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Lp –DUAL AFFINE SURFACE AREAS FOR

THE GENERAL Lp –CENTROID BODIES

JUAN ZHANG AND WEIDONG WANG ∗

(Communicated by J. Pečarić)

Abstract. Lutwak and Zhang proposed the concept of Lp -centroid bodies. Further, Haberl and
Schuster extended this notion to the general Lp -centroid bodies. In this paper, associated with
the Lp -dual affine surface areas, we give the extremum values of polar for the general Lp -
centroid bodies. Moreover, the Lp -dual affine surface area forms of the Brunn-Minkowski type
inequality and a monotone inequality are established.

1. Introduction and main results

Let K n denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space R

n . For the set of star bodies (about the origin), the set of
star bodies whose centroid lie at the origin and the set of origin-symmetric star bodies
in R

n , we write S n
o , S n

c and S n
os , respectively. Let Sn−1 denote the unit sphere in R

n

and V (K) denote the n -dimensional volume of a body K . For the standard unit ball B
in R

n , its volume is written by ωn = V (B) .
The notion of centroid body was introduced by Petty ([18]). For a compact set

K , the centroid body, ΓK , of K is an origin-symmetric convex body whose support
function is defined by (see [8])

h(ΓK,u) =
1

V (K)

∫
K
|u · x|dx,

for all u ∈ Sn−1 . The centroid body is one of the most important notions in the Brunn-
Minkowski theory. In the recent 30 years, the centroid bodies have attracted increasing
attention (see [8, 21]).

In 1997, Lutwak and Zhang ([14]) introduced the notion of Lp -centroid bodies.
For each compact star-shaped (about the origin) K in R

n and real number p � 1,
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the Lp -centroid body, ΓpK , of K is an origin-symmetric convex body whose support
function is defined by

h(ΓpK,u)p =
1

cn,pV (K)

∫
K
|u · x|pdx

=
1

cn,p(n+ p)V(K)

∫
Sn−1

|u · v|pρ(K,v)n+pdS(v), (1.1)

for all u ∈ Sn−1 . Here
cn,p = ωn+p/ω2ωnωp−1,

and dS(v) denotes the standard spherical Lebesgue measure on Sn−1 . The normaliza-
tion in (1.1) is chosen such that ΓpB = B . Regarding the investigations of Lp -centroid
bodies, we may refer to [1, 2, 3, 4, 15, 23, 24, 26, 27, 32].

In 2005, Ludwig ([16]) introduced a function ϕτ : R → [0,+∞) by

ϕτ(t) = |t|+ τt, (1.2)

with a parameter τ ∈ [−1,1] .
Based on Lp -centroid bodies and definition (1.2), Ludwig ([16]) defined a corre-

sponding notion of general Lp -centroid bodies (in fact, the author defined the general
Lp -moment body which is a dilatation of the general Lp -centroid body. For the defini-
tion of general Lp -centroid body, can see [6]). For K ∈ S n

o , p � 1 and τ ∈ [−1,1] ,
the general Lp -centroid body, Γτ

pK , of K is a convex body whose support function is
defined by

h(Γτ
pK,u)p =

2
cn,p(τ)V (K)

∫
K

ϕτ(u · x)pdx

=
2

cn,p(τ)(n+ p)V(K)

∫
Sn−1

ϕτ(u · v)pρ(K,v)n+pdS(v), (1.3)

where
cn,p(τ) = cn,p[(1+ τ)p +(1− τ)p].

The normalization in (1.3) is chosen such that Γτ
pB = B for every τ ∈ [−1,1] and

Γ0
pK = ΓpK. For the more investigations of general Lp -centroid bodies, see [6, 19, 25].

In 2009, Haberl and Schuster ([11]) introduced the notion of asymmetric Lp -
centroid bodies (they actually defined the asymmetric Lp -moment body which is a
dilatation of the asymmetric Lp -centroid body) as follows: For K ∈ S n

o , p � 1, the
asymmetric Lp -centroid body, Γ+

p K , of K is the convex body whose support function
is defined by

h(Γ+
p K,u)p =

2
cn,pV (K)

∫
K
(u · x)p

+dx

=
2

cn,p(n+ p)V(K)

∫
Sn−1

(u · v)p
+ρ(K,v)n+pdS(v), (1.4)
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where (u · x)+ = max{u · x,0} for all u ∈ S n−1 . From (1.4) we see that Γ+
p B = B . In

[11] Haberl and Schuster also defined

Γ−
p K = Γ+

p (−K). (1.5)

From the definitions of Γ±
p K and (1.3), Haberl and Schuster ([11]) deduced that

for K ∈ S n
o , p � 1 and τ ∈ [−1,1],

Γτ
pK = f1(τ) ·Γ+

p K +p f2(τ) ·Γ−
p K, (1.6)

where ‘+p ’ denotes the Lp -Minkowski addition, and

f1(τ) =
(1+ τ)p

(1+ τ)p +(1− τ)p , f2(τ) =
(1− τ)p

(1+ τ)p +(1− τ)p . (1.7)

Obviously, by (1.7), we deduce that

f1(−τ) = f2(τ), f2(−τ) = f1(τ), (1.8)

f1(τ)+ f2(τ) = 1. (1.9)

Setting τ = 0 in (1.6) and combining with (1.7), we see that

ΓpK =
1
2
·Γ+

p K +p
1
2
·Γ−

p K. (1.10)

If τ = ±1 in (1.6), then by (1.7), Γ+1
p K = Γ+

p K, Γ−1
p K = Γ−

p K . From (1.4), (1.6) and
(1.8), we easily obtain for τ ∈ [−1,1] (see [25])

Γ−τ
p K = Γτ

p(−K) = −Γτ
pK. (1.11)

In 2010, Wang, Yuan and He ([30]) showed a type of Lp -dual affine surface areas. In
2015, Pei and Wang ([20]) made the following improvement: For K ∈ S n

o and p > 0,
the Lp -dual affine surface area, Ω̃p(K) , of K is defined by

n−
p
n Ω̃p(K)

n+p
n = sup{nṼp(K,Q∗)V (Q)

p
n : Q ∈ S n

os}. (1.12)

Here the Ṽp(M,N) denotes the Lp -dual mixed volume of M,N ∈ S n
o . When Q ∈S n

c ,
the Lp -dual affine surface area was given by Wang and Wang (see [28]). For the studies
of Lp -dual affine surface area, some results have been obtained in these articles (see
[5, 22, 29]).

In this paper, associated with the Lp -dual affine surface area, we continuously
study general Lp -centroid bodies. Firstly, combined with (1.12), we obtain the ex-
tremum values for the Lp -dual affine surface areas of polar of the general Lp -centroid
bodies.

THEOREM 1.1. For K ∈ S n
o , 1 � p < n and τ ∈ [−1,1] , then

Ω̃p(Γ∗
pK) � Ω̃p(Γτ,∗

p K) � Ω̃p(Γ±,∗
p K). (1.13)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the
left inequality if and only if τ = 0 and equality in the right inequality if and only if
τ = ±1 . Here, Γ∗

pM denotes the polar body of ΓpM .

Then, we establish the following Lp -dual affine surface area version of Brunn-
Minkowski inequality for the polar of the general Lp -centroid bodies.
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THEOREM 1.2. For K,L ∈ S n
o , 1 � p < n and τ ∈ [−1,1] , then

Ω̃p(Γτ,∗
p (K+̂pL))−

p(n+p)
n(n−p) � Ω̃p(Γτ,∗

p K)−
p(n+p)
n(n−p) + Ω̃p(Γτ,∗

p L)−
p(n+p)
n(n−p) , (1.14)

with equality if and only if Γτ,∗
p K and Γτ,∗

p L are dilates.

Finally, we give a monotone inequality for the polar of the general Lp -centroid
bodies.

THEOREM 1.3. For K,L ∈ S n
o , 1 � p < n and τ ∈ [−1,1] , if K ⊆ L, then

Ω̃p(Γτ,∗
p K)

n+p
n

V (K)
n−p

p

� Ω̃p(Γτ,∗
p L)

n+p
n

V (L)
n−p

p

, (1.15)

equality holds when K = L.

2. Notation and background material

In order to complete the proofs of Theorems 1.1-1.3, we will require the following
notions.

2.1. Support function, radial function and polar of convex bodies

Let R be the set of real numbers. If K ∈ K n , then the support function of K ,
hK = h(K, ·) : R

n → R, is defined by (see [8])

h(K,x) = max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y in R
n .

For K is a compact star shaped (about the origin) in R
n , the radial function of K ,

ρK = ρ(K, ·) : R
n \ {0}→ [0,+∞) , is defined by (see [21])

ρ(K,x) = max{λ � 0 : λx ∈ K}, x ∈ R
n \ {0}.

If ρK is positive and continuous, K will be called a star body (with respect to the
origin).

If E is a nonempty subset and contains the origin in R
n , then the polar set, E∗ , of

E is defined by (see [8, 21])

E∗ = {x ∈ R
n : x · y � 1, y ∈ E}.

Meanwhile, it is easy to get that (K∗)∗ = K for K ∈ K n
o . Here K n

o denotes the set of
convex bodies containing the origin in their interiors in R

n .
From the above definitions, we see that if K ∈ K n

o , then (see [8, 21])

h(K∗, ·) =
1

ρ(K, ·) , ρ(K∗, ·) =
1

h(K, ·) . (2.1)

Associated with (2.1), if K,L ∈ K n
o and K ⊆ L , then K∗ ⊇ L∗.
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2.2. Lp -Minkowski combination and Lp -harmonic radial combination

For K,L ∈ K n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -Minkowski combi-

nation, λ ·K +p μ ·L ∈ K n
o , of K and L is defined by (see [7, 21])

h(λ ·K +p μ ·L, ·)p = λh(K, ·)p + μh(L, ·)p, (2.2)

where λ ·K denotes the Lp -Minkowski scalar multiplication and we easily obtain λ ·
K = λ

1
p K .

For K,L ∈ S n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic radial

combination, λ ×K+̃−pμ ×L ∈ S n
o , of K and L is defined by (see [13])

ρ(λ ×K+̃−pμ ×L, ·)−p = λ ρ(K, ·)−p + μρ(L, ·)−p, (2.3)

where the operation ‘+̃−p ’ is called Lp -harmonic radial addition, λ ×K denotes the

Lp -harmonic radial scalar multiplication and we easily obtain λ ×K = λ− 1
p K.

From (2.1), (2.2) and (2.3), we easily get that if K,L ∈ K n
o , p � 1, and λ ,μ � 0

(not both zero), then (see [13])

(λ ·K +p μ ·L)∗ = λ ×K∗+̃−pμ ×L∗. (2.4)

2.3. Lp -dual mixed volume

For K,L ∈ S n
o , then for p > 0 and λ ,μ � 0 (not both zero), the Lp -radial com-

bination, λ �K+̃pμ �L , of K and L is given by (see [9, 21])

ρ(λ �K+̃pμ �L, ·)p = λ ρ(K, ·)p + μρ(L, ·)p,

where λ �K denotes the Lp -radial scalar multiplication and we easily obtain λ �K =

λ
1
p K .

Associated with the Lp -radial combinations of star bodies, the notion of Lp -dual
mixed volume as follows: For K,L∈S n

o , p > 0 and ε > 0, the Lp -dual mixed volume,
Ṽp(K,L) , of K and L is given by (see [10, 31])

n
p
Ṽp(K,L) = lim

ε→0+

V (K+̃pε �L)−V(K)
ε

.

From above definition, the integral representation of Lp -dual mixed volume can be
given by (see [10])

Ṽp(K,L) =
1
n

∫
Sn−1

ρ(K,u)n−pρ(L,u)pdS(u), (2.5)

where the integration is with respect to spherical Lebesgue measure S on Sn−1 .
From (2.5), we easily know that

Ṽp(K,K) = V (K) =
1
n

∫
Sn−1

ρ(K,u)ndS(u).
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2.4. Lp -harmonic Blaschke combination

For K,L ∈ S n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic Blaschke

combination, λ ◦K+̂pμ ◦L ∈ S n
o , of K and L is defined by (see [17])

ρ(λ ◦K+̂pμ ◦L, ·)n+p

V (λ ◦K+̂pμ ◦L)
= λ

ρ(K, ·)n+p

V (K)
+ μ

ρ(L, ·)n+p

V (L)
,

where the operation ‘+̂p ’ is called Lp -harmonic Blaschke addition, λ ◦K denotes Lp -

harmonic Blaschke scalar multiplication and we easily obtain λ ◦K = λ
1
p K . When

λ = μ = 1, K+̂pL is called Lp -harmonic Blaschke sum.

3. Proofs of main theorems

In this section, we will prove Theorems 1.1-1.3. To complete the proof of Theorem
1.1, we require the following lemmas.

LEMMA 3.1. If K,L ∈S n
o , 1 � p < n and λ ,μ � 0 (not both zero), then for any

Q ∈ S n
o ,

Ṽp(λ ×K+̃−pμ ×L,Q∗)−
p

n−p � λṼp(K,Q∗)−
p

n−p + μṼp(L,Q∗)−
p

n−p ,

with equality if and only if K and L are dilates.

Proof. For K,L∈S n
o and 1 � p < n , thus − n−p

p < 0. By (2.5) and the Minkowski
integral inequality (see[12]), for any Q ∈ S n

o , we have

Ṽp(λ ×K+̃−pμ ×L,Q∗)−
p

n−p

=
[
1
n

∫
Sn−1

ρ(λ ×K+̃−pμ ×L,u)n−pρ(Q∗,u)pdS(u)
]− p

n−p

=
[
1
n

∫
Sn−1

(
ρ(λ ×K+̃−pμ ×L,u)−pρ(Q∗,u)−

p2
n−p

)− n−p
p

dS(u)
]− p

n−p

=
{

1
n

∫
Sn−1

[(
λ ρ(K,u)−p + μρ(L,u)−p

)
ρ(Q∗,u)−

p2
n−p

]− n−p
p

dS(u)
}− p

n−p

�λ
[
1
n

∫
Sn−1

ρ(K,u)n−pρ(Q∗,u)pdS(u)
]− p

n−p

+ μ
[
1
n

∫
Sn−1

ρ(L,u)n−pρ(Q∗,u)pdS(u)
]− p

n−p

=λṼp(K,Q∗)−
p

n−p + μṼp(L,Q∗)−
p

n−p .

According to the equality condition of Minkowski integral inequality, we see that equal-
ity holds if and only if K and L are dilates. �



Lp -DUAL AFFINE SURFACE AREAS 661

LEMMA 3.2. If K,L ∈ S n
o , 1 � p < n and λ ,μ � 0 (not both zero), then

Ω̃p(λ ×K+̃−pμ ×L)−
p(n+p)
n(n−p) � λ Ω̃p(K)−

p(n+p)
n(n−p) + μΩ̃p(L)−

p(n+p)
n(n−p) , (3.1)

with equality if and only if K and L are dilates.

Proof. Since 1 � p < n , thus − n−p
p < 0. Combined with Lemma 3.1 and (1.12),

we have

Ω̃p(λ ×K+̃−pμ ×L)−
p(n+p)
n(n−p)

=
[
sup

{
n

n+p
n Ṽp(λ ×K+̃−pμ ×L,Q∗)V (Q)

p
n : Q ∈ S n

os

}]− p
n−p

= inf

{
n
− p(n+p)

n(n−p) Ṽp(λ ×K+̃−pμ ×L,Q∗)−
p

n−pV (Q)−
p2

n(n−p) : Q ∈ S n
os

}

� inf

{
n
− p(n+p)

n(n−p)

[
λṼp(K,Q∗)−

p
n−p + μṼp(L,Q∗)−

p
n−p

]
V (Q)−

p2

n(n−p) : Q ∈ S n
os

}

�λ inf

{[
n

n+p
n Ṽp(K,Q∗)V (Q)

p
n

]− p
n−p

: Q ∈ S n
os

}

+ μ inf

{[
n

n+p
n Ṽp(L,Q∗)V (Q)

p
n

]− p
n−p

: Q ∈ S n
os

}

=λ
[
sup

{
n

n+p
n Ṽp(K,Q∗)V (Q)

p
n : Q ∈ S n

os

}]− p
n−p

+ μ
[
sup

{
n

n+p
n Ṽp(L,Q∗)V (Q)

p
n : Q ∈ S n

os

}]− p
n−p

=λ Ω̃p(K)−
p(n+p)
n(n−p) + μΩ̃p(L)−

p(n+p)
n(n−p) .

Thus

Ω̃p(λ ×K+̃−pμ ×L)−
p(n+p)
n(n−p) � λ Ω̃p(K)−

p(n+p)
n(n−p) + μΩ̃p(L)−

p(n+p)
n(n−p) .

This yields (3.1). According to the equality condition of Lemma 3.1, we see that equal-
ity holds in (3.1) if and only if K and L are dilates. �

LEMMA 3.3. ([25]) If K ∈S n
o , p � 1 and p is not odd integer, then Γ+

p K = Γ−
p K

if and only if K is origin-symmetric.

LEMMA 3.4. ([25]) If K ∈ S n
o , p � 1 and p is not odd integer, then for τ ∈

[−1,1] and τ �= 0 , Γτ
pK = Γ−τ

p K if and only if K is origin-symmetric.

LEMMA 3.5. ([25]) If K ∈ S n
o , p � 1 and τ ∈ [−1,1] , then

ΓpK =
1
2
·Γτ

pK +p
1
2
·Γ−τ

p K.
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Proof of Theorem 1.1. From (1.6) and (2.4), we have

Γτ,∗
p K = f1(τ)×Γ+,∗

p K+̃−p f2(τ)×Γ−,∗
p K.

Combining with (3.1), we have

Ω̃p(Γτ,∗
p K)−

p(n+p)
n(n−p) = Ω̃p( f1(τ)×Γ+,∗

p K+̃−p f2(τ)×Γ−,∗
p K)−

p(n+p)
n(n−p)

� f1(τ)Ω̃p(Γ+,∗
p K)−

p(n+p)
n(n−p) + f2(τ)Ω̃p(Γ−,∗

p K)−
p(n+p)
n(n−p) . (3.2)

Since Γ+,∗
p K = −Γ−,∗

p K and Q ∈ S n
os , then ρ(Q,u) = ρ(−Q,u) = ρ(Q,−u) for all

u ∈ Sn−1 , thus by (2.5) we get that

Ṽp(Γ−,∗
p K,Q∗) = Ṽp(−Γ+,∗

p K,Q∗) = Ṽp(Γ+,∗
p K,Q∗).

Therefore, from definition (1.12), it follows that

Ω̃p(Γ+,∗
p K) = Ω̃p(Γ−,∗

p K). (3.3)

Combining with (3.2), (3.3) and (1.9), we can get

Ω̃p(Γτ,∗
p K)−

p(n+p)
n(n−p) � Ω̃p(Γ±,∗

p K)−
p(n+p)
n(n−p) ,

i.e.,

Ω̃p(Γτ,∗
p K) � Ω̃p(Γ±,∗

p K). (3.4)

According to the equality condition of inequality (3.1), we know that equality holds in
(3.4) if and only if Γ+,∗

p K and Γ−,∗
p K are dilates. Since Γ+,∗

p K = −Γ−,∗
p K , this means

Γ+,∗
p K = Γ−,∗

p K . Hence, from Lemma 3.3, we see that if K is not origin-symmetric,
then equality holds in (3.4) if and only if τ = ±1.

Now, we prove the left inequality of (1.13). From Lemma 3.5 and (2.4), we have

Γ∗
pK =

1
2
×Γτ,∗

p K+̃−p
1
2
×Γ−τ,∗

p K.

Combining with (3.1), we have

Ω̃p(Γ∗
pK)−

p(n+p)
n(n−p) = Ω̃p

(
1
2
×Γτ,∗

p K+̃−p
1
2
×Γ−τ,∗

p K

)− p(n+p)
n(n−p)

� 1
2

Ω̃p(Γτ,∗
p K)−

p(n+p)
n(n−p) +

1
2

Ω̃p(Γ−τ,∗
p K)−

p(n+p)
n(n−p) . (3.5)

Due to Γ−τ,∗
p K = −Γτ,∗

p K by (1.11), similar to the proof of (3.3), we have

Ω̃p(Γτ,∗
p K) = Ω̃p(Γ−τ,∗

p K). (3.6)

From (3.5) and (3.6), we deduce

Ω̃p(Γ∗
pK) � Ω̃p(Γτ,∗

p K). (3.7)

Using Γτ,∗
p K = −Γ−τ,∗

p K and the equality condition of inequality (3.1), we know that
equality holds in (3.7) if and only if Γτ,∗

p K = Γ−τ,∗
p K . By Lemma 3.4, we see that if K

is not origin-symmetric, then equality holds in (3.7) if and only if τ = 0. �
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LEMMA 3.6. ([6]) If K,L ∈ S n
o , p � 1 and τ ∈ [−1,1] , then

ρ(Γτ,∗
p (K+̂pL),u)−p = ρ(Γτ,∗

p K,u)−p + ρ(Γτ,∗
p L,u)−p. (3.8)

LEMMA 3.7. If K,L ∈ S n
o , 1 � p < n and τ ∈ [−1,1] , then for any Q ∈ S n

o ,

Ṽp(Γτ,∗
p (K+̂pL),Q∗)−

p
n−p � Ṽp(Γτ,∗

p K,Q∗)−
p

n−p + Ṽp(Γτ,∗
p L,Q∗)−

p
n−p , (3.9)

with equality if and only if Γτ,∗
p K and Γτ,∗

p L are dilates.

Proof. Since 1 � p < n , thus − n−p
p < 0. Hence by (2.5), (3.8) and the Minkowski

integral inequality (see[12]), for any Q ∈ S n
o , we have that

Ṽp(Γτ,∗
p (K+̂pL),Q∗)−

p
n−p

=
[
1
n

∫
Sn−1

ρ(Γτ,∗
p (K+̂pL),u)n−pρ(Q∗,u)pdS(u)

]− p
n−p

=
[
1
n

∫
Sn−1

(
ρ(Γτ,∗

p (K+̂pL),u)−pρ(Q∗,u)−
p2

n−p

)− n−p
p

dS(u)
]− p

n−p

=
{

1
n

∫
Sn−1

[(
ρ(Γτ,∗

p K,u)−p + ρ(Γτ,∗
p L,u)−p

)
ρ(Q∗,u)−

p2
n−p

]− n−p
p

dS(u)
}− p

n−p

�
[
1
n

∫
Sn−1

ρ(Γτ,∗
p K,u)n−pρ(Q∗,u)pdS(u)

]− p
n−p

+
[
1
n

∫
Sn−1

ρ(Γτ,∗
p L,u)n−pρ(Q∗,u)pdS(u)

]− p
n−p

=Ṽp(Γτ,∗
p K,Q∗)−

p
n−p + Ṽp(Γτ,∗

p L,Q∗)−
p

n−p .

According to the equality condition of Minkowski integral inequality, we see that equal-
ity holds in (3.9) if and only if Γτ,∗

p K and Γτ,∗
p L are dilates. �

Proof of Theorem 1.2. Since − n−p
p < 0, thus by definition (1.12) and inequality

(3.9), we obtain

Ω̃p(Γτ,∗
p (K+̂pL))−

p(n+p)
n(n−p)

=
[
sup

{
n

n+p
n Ṽp(Γτ,∗

p (K+̂pL),Q∗)V (Q)
p
n : Q ∈ S n

os

}]− p
n−p

= inf

{
n
− p(n+p)

n(n−p) Ṽp(Γτ,∗
p (K+̂pL),Q∗)−

p
n−pV (Q)−

p2

n(n−p) : Q ∈ S n
os

}

� inf

{
n
− p(n+p)

n(n−p)

[
Ṽp(Γτ,∗

p K,Q∗)−
p

n−p + Ṽp(Γτ,∗
p L,Q∗)−

p
n−p

]
V (Q)−

p2

n(n−p) : Q ∈ S n
os

}

� inf

{
n

n+p
n Ṽp(Γτ,∗

p K,Q∗)V (Q)
p
n : Q ∈ S n

os

}− p
n−p
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+ inf

{
n

n+p
n Ṽp(Γτ,∗

p L,Q∗)V (Q)
p
n : Q ∈ S n

os

}− p
n−p

=
[
sup

{
n

n+p
n Ṽp(Γτ,∗

p K,Q∗)V (Q)
p
n : Q ∈ S n

os

}]− p
n−p

+
[
sup

{
n

n+p
n Ṽp(Γτ,∗

p L,Q∗)V (Q)
p
n : Q ∈ S n

os

}]− p
n−p

=Ω̃p(Γτ,∗
p K)−

p(n+p)
n(n−p) + Ω̃p(Γτ,∗

p L)−
p(n+p)
n(n−p) .

This yields inequality (1.14).
By the equality condition of (3.9), we see that equality holds in (1.14) if and only

if Γτ,∗
p K and Γτ,∗

p L are dilates. �
Letting τ = 0 in Theorem 1.2, we get another Brunn-Minkowski type inequality

with respect to Lp -harmonic Blaschke combination:

COROLLARY 3.1. For K,L ∈ S n
o and 1 � p < n, then

Ω̃p(Γ∗
p(K+̂pL))−

p(n+p)
n(n−p) � Ω̃p(Γ∗

pK)−
p(n+p)
n(n−p) + Ω̃p(Γ∗

pL)−
p(n+p)
n(n−p) ,

with equality if and only if Γ∗
pK and Γ∗

pL are dilates.

Proof of Theorem 1.3. For K,L ∈ S n
o , 1 � p < n and τ ∈ [−1,1] . If K ⊆ L , then

ρ(K, ·) � ρ(L, ·), (3.10)

with equality if and only if K = L .
From (1.3) and (2.1), we have

ρ(Γτ,∗
p K,u)−p =

2
cn,p(τ)(n+ p)V(K)

∫
Sn−1

ϕτ(u · v)pρ(K,v)n+pdS(v). (3.11)

By (2.5), (3.10) and (3.11), we can get

V (K)−
n−p

p Ṽp(Γτ,∗
p K,Q∗)

=V (K)−
n−p

p
1
n

∫
Sn−1

ρ(Γτ,∗
p K,u)n−pρ(Q∗,u)pdS(u)

=V (K)−
n−p

p
1
n

∫
Sn−1

[
ρ(Γτ,∗

p K,u)−pρ(Q∗,u)−
p2

n−p

]− n−p
p

dS(u)

=
1
n

∫
Sn−1

[
2

cn,p(τ)(n+ p)

∫
Sn−1

ϕτ(u · v)pρ(K,v)n+pdS(v)ρ(Q∗,u)−
p2

n−p

]− n−p
p

dS(u)

�1
n

∫
Sn−1

[
2

cn,p(τ)(n+ p)

∫
Sn−1

ϕτ(u · v)pρ(L,v)n+pdS(v)ρ(Q∗,u)−
p2

n−p

]− n−p
p

dS(u)

=V (L)−
n−p

p Ṽp(Γτ,∗
p L,Q∗).
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Combined with (1.12), we easily get

Ω̃p(Γτ,∗
p K)

n+p
n

V (K)
n−p

p

= V (K)−
n−p

p sup

{
n

n+p
n Ṽp(Γτ,∗

p K,Q∗)V (Q)
p
n : Q ∈ S n

os

}

� V (L)−
n−p

p sup

{
n

n+p
n Ṽp(Γτ,∗

p L,Q∗)V (Q)
p
n : Q ∈ S n

os

}

=
Ω̃p(Γτ,∗

p L)
n+p

n

V (L)
n−p

p

.

According to the equality condition of (3.10), we see that equality holds in (1.15)
when K = L . �

Letting τ = 0 in Theorem 1.3, we get another monotone inequality for the polar
of the Lp -centroid bodies:

COROLLARY 3.2. For K,L ∈ S n
o and 1 � p < n, if K ⊆ L, then

Ω̃p(Γ∗
pK)

n+p
n

V (K)
n−p

p

�
Ω̃p(Γ∗

pL)
n+p

n

V (L)
n−p

p

,

equality holds when K = L.
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