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LYAPUNOV-TYPE INEQUALITIES FOR FRACTIONAL DIFFERENTIAL
EQUATIONS UNDER MULTI-POINT BOUNDARY CONDITIONS

YouYU WANG*™ AND QICHAO WANG

(Communicated by H. M. Srivastava)

Abstract. In this work, we establish new Lyapunov-type inequalities for fractional differential
equations under multi-point boundary conditions.

1. Introduction

The well-known result of Lyapunov [9] states that if u«(z) is a nontrivial solution
of the differential system

(1) +r(t)u(t) =0, 1€ (a,b),
u(a) = 0 = u(b), (LD

where r(t) is a continuous function defined in [a,b], then

/| |dt>— (1.2)

and the constant 4 cannot be replaced by a larger number.

Lyapunov inequality (1.2) is a useful tool in various branches of mathematics
including disconjugacy, oscillation theory, and eigenvalue problems. Many improve-
ments and generalizations of the inequality (1.2) have appeared in the literature. A
thorough literature review of continuous and discrete Lyapunov-type inequalities and
their applications can be found in the survey articles by Cheng [3], Brown and Hinton
[1] and Tiryaki [12].

The study of Lyapunov-type inequalities for the differential equation depends on a
fractional differential operator was initiated by Rui A. C. Ferreira [4]. He first obtained
a Lyapunov-type inequality when the differential equation depends on the Riemann-
Liouville fractional derivative, the main result is as follows.
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THEOREM 1.1. Ifthe following fractional boundary value problem

(D% u)(t)+q(t)u(t)=0, a<t<b, 1<o<2, (1.3)
u(a) =0=u(b), (1.4)

has a nontrivial solution, where q is a real and continuous function, then

/ub|q(s)\ds>l"(oc) (bi;)al' (1.5)

Recently, some Lyapunov-type inequalities were obtained for different fractional
boundary value problems. In this direction, we refer to Ferreira [5], Jleli and Samet
[6,7], O’Regan and Samet [10], Rong and Bai [11], Wang, Liang and Xia [13] and
Cabrera, Sadarangani, and Samet [2].

For example, Cabrera, Sadarangani, and Samet [2] obtain some Lyapunov-type
inequalities for a higher-order nonlocal fractional boundary value problem, they give
the following Lyapunov inequalities.

THEOREM 1.2. [fthe fractional boundary value problem
(D% u)(t)+q(t)u(t) =0, a<t<b,2<o<3, (1.6)
u(a)=u'(a) =0, u'(b)=Pu(&), (1.7)

has a nontrivial solution, where q is a real and continuous function, a < & < b,0 <

B(E—a)* ' < (a—1)(b—a)* 2, then

b a2 Blb—a)*! -
/a (b—5)%"2(s —a)|q(s)|ds > <1+(a_1)(b_a>a2_ﬁ(€_a)a1) T(a).
(1.8)
THEOREM 1.3. [fthe fractional boundary value problem
(D% u)(t)+q(t)u(t)=0, a<t<b,2<o<3, (1.9)
u(a) =u'(a) =0, u'(b)=Pu(&), (1.10)

has a nontrivial solution, where q is a real and continuous function, a < & < b,0 <

B(E—a)* ' < (a—1)(b—a)* 2, then

(o)(0 — 1)%~ B(b—a)*! B
/"’ (b—a)* (o —2) 2<1+(a—1>(b—a)°‘2—ﬁ(é—a>°‘1)(1 1'1)

Motivated by [2], in this paper, we study the problem of finding some Lyapunov-
type inequalities for the fractional differential equations with multi-point boundary con-
ditions.

(D% u)(t)+q(t)u(t) =0, a<t<b, 1<o<2, (1.12)

w(@)=0, (D u)(b Zb DPu)(&), (1.13)
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where DS‘+ denotes the standard Riemann-Liouville fractional derivative of order o,
a>B+1 0<B<la<é<&< - <Epa<b, b 20=1,2,---,m—2),0<
S 2bi(E—a)* P < (b—a)*B~1 and g [a,b] — R is a continuous function.

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral,
the Riemann-Liouville fractional derivative of order o« > 0.

DEFINITION 2.1. [8] Let & > 0 and f be a real function defined on [a,b]. The
Riemann-Liouville fractional integral of order ¢ is defined by (12+ f)=f and

1

(IZ. f)(t) = (o)

/t(t—S)O‘_lf(s)d& a>0,1€ [a,b]

DEFINITION 2.2. [8] The Riemann-Liouville fractional derivative of order o > 0
is defined by (Dg+ f)=f and

O N0 =000 = s (5) [ =9 (0,

for oo > 0, where m is the smallest integer greater or equal to o.

LEMMA 2.3. [8] Assume that u € C(a,b) N L(a,b) with a fractional derivative of
order o > 0 that belongs to C(a,b) NL(a,b). Then

1%(D%u)(t) =u(t) +ci1(t —a)* ' +eat —a)* 2+ Fenlt —a)* ",
where c; € R;i=1,2,---,n, and n=[ot] + 1.
LEMMA 2.4. For 1 <a <2,0< 3 <1, we have

I'a)

7 (1—q)* B,
Ma—p

(DP (s —a)* ")(1) =

3. Main results

We begin by writing problems (1.12)-(1.13) in its equivalent integral form.

LEMMA 3.1. We have that u € Cla,b] is a solution to the boundary value problem
(1.12)-(1.13) if and only if u satisfies the integral equation

/Gts u(s)ds+T(1) /(nbe ())ds 3.1)
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where Green’s function G(t,s) is defined by

iy = L ST~ =9 ass<i<e,
1,5) = — a
Mlo) | =2 ;f;;’lﬁl, a<t<s<
oa—1
T(r) = Unl)

, <t <b.
(b—a)a P13 2 (& —ayep-1 “

Proof. From Lemma 2.3, u € Cla,b] is a solution to the boundary value problem
(1.12)-(1.13) if and only if

u(t) = c1(t—a)* '+ et —a)* = (1% qu) (1),
for some real constants cy,cs

. Using the boundary condition u(a) = 0, we obtain
¢ = 0. Therefore

u(t) =ci(t —a)® " — (I3 qu)(1).
We apply the operator Df . to both side of above equation, we obtain

(D, u)(1) = e (¢~ )= BT (1P 1)

I(a—pB)
=i gy [ 9 ot
the boundary condition Dﬁ ou)( Z bi(D +u )(&) imply that
I'a) B 1 b wp
Tap® l“rm‘—ﬁ)/a“’—s) Pl (s)u(s)ds
_m—2 ' I'a) ' o B 1 Si ' “p
=X g gy [ @0 e,
thus
- 1 ’ — )9 B g8 u(s)ds
“ _[(b—a>"“ﬁ—1—ZE’LXQbi(éi—a)a—ﬁ—l}r(a)/a (b= qlsuls)d
1 m_2 &

[b-a P -5b(E — 0 PN (@) 300 [ (G P gu(syas.
By the relation
1
(b—a)*P-1—3m2p(&—a)*P-!

_ . m 2b(§l—a)“’3 1
(b—a)*—B-1 (b—a)a—ﬁ—l[(b—a)a Bt =3P bi(& — a)*P1)
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we obtain
Yo B— 1( )0 B-1
- 1 b (b—S)aiﬁil f (b—a)*—B—T (s)u(s)ds
cl_l“(a)/a (b_a)a_ﬁ_ﬂ(s)u(s)ds+[(b_ YoB—1_525,(E —a)eP-1T(a)

B 2y [2(E—5)% P g(s)u(s)ds
[(b—a)e=B-1— 37" 2b;(& —a)*~B-1[ ()

)

therefore
u(t) =ci(t —a)* " — (I3 qu)(t)

—ao‘*l —safﬁfl f
_(t—a) /ab (b >a_ﬁ_lq(s)u(s)ds (1 /a(t_s)a—lq(s)u(s)ds

I'(a) (b—a) o)
(t—a)* 3020 2 ab ﬁa la(b/} )P G (s)u(s)ds

[(b—a)*P=1 =512 bi(& — a)* P11 ()

<t—a>°‘—12:';12biff'<éi—s>“ B1q(s)u(s)ds
(b—a)* B = 3" 2 b(&—a)* P |T(a)

_/Gts s)ds+T(t /b<mzsz ())ds,

which concludes the proof. [J

+

LEMMA 3.2. The Green’s function G defined in Lemma 3.1 satisfies the following
properties:

(i) 0 < G(t,s) < G(s,8) = (S—a)a_l(b_s)a—/}_l

(b—a)*P=T(a)

(if) Forany s € [a,b],

max Gl — (o ya—B1 (@@= D (b—a)
se[ib]G(S’S)_G(S ) =(@=f-1) 1(20(—[3—2)20:—/3—21"(06),

where s* = 20(‘;%_71261 + 2a°i_[3172b.
Proof. (i) Let us define two functions

(t—a)* ' (b—s)* B!

gl(t7s): (b_a)a,ﬁ71 _(t_s)a_17a<5<t<b7
_ o=l yo—B-1
gz(t,s):(’ a()b (j’a_;)_l : a<t<s<b.
—a

Obviously, g»(z,s) is an increasing function in ¢ and 0 < g»(7,s) < g2(s,s). Now we
turn our attention to the function g;(z,s). By the relation o > 4+ 1,2 — o > 0, we
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_B-1 .
have 0 < (2=5)“ Pl <1, 0< (t—al)Z*a < (z—sl)%a , S0 we obtain

o—pB—
agl(z,s):(a_l)Kb_s) 1(1 R N I

dt b—a [_a)2705 (t_s)2fa

Hence, for a given s € [a,b], gi1(¢,s) is an non-increasing function of 7 € [s,b]. There-
fore, we have
gl(b7s) < gl(tas) < gl(s,s).

As
b _(b—a)ail(b_s)aiﬁil b o—1
gl( 7S)— (b_a)a_ﬁ_l _( _S)
= (b—a)P(b—s)* P — (h—s5)*"!
Bt | L1
_(b ) (b ) ! (b_s)ﬁ (b_a)ﬁ
207
so we get
Oggl(tas)ggl(sas)’
thus

0<G(t,s) <G(s,s).
(i) Let @(s) = (s—a)* Y (b—5)*B~1 5 [a,b], then
¢'(s) = (s—a)* *(b=9)* P (@ =1)(b—s) = (@a=B—1)(s—a)], s € (a,b),

moreover,

., a—p-—1 o—1

e ok
0'(s)=0,s€(a,b)&s=s5 _2a—ﬁ—2a+2a—ﬁ—2b'

It is easy to check that @”(s) < 0,s € (a,b), therefore,

apo1(@—1)* " (b—ape P2

SI;I[S,);](P(S):(P(S*>:(O‘_[3—1) (20— —2)2e-B-2 7
hence
X G(s.s) = G(s* . s) = (ot — B —1)* B~ (a—1)*Yb—a)*!
sgllib]G( ) =Gls7s7) = (a=p—1) 1(2a—[3—2)2a—l3—21"(a)~ O

Now, we are ready to prove our first Lyapunov-type inequality.
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THEOREM 3.3. If a nontrivial continuous solution of the fractional boundary
value problem

(D%u)(t)+qt)u(t)=0, a<t<b, 1<o<2,
u(a) =0, Dﬁ+u Zb +u (&),
exists, then
[ 6= o9 a(oas

(b a)a—/}—l zm—Zb(é _a)oc—ﬁ—l
(b—a)* P14 (b—a)* ' X" 2b; — ¥ 2 bi(& —a)

_ o Na—B-1.
2(b—a) a_ﬁ_ll"(a).

Proof. Let B=Cla,b] be the Banach space endowed with norm ||u|| = sup |u(7)].
t€la,b]
It follows from Lemma 3.1 that a solution u to the boundary value problem satisfies the
integral equation

/Gts u(s)ds+T(1) /b<mzsz ())ds.

Now, using Lemma 3.2 (i), we obtain

b m=2 b
||u||<||u||/a G (s, 8)llg(s)lds + [|ull ZbiT(b)/a G(s,5)llq(s)lds,
i=1
which yields

Jull < wm/<L+zbr ) (5,5)lq(s) ds.

Therefore, if u is a nontrivial continuous solution to (1.12)-(1.13), we have
b _ Na—pB-1
/ (S—a)a_l(b—s)a_ﬁ_l|q(s)|ds > (b a) — F(O()
a 1+3"°bT(b)
(b a)a—/}—l 2m—2b (éz _ a)a—/}—l F(a)
(b a)oc B— l+(b a)oc 12m 2b zm 2b(€i—a)a_ﬁ_l .

Now, from Theorem 3.3 and Lemma 3.2 (ii), if problem (1.12)-(1.13) has a non-
trivial continuous solution, then we have the following result.

=(b—a)*PL.

COROLLARY 3.4. If a nontrivial continuous solution of the fractional boundary
value problem

(DS u)(t)+q(t)u(t) =0, a<t<b, 1<o<2,

u(a) =0, Dﬁ+u Zb a+u (&),
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exists, then

[ ats)ias

L T@  o-p-apeh
“lla=De—a)e T (a—p-1)e
(b—a)* ! z;“fb@—aw -
(ot (b ) S b X bi(G @) P

Let § =0 in Theorem 3.3, we obtain

COROLLARY 3.5. If a nontrivial continuous solution of the fractional boundary

value problem

exists, then

b
| =@ =9 g(s)las

a-1 (b—a)* ' — 3P bi(& —a)*”
0 (=) (X b — X i - a)"“lr(a)'

Let B =0 in Corollary 3.4, we have the following result.

COROLLARY 3.6. If a nontrivial continuous solution of the fractional boundary

value problem

(D%u)(t)+qt)u(t)=0, a<t<b, 1<o<2,

u(a)=0, u(b)= Z u(Gi),

exists, then

v CO S () G Y i A =t il
L'q(s)““?(b—a) (- @) (13 2y -3 2b(<§ et ()

REMARK 3.7. Let by = by = --- = by,—» = 0 in Corollary 3.6, then we obtain

(1.5).
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