊆ 2IB ,

and the results follow. �
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