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QUANTUM HERMITE-HADAMARD INEQUALITIES FOR DOUBLE
INTEGRAL AND ¢-DIFFERENTIABLE CONVEX FUNCTIONS

JULALAK PRABSEANG, KAMSING NONLAOPON* AND JESSADA TARIBOON

(Communicated by M. Krni¢)

Abstract. In this paper, we establish some new quantum analogue of Hermite-Hadamard in-
equalities for double integral and refinements of Hermite-Hadamard inequality for g-differentiable
convex functions.

1. Introduction

In mathematics, the quantum calculus is the study of calculus without limits and is
sometimes called the g-calculus. In quantum calculus, we obtain g-analogues of math-
ematical objects that can be recaptured as ¢ — 1. The history of quantum calculus can
be traced back to Euler (1707-1783), who first introduced the g-calculus in the tracks
of Newton’s work of infinite series. In the early twentieth century, Jackson [13] first de-
fined and studied the g-integral in a systematic way. Later, the integral representations
of g-gamma and g-beta functions were proposed by De Sole and Kac [5]. In recent
years, the topic of g-calculus have been studied by several researchers and variety of
new results can be found in the literature [1, 2, 4, 8, 9, 10, 12, 14, 16, 17, 19, 20, 23]
and the references cited therein.

In 1893, Hadamard [ 1] investigated one of the fundamental inequalities in analy-

sis, that is,
at+b fla)+f(b)
f( ! ) — a/f L, (L1)

which is now known as Hermite-Hadamard inequality. In 2014, Tariboon and Ntouyas
[21] studied the extension to g-calculus of several important integral inequalities, from
which they obtained the g-Holder, g-Hermite-Hadamard, g-trapezoid, g-Ostrowski,
g-Cauchy-Bunyakovsky-Schwarz, ¢-Griiss and ¢-Griiss-Cebygev integral inequalities.
In 2016, Alp et al. [3] proved the correct g-Hermite-Hadamard inequality, and then
obtained some new ¢-Hermite-Hadamard inequalities and generalized g-Hermite-
Hadamard inequalities. Using the left hand part of the correct g-Hermite-Hadamard
inequality, they also obtained a new equality. Furthermore, they used the new equal-
ity to obtain ¢-midpoint type integral inequalities through g-differentiable convex and
q-differentiable quasi-convex functions.
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In 1990, Dragomir [6] gave the following refinements of Hermite-Hadamard in-

equality:
a+b 1 b b
< —
f( 5 >\ b_a2//f(tx+(l 1)y)dxdy

fla)+ f(b) f( )

Since then, many researchers have developed various extensions and refinements of
Hermite-Hadamard inequality.

The purpose of this paper is to present the g-calculus of Hermite-Hadamard in-
equalities for double integrals and refinements of Hermite-Hadamard inequality, ob-
tained as special cases when g — 1.

2. Preliminaries

In this section, we recall some previously known concepts and basic results. Thro-
ughout this section, we let J = [a,b] C R be an interval and ¢ be a constant with
0<g<1.

DEFINITION 2.1. Let f:J — R be a continuous function and let x € J. Then
the g-derivative of f on J at x is defined as

Dy f(x) = f) (_lf_(‘é);;;(_la_) 99 torxta. 2.1

For x = a, we define ,Dyf(a) =lim ,D,f(x).

A function f is g-differentiable on J if ,D,f(x) exists for all x € J. Moreover,
if a=01in (2.1), then (D, f = D, f, where D, is the well-known g-derivative of the
function f(x), which is defined by

For more details, see [15].
In addition, we shall define higher-order g-derivatives of functions on J.

DEFINITION 2.2. Let f:J — R be a continuous function. The second-order g-
derivative of f on J, denote by L,Dé f (provided that ,D, f is g-differentiable on J), is
the function from J — R defined by

aDif: qu(quf)'

Similarly, provided that aDZ_l f is g-differentiable on J for some integer n > 2, the
n'" -order g-derivative of f on J is the function from J — R defined by

aDLf =4 Dyg(aDy " f).
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EXAMPLE 2.1. Define function f:J — R by f(x) =x>+1.Let 0< ¢ < 1. Then
for x # a, we have

(2 +1) = [(gx+ (1 —g)a)*+1] N (14 q)x*> —2gax — (1 — q)a®
(1-g)(x—a) (x—a)
=(14+g)x+(1l—q)a. (2.2)

WDg(* +1) =

For x = a, we have (D, f(a) = lim .D,f(x) =

DEFINITION 2.3. Let f:J C R — R be a continuous function. Then the g-
integral on J is defined by

oo

[ 700) g = (1 - ) T4+ (1)) 2.3)

forxeJ.
If =0 in (2.3), then we have the classical g-integral of the function f(x), which
is defined by

. -
| 5@ odt = 1 =ax ¥ a0
n=0
for x € [0,00); see [15] for more details.

EXAMPLE 2.2. Define function f:J — R by f(x) =2x. Let 0 < g < 1. Then
we have

[ 109 st = [ 2xadyr=201 - )b~ ) 3 (ap + (1~ )

n=0
2(b—a)(b+qa)
- l+g¢q .

Note that if ¢ — 1, then we have the classical integration

b b
/f(x)dx:/ 2xdx = b* —d®.

THEOREM 2.1. Let f:J — R be a continuous function. Then we have the fol-
lowing:

(@) aDg 3 £(t) adgt = f(x);
(i) [T aDqf(t) adgt = f(x) — f(c) for ¢ € (a,x).

THEOREM 2.2. Let f,g:J — R be continuous functions and & € R. Then we
have the following:

() Jo [F(0) +8(0)] adgt = [o (0)adgt + J5 8(1)dgt
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(i) [ (@f)(1) adgt = 0 [ (1) adyt
(i) [ £(0)aDgg(t) adyt = ()1~ J:* gt + (1 — @)Dy f (¢) udyt for c € (a,x).

For the proofs of theorem 2.1 and theorem 2.2, see [22].

THEOREM 2.3. Let f:J — R be a convex differentiable function on (a,b) and
0 < g < 1. Then we have

ga+b qf(a)+f(b)
f(l—i—q) b— a/f S l+qg @24

THEOREM 2.4. Let f:J — R be a convex differentiable function on (a,b) and
0 < g < 1. Then we have

f(al—:_ch?)_i_(l—l({?:l;—a)f/(al—:_q;) — a/f x< f(l)—:‘qf( )

2.5

THEOREM 2.5. Let f:J — R be a convex differentiable function on (a,b) and
0 < g < 1. Then we have

(3 ) 5 o st

For the proof of theorem 2.3, theorem 2.4, and theorem 2.5, see [3].

LEMMA 2.1. Let f:J — R be a convex continuous functionon J and 0 < g < 1.

Then we have
1 b b
f(m/a /a (tx+(1—1)y) adqxadqy>

1 b b
<m /a /a ftx+ (1 =1)y) adgXadyy. (2.7)

Proof. The lemma 2.1 follows directly from definition 2.3 and Jensen’s inequal-
ity,. O

3. Main results

In this section, we present the ¢g-Hermite-Hadamard double integral inequality and
refinements of g-Hermite-Hadamard inequalities on the interval J = [a,b].
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THEOREM 3.1. Let f:J — R be a convex continuous function on J and 0 < g <
1. Then we have

(52) < s [ [ s st 5 [

af(a)+f(b)
< T ivg (3.1

forall t €0,1].

Proof. Since f is convex on J, it follows that

flx+ (1 =0)y) <tf()+ 1 =2)f() (3.2)

for all x,y € J and 7 € [0,1]. Taking double g-integration on both sides of (3.2) on
J x J, we obtain

/ah/ubf(tx+(1—t wldoradyy < // £ () + (1—0)f ()] adgradyy
— (b—a) / F)adg, (3.3)

which proves the second part of (3.1) by using the right hand side of g-Hermite-
Hadamard’s inequality.
On the other hand, by lemma 2.1, we have

(e [ ] 0t a=00) sty

1 b b
<gap | [ A (0w adprady

1 b rb qa+b
. x4 (1= 1)y), doxadyy = ,
Goar [ e 0oy = 5

Since

this yields the first part of (3.1). O

REMARK 3.1. If ¢ — 1, then (3.1) reduces to (1.2), that is,

()t [ [t 5 [ 221

COROLLARY 3.1. Ler f:J — R be a convex continuous function on [a,b] and
0 < g < 1. Then we have

(52 <wtanl [t o

cafla)+
71 e (3.4)

\
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REMARK 3.2. If ¢ — 1, then (3.4) reduces to

f<a42rb) — // <x+y)d dy<_/f f(a);rf(b),

which readily appeared in [18].

THEOREM 3.2. Let f:J — R be a convex continuous function on J and 0 < g <
1. Then we have

X+
a7 () v

gm /0 / / Fltx+ (1= 1)) adgradyyadat < / F0) adgr. (3.5)

Proof. Consider the mapping g :J — R given by

b b
g(r)=ﬁ [ [ sexs (1=0) adyrady.

For all 7,1, € [0,1] and o, > 0 with a+ 8 =1, we have

g(OCll‘FﬁQ) //f at1+ﬂt2)x+(1—(at1+ﬁ[2))) qxadqy
<m/ﬂ /a f(tix+ (1 —11)y) adgxadyy

b b
+#/H /u flox+ (1 —10)y) adgxadyy

= og(n1) + Bg(r2),

which proves that g is convex on [0,1]. Using theorem 2.3 for the convex function g,
we have

(b—a) / / (qu) adgXadyy
< ) /g adgt = b—ay ///ftx+ (1=1)y) adgXadgyadgt

q8(0) +
1+q b a/f

This completes the proof. [l

REMARK 3.3. If g — 1, then (3.5) reduces to

ﬁ/ﬂb/abfc%) )///ftx—l— (1 —1)y)dxdydt
/
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which readily appeared in [18].

THEOREM 3.3. Let f:J — R be a g-differentiable convex continuous function
and 0 < g < 1. Then the inequalities

1 b 1 b b
0< b—a/ f(x) adqx_iz/ / f(lx+(1—t)y) adqxadqy

[f( )1161;( / Flaxt(1—g)a) dqx} (3.6)

<t
are valid for all t € [0,1].

Proof. Since f is convex on J, it follows that

flx+(1—1)y) <tf(x)+(1—1)f(y)

for all x,y € J and ¢ € [0,1]. Taking double g-integration on both sides of the above
inequality on J x J, we obtain

/ab/ubf(tx—I—(l—t adgXadqy < // [tf(x)+ (L=1)f(y)] adgxadqgy

= -a) [ 1) adyr
which yields the first part of (3.6).
On the other hand, since f is g-differentiable convex on J and f' > ,D,f, we
have

flx+(L=1)y) = f(y) = t(x =) aDgf (y)

for all x,y € J and r € [0,1]. Taking double g-integration on both sides of the above
inequality on J X J, we obtain

/h/hf(tx-i-(l—t)y) udqxadqy—(b—a)/ahf(x) dox
>t// X =3)aDgf (V) adgXadyy. (3.7)

Since

//xy Dy f(y) adgXadqy

Z(b—a)/a Flgx+ (1 —gq)a) odgx — (b_a)2M

1+g¢

b
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it follows from (3.7) that

o-a) [ 10— [ [ et (-0 sy

b
<t 0Pl O o0y [ ige (1 g)a) s
1+g¢g a
for all ¢ € [0, 1], which is the second part of (3.6). O

REMARK 3.4. If g — 1, then (3.6) reduces to

b
0<—— [ fx)dn— //ftx+ (1—1)y)dxdy
b—al,

gt[f(“);f( _b_a/u f(x)dx},

which readily appeared in [7, 18].

COROLLARY 3.2. Let f:J — R be a q-differentiable convex continuous function
and 0 < g < 1. Then we have

1a/bf(X)adqx // (”y) dyxadyy

b
L[ f(a)+4q/(b)
<§[ - a/qu—l— ))dqx]. (3.8)

REMARK 3.5. If g — 1, then (3.5) reduces to

Ogbia/abf(x)dx // ( )ddy
a1 / s

)

which readily appeared in [18].

THEOREM 3.4. Let f:J — R be a g-differentiable convex continuous function
which is define at the point % q’”b € (a,b) and 0 < g < 1. Then the inequalities

1 b 1 b ga+b
< a - 7 1_ a
b_a/a F3) adlgx— — /uf<tx+( 1) 1+q) dyx

<(1-1) {f( >1J;q;( / Flgx+(1—q)a )adqx} (3.9)

are valid for all t € [0,1].
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Proof. Since f is convex on J, it follow from theorem 2.3 that

_¢ b
b— a/f adgx = b— a/f qx—i- ;/a F ) adgx
qa+Db
Zpe a/f adgr (1 )f<1+q>
b
>b—a/a f(tx-l—(l—t)qla_:—q)adqx

for all ¢ € [0, 1], which the first part of (3.9).
On the other hand, since f is g-differentiable convex on J, we have

f (tx—l— (1 —t)‘ll‘fqb> CFE) = (1-1) (‘Il‘fqb —x> Dyf ().

Taking g-integration on both sides of the above inequality on J, we obtain

1 b b 1 b
m‘/a f(t.X‘i‘(l—t)qlaj ) qx—m/a f(x) dx

Lo +b
>b_a/u (1—-1) (czrla+q _x) Dy f(x)adyx. (3.10)
Since
b b )
/u (qla:—q ) Dyf(x) qx—/ flgx+(1—g)a )adqx_(b_a)%fi]f()'
(3.11)

Using (3.10) and (3.11), we get the second part of (3.9). [

COROLLARY 3.3. Let f:J— R be a q-differentiable convex continuous function
and 0 < g < 1. Then we have

ga+b(2+q)

2 2(1+q)
0<b a/ f(x) adgx— - /HZqu f(x) adyx

BRI
1
< [f( )l—:—qqf( /qu (1-q)a) dqx} (3.12)

THEOREM 3.5. Let f:J — R be a g-differentiable convex continuous function
which is define at the point ‘qu € (a,b) and 0 < g < 1. Then the inequalities

(1-n4 “”(b—“)f/(awb)

14+gqg I+gq
b b +qgb
<b_a/a f(x)adqx—m/a f(tx+(1—t)al+qq>adqx
by 1 b
<(1—1) [C’f(‘?f;( >—b_a/a Flgx+(1—q)a) udqx} (3.13)

are valid for all t € [0,1].



684 J. PRABSEANG, K. NONLAOPON AND J. TARIBOON
Proof. The proof uses theorem 2.4 and is similar to that of theorem 3.4. [J

COROLLARY 3.4. Let f:J— R be a q-differentiable convex continuous function
and 0 < g < 1. Then we have

(1 —q)(b—a)f, <a+qb>

2(1 + q) 1+g¢
a+lz(2q+)l)
2(1+q
b a 2a+q(a+b) f(x)adqx
2(1+q)
1 +
<E[qf(1)+qf( /qu+ (1— q)a) adgx| - (3.14)

THEOREM 3.6. Let f:J — R be a g-differentiable convex continuous function
which is define at the point “+b € (a,b) and 0 < q < 1. Then the inequalities

(l_t)(lg((i)j_bq;a)f, (a—;b)
<— a/f /hf<tx+(1—t)“;rb) gy
<(1-1) [f(“) /qu+ 9)a) od, ] (3.15)

are valid for all t € [0,1].

Proof. The proof uses theorem 2.5 and is similar to that of theorem 3.4. [J

COROLLARY 3.5. Let f:J — R be a q-differentiable convex continuous function
and 0 < g < 1. Then we have

(1 ;(ci)ibq;a)f, (a—;b)

a+3b
)

1 b 2
< f(x>adqx—f Juzr 0

< [f( PIOL L [ gt (1~ g >adqx]~ (3.16)

REMARK 3.6. If g — 1, then (3.9), (3.13), and (3.15) reduce to

< a/f dx——/hf<tx+(1—t)aT+b)dx

<(1_I>{f(>;f( - a/f dx]
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which readily appeared in [18].

0<

REMARK 3.7. If ¢ — 1, then (3.12), (3.14), and (3.16) reduces to

G 2 e L[f@+fB) 1
o, 005 Lo rare g |0 [ e

which readily appeared in [18].
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