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Abstract. A unified generalization for the Bell-Touchard polynomials of order k and the r -Bell
polynomials is established. It is shown that the generating function of the generalized Bell-
Touchard polynomials is logarithmically absolutely monotonic. Applying this result we obtain
some inequalities for the generalized Bell-Touchard polynomials. In particular, we obtain the
logarithmic convexity of the generalized Bell-Touchard polynomials.

1. Introduction and main results

Asai et al. [1] introduced the Bell number of order k as follows. For an integer
k � 1, define the k -times iterated exponential function denoted by expk(z) :

expk(z) = exp(exp · · · (exp(z)))︸ ︷︷ ︸
k−times

. (1.1)

Let {Bk(n)}∞
n=0 be the sequence of numbers given in the power series of expk(z) ,

namely,

expk(z) =
∞

∑
n=0

Bk(n)
n!

zn. (1.2)

The Bell numbers {bk(n)}∞
n=0 of order k are defined by

bk(n) =
Bk(n)

expk(0)
, n � 0. (1.3)

In particular, when k = 2, the numbers b2(n) are usually known as the Bell numbers,
the first few terms of which are 1,1,2,5,15,52,203. Thus, it is natural that

eez−1 =
∞

∑
n=0

b2(n)
n!

zn (1.4)

Mathematics subject classification (2010): 11B73, 26A48, 26A51, 33B10.
Keywords and phrases: Bell-Touchard polynomial, inequality, absolutely monotonic, completely

monotonic, logarithmic convexity.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-13-42

645

http://dx.doi.org/10.7153/jmi-2019-13-42


646 H.-R. YAN, Q.-L. ZHANG AND A.-M. XU

because exp2(0) = e . Qi [15] found the (logarithmically) absolute and complete mono-
tonicity of the generating functions ee±x

for the Bell numbers b2(n) . Based on the re-
sults, he obtain some interesting inequalities for the Bell numbers b2(n) with the aid of
properties of absolutely and completely monotonic functions.

As a different generalization of the Bell numbers b2(n) for n � 0, the Touchard
polynomials Tn(x) can be defined by

ex(ez−1) =
∞

∑
n=0

Tn(x)
zn

n!
.

It is clear Tn(1) = b2(n) . It is pointed out in [16] that there have been many researches
on applications of the Touchard polynomials in soliton theory [5, 6, 7]. For more details
on the Touchard polynomials, see the recent book [8] and references therein.

Recently, Qi et al. [17] gave a unified generalization Tk,n(xk) so called the Bell-
Touchard polynomials for the Bell numbers of order k and the Touchard polynomials:

exp(x1(exp(· · ·xk−1(exp(xk(exp(z)−1))−1) · · ·))−1) =
∞

∑
n=0

Tk,n(xk)
zn

n!
,

where xk = (x1,x2, . . . ,xk) . In their interesting paper, the explicit formula, inversion
formula, and recurrence relations for the generalization in terms of the Stirling numbers
of the first and second kinds were established. They also derived logarithmic convexity
and logarithmic concavity for the generalization, and confirmed that the generalization
satisfies conditions for sequences required in white noise distribution theory.

Let rk = (r1,r2, . . . ,rk) . Define a sequence of bivariate functions

gi(t,z) = exp(xi(exp(t)−1)+ riz) , 1 � i � k.

We construct a new function sequence {Ti(t,z)}k
i=0 recursively by

T0(t,z) = t,

Ti(t,z) = gk+1−i (Ti−1(t,z),z) , 1 � i � k.

Further we let Tk(z) := Tk(z;{xi}k
i=1,{ri}k

i=1) = limt→z Tk(t,z) . We generalize the
Bell-Touchard polynomials by the following generating function

Tk(z) =
∞

∑
n=0

Tk,n(xk;rk)
zn

n!
. (1.5)

For convenience, we would like to recommend Tk,n(xk;rk) the name r -Bell-Touchard
polynomials of order k . It is clear that Tk,n(xk;rk) reduce to the Bell-Touchard poly-
nomials Tk,n(xk) when all ri = 0. When k = 1, r1 = r and x1 = x , the polynomials
T1,n(x;r) are the known r -Bell polynomials [9] usually denoted by Bn,r(x) where r is
a non-negative integer. As we know, the r -Bell polynomials are defined by

Bn,r(x) =
n

∑
i=0

Sr(n+ r, i+ r)xi,
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where Sr(n+r, i+r) are the r -Stirling numbers of the second kind [2]. The exponential
generating function for the r -Bell polynomials Bn,r(x) was given by [2, 9]:

∞

∑
n=0

Bn,r(x)
xn

n!
= ex(ez−1)+rz.

In particular, we call Bn,r(1) := Bn,r the r -Bell numbers originally studied by Carlitz
[3, 4], and they were systematically treated in [2, 9]. For divisibility properties of the
r -Bell numbers one can refer to the recent work [10].

The first purpose of this paper is to verify that the functions Tk(−z) are logarith-
mically completely monotonic for all k � 1.

THEOREM 1. If ri � 0 and xi > 0 for 1 � i � k , then the functions Tk(−z) are
logarithmically completely monotonic on (−∞,∞) for all k � 1 .

REMARK 1. According to Theorem 1 , it is equivalent that Tk(z) is a logarithmi-
cally absolutely monotonic function on (−∞,∞) if ri � 0 and xi > 0 for 1 � i � k .

By using the above theorem, we establish the following inequalities for the r -Bell-
Touchard polynomials

{
Tk,n(xk;rk)

}∞
n=0 by Qi’s technique used in [15, 17, 18].

THEOREM 2. Let ri � 0 and xi > 0 for 1 � i � k . Let q � 1 be a positive integer
and let |ai j|q denote a determinant of order q with elements ai j . If ai for 1 � i � q
are non-negative integers, then

|Tk,ai+a j (xk;rk)|q � 0 (1.6)

and

|(−1)ai+a jTk,ai+a j (xk;rk)|q � 0. (1.7)

THEOREM 3. Let ri � 0 and xi > 0 for 1 � i � k . If a = (a1,a2, · · · ,an) and c =
(c1,c2, · · · ,cn) are non-increasing n-tuples of non-negative integers such that ∑ j

i=1 ai �
∑ j

i=1 ci for 1 � j � n−1 and ∑n
i=1 ai = ∑n

i=1 ci , then

n

∏
i=1

Tk,ai(xk;rk) �
n

∏
i=1

Tk,ci(xk;rk). (1.8)

Taking a1 = a2 = · · · = aq = n+ l , aq+1 = aq+2 = · · · = an = l and c1 = c2 = · · · =
cn = q+ l in (1.8) , we immediately have the following corollary.

COROLLARY 1. Let ri � 0 and xi > 0 for 1 � i � k . If l � 0 and n � q � 0 , then(
Tk,n+l(xk;rk)

)q (
Tk,l(xk;rk)

)n−q �
(
Tk,q+l(xk;rk)

)n
. (1.9)

Taking a1 = q + l , a2 = n− q + l , c1 = m + l and c2 = n−m + l in (1.8) , we
have another inequality for the r -Bell-Touchard polynomials.
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COROLLARY 2. Let ri � 0 and xi > 0 for 1 � i � k . If l � 0 , n � q � m, 2q � n
and 2m � n, then

Tk,q+l(xk;rk)Tk,n−q+l(xk;rk) � Tk,m+l(xk;rk)Tk,n−m+l(xk;rk). (1.10)

In particular, when n = 2 and q = 1 in (1.9) , it is easy to see

Tk,l(xk;rk)Tk,l+2(xk;rk) �
(
Tk,l+1(xk;rk)

)2
, (1.11)

which means that the sequence {Tk,l(xk;rk)}∞
l=0 is logarithmically convex. Note that

(1.11) is also a special case of (1.10) when n = q = 2 and m = 1.

THEOREM 4. Let ri � 0 and xi > 0 for 1 � i � k . For l � 0 and m,n ∈ N , let

Gl,m,n =Tk,l+2m+n(xk;rk)(Tk,l(xk;rk))2 −Tk,l+m+n(xk;rk)Tk,l+m(xk;rk)Tk,l(xk;rk)

−Tk,l+n(xk;rk)Tk,l+2m(xk;rk)Tk,l(xk;rk)+Tk,l+n(xk;rk)(Tk,l+m(xk;rk))2,

Hl,m,n =Tk,l+2m+n(xk;rk)(Tk,l(xk;rk))2 −2Tk,l+m+n(xk;rk)Tk,l+m(xk;rk)Tk,l(xk;rk)

+Tk,l+n(xk;rk)(Tk,l+m(xk;rk))2,

Il,m,n =Tk,l+2m+n(xk;rk)(Tk,l(xk;rk))2 −2Tk,l+n(xk;rk)Tk,l+2m(xk;rk)Tk,l(xk;rk)

+Tk,l+n(xk;rk)(Tk,l+m(xk;rk))2.

Then we have

Gl,m,n � 0, Hl,m,n � 0,

Hl,m,n � Gl,m,n, when m ≶ n, (1.12)

Il,m,n � Gl,m,n � 0, when n � m.

THEOREM 5. Let ri � 0 and xi > 0 for 1 � i � k . For q,n ∈ N , we have

(
n

∏
l=0

Tk,q+2l(xk;rk)

) 1
n+1

�
(

n−1

∏
l=0

Tk,q+2l+1(xk;rk)

) 1
n

. (1.13)

As consequences, it is worth noting that the r -Bell polynomials Bn,r(x) have the
same properties when x > 0 because Bn,r(x) = T1,n(x;r) . In particular, for fixed x > 0,
the sequence of the r -Bell polynomials {Bn,r(x)}∞

n=0 is logarithmically convex.

2. Proofs of main theorems

It was introduced in [15] that an infinitely differentiable function f is said to
be completely monotonic on an interval I if it satisfies (−1)m f (m)(z) � 0 on I for all
m � 0. An infinitely differentiable function f is said to be logrithmically completely
monotonic on an interval I if (−1)m(ln f (z))(m) � 0 on I for all m � 1. For more infor-
mation, see [13, 19, 21]. As pointed out in [15], a logrithmically completely monotonic
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function on an interval I is also completely monotonic on the interval I , but not con-
versely. Based on these facts, we can give a proof on the complete monotonicity for the
functions Tk(−z) for all k � 1.

Proof of Theorem 1. We prove this theorem by induction on k . For k = 1, it is
obvious that

(−1)m (ln(T1(−z)))(m) =
{

x1e−z + r1, m = 1,
x1e−z, m � 2,

which implies that, for z ∈ (−∞,∞) ,

(−1)m (ln(T1(−z)))(m) � 0,

because x1 > 0 and r1 � 0. Thus, T1(−z) is a logarithmically completely monotonic
function. We assume that Tk(−z) is logarithmically completely monotonic for all k �
K with K � 1. By the assumption, TK(−z) := TK

(−z;{xi}K
i=1,{ri}K

i=1

)
is completely

monotonic. It implies that TK
(−z;{xi}K+1

i=2 ,{ri}K+1
i=2

)
is also completely monotonic,

which is equivalent to

(−1)m (TK(−z;{xi}K+1
i=2 ,{ri}K+1

i=2 )
)(m) � 0, m � 0.

Since TK+1(−z) = exp
{
x1TK(−z;{xi}K+1

i=2 ,{ri}K+1
i=2 )− r1z

}
, we have

(−1)m (ln(TK+1(−z)))(m) =

{
−x1

(
TK(−z;{xi}K+1

i=2 ,{ri}K+1
i=2 )

)′
+ r1, m = 1,

(−1)mx1
(
TK(−z;{xi}K+1

i=2 ,{ri}K+1
i=2 )

)(m)
, m � 2.

Therefore, we can conclude that the function TK+1(−z) is logarithmically completely
monotonic because (−1)m (ln(TK+1(−z)))(m) � 0, and the proof is complete. �

Clearly, Tk(−z) is completely monotonic according to Theorem 1. We are now
in a position to give the proofs of theorems 2-5 by Qi’s technique used in [15, 17, 18].

Proof of Theorem 2. According to [12] and [13, p. 367], we obtain that if f is
completely monotonic on [0,∞) , then

| f (ai+a j)(z)|q � 0 (2.1)

and

|(−1)ai+a j f (ai+a j)(z)|q � 0. (2.2)

By replacing f (z) by the function Tk(−z) in (2.1) and (2.2) and taking the limit
z → 0+ , we have

lim
z→0+

|(Tk(−z))(ai+a j)|q = |(−1)ai+a jTk,ai+a j(xk;rk)|q � 0
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and

lim
z→0+

|(−1)ai+a j(Tk(−z))(ai+a j)|q = |Tk,ai+a j(xk;rk)|q � 0.

Thus, the desired determinant inequalities (1.6) and (1.7) are derived. �

Proof of Theorem 3. According to [13, p. 367, Theorem 2], we obtain that if f is
completely monotonic on [0,∞) , then

n

∏
i=1

(−1)ai f (ai)(z) �
n

∏
i=1

(−1)ci f (ci)(z).

If we replace f (z) by the function Tk(−z) , we have

n

∏
i=1

(−1)ai(Tk(−z))(ai) �
n

∏
i=1

(−1)ci(Tk(−z))(ci).

Taking the limit z → 0+ gives

n

∏
i=1

Tk,ai(xk;rk) �
n

∏
i=1

Tk,ci(xk;rk),

Thus, the proof of Theorem 3 is complete. �

Proof of Theorem 4. In [20, Theorem 1 and Remark 2], it was obtained that if f
is completely monotonic on (0,∞) and

Gm,n = (−1)n
{

f (n+2m) f 2 − f (n+m) f (m) f − f (n) f (2m) f + f (n)[ f (m)]2
}

,

Hm,n = (−1)n
{

f (n+2m) f 2 −2 f (n+m) f (m) f + f (n)[ f (m)]2
}

,

Im,n = (−1)n
{

f (n+2m) f 2 −2 f (n) f (2m) f + f (n)[ f (m)]2
}

,

for n,m ∈ N , then

Gm,n � 0, Hm,n � 0,

Hm,n � Gm,n, when m ≶ n, (2.3)

Im,n � Gm,n � 0, when m � n.

Replacing f (z) by (−1)l(Tk(−z))(l) in Gm,n , Hm,n and Im,n , and simplifying give

Gm,n = (−1)l+n
{

(Tk(−z))(l+2m+n)[(Tk(−z))(l)]2

− (Tk(−z))(l+m+n)(Tk(−z))(l+m)(Tk(−z))(l)

− (Tk(−z))(l+n)(Tk(−z))(l+2m)(Tk(−z))(l)

+ (Tk(−z))(l+n)[(Tk(−z))(l+m)]2
}

,
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Hm,n = (−1)l+n
{

(Tk(−z))(l+2m+n)[(Tk(−z))(l)]2

−2(Tk(−z))(l+m+n)(Tk(−z))(l+m)(Tk(−z))(l)

+ (Tk(−z))(l+n)[(Tk(−z))(l+m)]2
}

,

and

Im,n = (−1)l+n
{

(Tk(−z))(l+2m+n)[(Tk(−z))(l)]2

−2(Tk(−z))(l+n)(Tk(−z))(l+2m)(Tk(−z))(l)

+ (Tk(−z))(l+n)[(Tk(−z))(l+m)]2
}

.

Further taking z → 0+ gives

lim
x→0+

Gm,n = Gl,m,n,

lim
x→0+

Hm,n = Hl,m,n,

lim
x→0+

Im,n = Il,m,n.

Substituting these into (2.3) and simplifying we obtain the inequalities in (1.12) . The
proof of Theorem 4 is complete. �

Proof of Theorem 5. In [13, p. 369] and [14, p. 429, remark], it was stated that
if f (z) is a completely monotonic function such that f (k)(z) �= 0 for k � 0, then the
sequence ln[(−1)k−1 f (k−1)(z)] , k � 1, is convex. Combining with Nanson’s inequality
listed in [11, p. 205, 3.2.27], we have[

n

∏
l=0

(−1)q+2l+1 f (q+2l+1)(z)

] 1
n+1

�
[

n

∏
l=1

(−1)q+2l f (q+2l)(z)

] 1
n

, q � 0.

Replacing f (z) by Tk(−z) in the above inequality gives[
n

∏
l=0

(−1)q+2l+1(Tk(−z))(q+2l+1)

] 1
n+1

�
[

n

∏
l=1

(−1)q+2l(Tk(−z))(q+2l)

] 1
n

, q � 0.

Letting z → 0+ in the above inequality leads to (1.13) . The proof of Theorem 5 is
complete. �

3. Conclusions

In this paper, we have established a unified generalization for the Bell-Touchard
polynomials of order k and the r -Bell polynomials, and have further shown that the
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generating function of the generalized Bell-Touchard polynomials is logarithmically
absolutely monotonic. Making using of the result we have obtained some inequalities
for the generalized Bell-Touchard polynomials. In particular, the logarithmic convexity
of the generalized Bell-Touchard polynomials has been derived.
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