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APPROXIMATION PROPERTIES OF CERTAIN

BERNSTEIN–STANCU TYPE OPERATORS

ANA-MARIA ACU, OGÜN DOǦRU, CARMEN VIOLETA MURARU AND

VOICHIŢA ADRIANA RADU

(Communicated by I. Raşa)

Abstract. In this paper we introduce and investigate a new operator of Bernstein-Stancu type,
based on q-polynomials. We study approximation properties for these operators based on Ko-
rovkin type approximation theorem and study some direct theorems. Also, the study contains
numerical considerations regarding the constructed operators based on Maple algorithms.

1. Introduction

In 1968, Stancu [24] proposed the sequence of positive linear operators S<α>
n :

C[0,1] →C[0,1] , depending on a non-negative parameter α given by

S<α>
n ( f ;x) =

n

∑
k=0

f

(
k
n

)
p<α>

n,k (x), (1)

where p<α>
n,k (x) =

(
n
k

)∏k−1
i=0 (x+ iα)∏n−k−1

j=0 (1− x+ jα)

∏n−1
i=0 (1+ iα)

, x ∈ [0,1] .

For α = 0 these operators reduces to the classical Bernstein operators.
In the papers [11], [12] and [23] starting with the Bernstein operators, the follow-

ing Stancu type operators are constructed and studied:

Cn : C[0,1] → Πn

Cn( f ;x) =
n

∑
k=0

k!
nk

(
n
k

)
mk,n

[
0,

1
n
, ...,

k
n
; f

]
xk, f ∈C[0,1], (2)

where the real numbers
(
mk,n

)∞
k=0 are selected in order to preserve some important

properties of Bernstein operators and Πn is the linear space of all real polynomials of
degree � n .

In the following we consider that m0,n = 1, lim
n→∞

m1,n = 1 and mk,n =
(an)k

k!
, an ∈

(0,1], where (x)k = x(x+1)...(x+ k−1) with (x)0 = 1 is the Pochhammer symbol.
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For the above special case of real sequence (mk,n)∞
k=0 , the Bernstein-Stancu oper-

ators Cn were written in the Bernstein basis as follows (see [11], Theorem 10):

Cn( f ;x) =
n

∑
k=0

bn,k(x)Ck,n[ f ] (3)

where

Ck,n[ f ] =
1
k!

k

∑
j=0

(
k
j

)
f

(
j
n

)
(an) j(1−an)k− j

and

bn,k(x) =
(

n
k

)
xk(1− x)n−k.

We remark that if an ∈ (0,1] , then Cn are linear positive operators.
The q -analog of Stancu operators have attracted much interest, and a great num-

ber of interesting results have been obtained. Recently, G. Nowak [20] introduced a
q -analogue of Stancu’s operators defined in (1). In 2010, O. Agratini [7] involving
modulus of continuity and Lipschitz type maximal function obtained estimates for the
rate of convergence of q -analog of Stancu operators. Also, a probabilistic approach
is given and some approximation properties are established. The approximation prop-
erties of q-Stancu operators were studied by Acar and Aral [1], Acu [4], Agrawal et
al. [8], Aral et al. [10] and Nowak and Gupta [21]. The first results in this field have
been achieved by A. Lupaş [17] and G.M. Phillips [22] who consider q -analogue of
Bernstein operators. In the recent years, several researchers have made significant con-
tribution in this area of approximation theory [2, 3, 5, 6, 9, 14, 16, 19].

First of all, we recall elements of q-Calculus, see, e.g., [15] and [18]. For any fixed
real number q > 0, the q-integer [k]q , for k ∈ N is defined as

[k]q =
{(

1−qk
)
/(1−q), q �= 1

k, q = 1.

Set [0]q = 0. The q-factorial [k]q! and q-binomial coefficients

[
n
k

]
q

are defined

as follows

[k]q! =
{

[k]q[k−1]q...[1]q, k = 1,2, ...
1, k = 0

and [
n
k

]
q
=

[n]q!
[k]q![n− k]q!

, for k ∈ {0,1, . . . ,n}.

The q-analogue of (x−a)n is the polynomial

(x−a)n
q =

{
1, n = 0
(x−a)(x−qa)...(x−qn−1a), n � 1.
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For f ∈C[0,1] , q > 0, α � 0 and n ∈ N , Nowak (see [20]) in 2009 defined the
q -Bernstein-Stancu operators as follows

S<q,α>
n ( f ;x) =

n

∑
k=0

p<α>
n,k (x;q) f

(
[k]q
[n]q

)
,x ∈ [0,1],

with

p<α>
n,k (x;q) =

[
n
k

]
q

∏k−1
i=0 (x+ α[i]q)∏n−k−1

j=0 (1−q jx+ α[ j]q)

∏n−1
i=0 (1+ α[i]q)

.

THEOREM 1.1. [20] Let 0 < q < 1 , α � 0 . Then

S<q,α>
n (1;x) = 1;

S<q,α>
n (t;x) = x;

S<q,α>
n (t2;x) =

1
1+ α

(
x(x+ α)+

x(1− x)
[n]q

)
,

for all n ∈ N and x ∈ [0,1] .

For q = 1, S<q,α>
n turns out to be the Bernstein-Stancu operators (1). For α = 0,

S<q,α>
n reduces to q -Bernstein operators defined by Phillips [22]:

B<q>
n ( f ;x) =

n

∑
k=0

bn,k(x;q) f

(
[k]q
[n]q

)
, x ∈ [0,1],

where bn,k(x;q) =
[

n
k

]
q
xk

n−k−1

∏
j=0

(1−q jx) .

These operators verify

B<q>
n (1;x) = 1, B<q>

n (t;x) = x, B<q>
n (t2;x) = x2 +

x(1− x)
[n]q

. (4)

2. Construction of the generalized q-Bernstein-Stancu operators and the
approximation properties

Our aim is to introduce a q-analogue of the Bernstein-Stancu operators defined
in (3). A q-analogue of Cn is in fact a q-deformation of Bernstein-Stancu operator.
Furthermore, in this section we study some approximation properties of these operators.

Let us define on C[0,1] the linear positive operators C<q>
n by

C<q>
n ( f ;x) =

n

∑
k=0

bn,k(x;q)Ck,n[ f ;q], for all x ∈ [0,1], (5)

with

Ck,n[ f ;q] =
k

∑
j=0

ck, j f

(
[ j]q
[n]q

)
, 0 � k � n,
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ck, j =
[

k
j

]
q

∏ j−1
i=0 (an +[i]q)∏k− j−1

s=0 (1−qsan +[s]q)

∏k−1
i=0 (1+[i]q)

,

where an ∈ (0,1],n ∈ N and q > 0.
We note that ck, j = p<1>

k, j (an;q) . Therefore, Ck,n[ f ;q] = S<q,1>
k

(
f̃ ;an

)
, where

f̃ (t) = f

(
t
[k]q
[n]q

)
.

LEMMA 2.1. The q-Bernstein-Stancu operators C<q>
n given by (5) verify the fol-

lowing identities

i) C<q>
n (e0;x) = 1 ,

ii) C<q>
n (e1;x) = anx ,

iii) C<q>
n (e2;x) =

an(an +1)
2

(
1− 1

[n]q

)
x2 +

an

[n]q
x,

where e j(x) = x j, j = 0,1,2 are the test functions.

Proof. From Theorem 1.1 we have

k

∑
j=0

ck, j = 1;

k

∑
j=0

ck, j
[ j]q
[k]q

= an;

k

∑
j=0

ck, j
[ j]2q
[k]2q

=
1
2

(
an(an +1)+

an(1−an)
[k]q

)
.

Therefore

Ck,n[e0;q] = 1; Ck,n[e1;q] =
[k]q
[n]q

an;

Ck,n[e2;q] =
1
2

[k]2q
[n]2q

(
an(an +1)+

an(1−an)
[k]q

)
.

Using the properties (4) of the q -Bernstein operators, the values of the operator C<q>
n

for test functions are obtained. �

REMARK 2.1. We obtain the following values for the central moments of the q -
Bernstein-Stancu operators

C<q>
n (t − x;x) = C<q>

n (e1;x)− xC<q>
n (e0;x) = (an−1)x,

C<q>
n

(
(t − x)2;x

)
= C<q>

n (e2;x)−2xC<q>
n (e1;x)+ x2C<q>

n (e0;x)

=
(

an(an +1)([n]q−1)
2[n]q

−2an +1

)
x2 +

an

[n]q
x.
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LEMMA 2.2. For f ∈C[0,1] we have ||C<q>
n || � || f || .

Proof. From the definition of the operator and using Lemma 2.1 we have

C<q>
n ( f ;x) =

n

∑
k=0

bn,k(x;q)
k

∑
j=0

ck, j

∣∣∣∣ f
(

[ j]q
[n]q

)∣∣∣∣� || f ||C<q>
n (e0;x) � || f ||. �

LEMMA 2.3. For all x ∈ [0,1] we have

C<q>
n

(
(t − x)2;x

)
� an

[n]q
x(1− x)+ (1−an).

Proof. Using Remark 2.1, we get

C<q>
n

(
(t− x)2;x

)
=
(

an(an +1)([n]q−1)
2[n]q

−2an +1

)
x2 +

an

[n]q
x

=
an

[n]q
x(1− x)+

(
an(an +1)([n]q−1)

2[n]q
−2an +1+

an

[n]q

)
x2

=
an

[n]q
x(1− x)+

(a2
n−3an +2)[n]q +an(1−an)

2[n]q
x2

=
an

[n]q
x(1− x)+

(1−an)
2

{
(2−an)+

an

[n]q

}
x2

� an

[n]q
x(1− x)+ (1−an). �

LEMMA 2.4. Let (qn)n�1 , (an)n�1 be real sequences such that 0 < qn < 1 , an ∈
(0,1] , n ∈ N . If

lim
n→∞

qn = 1, lim
n→∞

an = 1and lim
n→∞

[n]qn(1−an) = a ∈ R, (6)

then

lim
n→∞

[n]qnC
<qn>
n (t− x;x) = −ax,

lim
n→∞

[n]qnC
<qn>
n

(
(t − x)2;x

)
= x(1− x)+a

x2

2
.

Proof. The results follow from Remark 2.1. �

REMARK 2.2. The sequences (qn)n�1 , (an)n�1 , an = qn = 1− 1
n

verify the con-

ditions from the previous Lemma, namely

lim
n→∞

qn = lim
n→∞

an = 1 and lim
n→∞

[n]qn(1−an) = 1− 1
e
.
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3. Direct theorems

We investigate the approximation properties of these operators and we estimate the
rate of convergence by using moduli of continuity. For the classical Bernstein-Stancu
operators Cn similar results was obtained in [23].

THEOREM 3.1. Let (qn)n�1 , (an)n�1 be real sequences such that qn ∈ (0,1) ,
an ∈ (0,1] . If lim

n→∞
an = lim

n→∞
qn = 1 and f ∈C[0,1] , then

lim
n→∞

C<qn>
n ( f ;x) = f (x) uniformly on [0,1].

Proof. Using Lemma 2.1 follows that

lim
n→∞

C<qn>
n (ek;x) = ek(x) uniformly on [0,1], for k ∈ {0,1,2}.

Applying the Bohmann-Korovkin theorem, we get the result. �
The usual modulus of continuity for f ∈C[0,1] gives the maximum oscillation of

f in any interval of length not exceeding δ > 0 and is defined as

ω( f ;δ ) = sup
|y−x|�δ

| f (y)− f (x)|, x,y ∈ [0,1].

It is known that the modulus of continuity of f has the following properties

ω( f ;λ δ ) � (1+ λ )ω( f ;δ )

and

| f (t)− f (x)| � ω( f ;δ )
(

(t− x)2

δ 2 +1

)
.

Our next result is the following local theorem.

THEOREM 3.2. Let (qn)n�1 , (an)n�1 be real sequences such that qn ∈ (0,1) ,
an ∈ (0,1] . If f ∈C[0,1] , then

∣∣C<qn>
n ( f ;x)− f (x)

∣∣ � 5
4

ω( f ;
√

δn),

where δn =
an

[n]qn

+4(1−an).

Proof. We have

|C<qn>
n ( f ;x)− f (x)| �C<qn>

n (| f (t)− f (x)|;x) � ω( f ;δ )
(

1+
1

δ 2C<qn>
n ((t − x)2;x)

)
.
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Using Lemma 2.3, we can write

|C<qn>
n ( f ;x)− f (x)| � ω( f ;δ )

[
1+

1
δ 2

(
an

[n]qn

x(1− x)+ (1−an)
)]

� ω( f ;δ )
[
1+

1
4δ 2

(
an

[n]qn

+4(1−an)
)]

.

So, if we choose δ =
√

δn , we have the desired result. �

THEOREM 3.3. Let (qn)n�1 , (an)n�1 be real sequences such that qn ∈ (0,1) ,
an ∈ (0,1] . If f ∈C1[0,1] , then

∣∣C<qn>
n ( f ;x)− f (x)

∣∣� λn(x)| f ′(x)|+2
√

δn(x)ω( f ′,
√

δn(x)),

where

λn(x) = (1−an)x, δn(x) =
an

[n]qn

φ2(x)+ (1−an) and φ2(x) = x(1− x). (7)

Proof. Let f ∈C1[0,1] . For any x,t ∈ [0,1] , we have

f (t)− f (x) = f ′(x)(t − x)+
∫ t

x

(
f ′(u)− f ′(x)

)
du,

so, we get

C<qn>
n ( f (t)− f (x);x) = f ′(x)C<qn>

n (t− x;x)+C<qn>
n

(∫ t

x
( f ′(u)− f ′(x))du;x

)
.

Using the following well known property of modulus of continuity

| f (y)− f (x)| � ω( f ;δ )
( |y− x|

δ
+1

)
, δ > 0,

we have ∣∣∣∣
∫ t

x
| f ′(u)− f ′(x)|du

∣∣∣∣� ω( f ′;δ )
[
(t− x)2

δ
+ |t− x|

]
.

Therefore,

|C<qn>
n ( f ;x)− f (x)| � | f ′(x)| · |C<qn>

n (t− x;x)|

+ ω( f ′;δ )
{

1
δ

C<qn>
n

(
(t− x)2;x

)
+C<qn>

n (|t − x|;x)
}

.

Using Cauchy-Schwartz inequality

C<qn>
n (|t− x|;x) �

√
C<qn>

n (1;x) ·
√

C<qn>
n ((t− x)2;x)
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we obtain

|C<qn>
n ( f ;x)− f (x)| � | f ′(x)| · |C<qn>

n (t− x;x)|

+ ω( f ′,δ )
{

1
δ

√
C<qn>

n ((t− x)2;x))+1

}√
C<qn>

n ((t− x)2;x).

Applying Lemma 2.3, we get

|C<qn>
n ( f ;x)− f (x)| � | f ′(x)|(1−an)x+ ω( f ′,δ ) ·

{
1
δ

√
an

[n]qn

φ2(x)+ (1−an)+1

}

·
√

an

[n]qn

φ2(x)+ (1−an).

Choosing δ =
√

δn(x) , we find the desired inequality. �
Let

LipM(γ) = { f ∈C[0,1], | f (t)− f (x)| � M|t− x|γ} , 0 < γ � 1

be the class of Lipschitz functions. The next result gives the rate of convergence of the
operators C<qn>

n in terms of the Lipschitz class.

THEOREM 3.4. Let (qn)n�1 , (an)n�1 be real sequences such that qn ∈ (0,1) ,
an ∈ (0,1] . If f ∈ LipM(γ) , then

|C<qn>
n ( f ;x)− f (x)| � M(δn(x))γ/2,

where δn(x) is defined in (7).

Proof. Since C<qn>
n (e0; ·) = e0 and f ∈ LipM(γ) , we have

|C<qn>
n ( f ;x)− f (x)| �

n

∑
k=0

bn,k(x;qn)
k

∑
j=0

ck, j

∣∣∣∣ f
(

[ j]qn

[n]qn

)
− f (x)

∣∣∣∣
� M

n

∑
k=0

bn,k(x;qn)
k

∑
j=0

ck, j

∣∣∣∣ [ j]qn

[n]qn

− x

∣∣∣∣
γ
.
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Applying the Hölder’s inequality with p =
2
γ

and q =
2

2− γ
, we get

|C<qn>
n ( f ;x)− f (x)| � M

n

∑
k=0

bn,k(x;qn)

(
k

∑
j=0

ck, j

) 2−γ
2
[

k

∑
j=0

ck, j

(
[ j]qn

[n]qn

− x

)2
] γ

2

= M
n

∑
k=0

bn,k(x;qn)

[
k

∑
j=0

ck, j

(
[ j]qn

[n]qn

− x

)2
] γ

2

= M
n

∑
k=0

(
bn,k(x;qn)

) 2−γ
2

[
bn,k(x;qn)

k

∑
j=0

ck, j

(
[ j]qn

[n]qn

− x

)2
] γ

2

� M

(
n

∑
k=0

bn,k(x;qn)

) 2−γ
2
[

n

∑
k=0

bn,k(x;qn)
k

∑
j=0

ck, j

(
[ j]qn

[n]qn

− x

)2
] γ

2

= M
{
C<qn>

n

(
(t− x)2;x

)} γ
2 � M(δn(x))γ/2. �

In order to give the next result we recall the definition of K-functional:

K2( f ,δ ) := inf
{‖ f −g‖+ δ

∥∥g′′∥∥ : g ∈W 2} ,

where

W 2 =
{
g ∈C[0,1] : g′′ ∈C[0,1]

}
,

δ � 0 and ‖·‖ is the uniform norm on C[0,1] . The second order modulus of continuity
is defined as follows

ω2

(
f ,
√

δ
)

= sup
0<h�

√
δ

sup
x,x+2h∈[0,1]

{| f (x+2h)−2 f (x+h)+ f (x)|} .

It is well known that K-functional and the second order modulus of continuity

ω2

(
f ,
√

δ
)

are equivalent, namely

K2( f ,δ ) � Cω2

(
f ,
√

δ
)

, (8)

where δ � 0 and C > 0.

THEOREM 3.5. If f ∈C[0,1] and (qn)n�1 , (an)n�1 are real sequences such that
qn ∈ (0,1) , an ∈ (0,1] , then

∣∣C<qn>
n ( f ;x)− f (x)

∣∣� Cω2

(
f ,
√

δn(x)
)

+ ω ( f ,λn(x)) ,

where δn(x) and λn(x) are defined in (7).
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Proof. In order to prove the inequality, we construct the following auxiliary oper-
ators:

C̃<qn>
n ( f ;x) = C<qn>

n ( f ;x)+ f (x)− f (anx). (9)

It is not difficult to see that

C̃<qn>
n (e0;x) = C<qn>

n (e0;x) = 1

C̃<qn>
n (e1;x) = C<qn>

n (e1;x)+ x−anx = x.

From Taylor’s formula we have

g(t) = g(x)+g′(x)(t − x)+
∫ t

x
(t−u)g′′(u)du, g ∈W 2.

Applying C̃<qn>
n to above relation, it follows

C̃<qn>
n (g;x) = g(x)+ C̃<qn>

n

(∫ t

x
(t−u)g′′(u)du;x

)
.

Therefore

C̃<qn>
n (g;x) = g(x)+C<qn>

n

(∫ t

x
(t −u)g′′(u)du;x

)
−
∫ anx

x
(anx−u)g′′(u)du.

This implies that

|C̃<qn>
n (g;x)−g(x)|�

∣∣∣∣C<qn>
n

(∫ t

x
(t −u)g′′(u)du;x

)∣∣∣∣+
∣∣∣∣
∫ anx

x
(anx−u)g′′(u)du

∣∣∣∣
� C<qn>

n ((t− x)2;x)
∥∥g′′∥∥+(anx− x)2

∥∥g′′∥∥ .

From Lemma 2.3 it follows

|C̃<qn>
n (g;x)−g(x)|� δn(x)

∥∥g′′∥∥+ λ 2
n (x)

∥∥g′′∥∥ .

Since (1−an)δn(x) =
(1−an)an

[n]q
φ2(x)+ (1−an)2 � (1−an)2 � λ 2

n (x), we get

|C̃<qn>
n (g;x)−g(x)| � (2−an)δn(x)

∥∥g′′∥∥� 2δn(x)‖g′′‖. (10)

In view of (9) and Lemma 2.2 we obtain

|C̃<qn>
n ( f ;x)| � |C<qn>

n ( f ;x)|+ | f (x)|+ | f (anx)| � 3‖ f‖ . (11)

Now, for f ∈C[0,1] and g ∈W 2 , using (9), (10) and (11) we obtain

|C<qn>
n ( f ;x)− f (x)| = ∣∣C̃<qn>

n ( f ;x)− f (x)+ f (anx)− f (x)
∣∣

�
∣∣C̃<qn>

n ( f −g;x)
∣∣+ ∣∣C̃<qn>

n (g;x)−g(x)
∣∣+ |g(x)− f (x)|+ | f (anx)− f (x)|

�4‖ f −g‖+2δn(x)
∥∥g′′∥∥+ ω ( f , |(1−an)x|) .
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Taking the infimum on the right side over all g ∈W 2 , we have

|C<qn>
n ( f ;x)− f (x)| � 4K2 ( f ,δn(x))+ ω ( f , |(1−an)x|) .

Finally, using the equivalence between K-functional and the second order modulus of
continuity (8), we have

|C<qn>
n ( f ;x)− f (x)| � Cω2

(
f ,
√

δn(x)
)

+ ω ( f ,(1−an)x) ,

which completes the proof. �
Let φ(x) =

√
x(1− x) and f ∈ C[0,1]. The Ditzian-Totik first order modulus of

smoothness is given by (see [13])

ωφ ( f ; t) = sup
0<h�t

{∣∣∣∣ f
(

x+
hφ(x)

2

)
− f

(
x− hφ(x)

2

)∣∣∣∣ ,x± hφ(x)
2

∈ [0,1]
}

. (12)

The corresponding K -functional to (12) is defined by

Kφ ( f ;t) = inf
g∈Wφ [0,1]

{|| f −g||+ t||φg′||} (t > 0), (13)

where Wφ [0,1] = {g : g ∈ AC[0,1], ||φg′|| < ∞} and AC[0,1] is the class of all abso-
lutely continuous functions on [0,1]. It is well known ([13], p.11 ) that there exists a
constant C > 0 such that

Kφ ( f ;t) � Cωφ ( f ;t). (14)

A direct approximation theorem by means of Ditzian-Totik modulus of smoothness is
given in the next result.

THEOREM 3.6. If f ∈C[0,1] and (qn)n�1 , (an)n�1 are real sequences such that
qn ∈ (0,1) , an ∈ (0,1] , then

|C<qn>
n ( f ;x)− f (x) |< Cωφ

(
f ;

√
δn(x)

φ(x)

)
, (15)

where δn(x) is defined in (7) and C is a constant independent of n and x.

Proof. Using the relation

g(t) = g(x)+
∫ t

x
g′(u)du,

we get ∣∣C<qn>
n (g;x)−g(x)

∣∣= ∣∣∣∣C<qn>
n

(∫ t

x
g′(u)du;x

)∣∣∣∣ . (16)
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For any x, t ∈ (0,1), we find that∣∣∣∣
∫ t

x
g′(u)du

∣∣∣∣� ‖φg′‖
∣∣∣∣
∫ t

x

1
φ(u)

du

∣∣∣∣� ‖φg′‖
∣∣∣∣
∫ t

x

(
1√
u

+
1√

1−u

)
du

∣∣∣∣ (17)

� 2‖φg′‖
(
| √t−√

x | + | √1− t−√
1− x |

)

= 2‖φg′‖|t− x|
(

1√
t +

√
x

+
1√

1− t +
√

1− x

)

< 2‖φg′‖|t− x|
(

1√
x

+
1√

1− x

)
� 2

√
2‖φg′‖ |t− x|

φ(x)
.

Using Cauchy-Schwarz inequality, we obtain

|C<qn>
n (g;x)−g(x)| < 2

√
2||φg′||φ−1(x)C<qn>

n (|t− x|;x)

� 2
√

2||φg′||φ−1(x)
(

C<qn>
n ((t − x)2;x)

)1/2

.

Applying Lemma 2.3, we get

|C<qn>
n (g;x)−g(x)|< 2

√
2
‖φg′‖
φ(x)

√
δ (x). (18)

Therefore we can write

|C<qn>
n ( f ;x)− f (x) | �|C<qn>

n ( f −g;x) | +| f (x)−g(x)|+ |C<qn>
n (g;x)−g(x) |

� 2‖ f −g‖+
2
√

2‖φg′‖
φ(x)

√
δn(x)

� 2
√

2

{
‖ f −g‖+

‖φg′‖
φ(x)

√
δn(x)

}
. (19)

Taking infimum on the right hand side of the above inequality over all g ∈Wφ [0,1] , we
get

|C<qn>
n ( f ;x)− f (x) |< CKφ

(
f ;

√
δn(x)

φ(x)

)
.

Using the relation (14) this theorem is proven. �

4. Numerical examples

In order to show the relevance of the operators C<q>
n , in this section are given

some numerical examples regarding the approximation properties. Furthermore, we
compare the convergence of the operators C<q>

n with the q -Bernstein-Stancu operators
proposed by Nowak [20]. From these results follows that for certain functions, the
operators introduced in this paper C<q>

n converge faster than the q -Bernstein-Stancu
operators S<q,1>

n .
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EXAMPLE 4.1. Let f : R→R , f (x) =
x4

12
− x3

6
+

3x2

32
. For q = 0.8, an = 1− 1

n2

the convergence of the operators C<q>
n to the function f is illustrated in Figure 1. We

note that if the sequence (an) converges to 1 the operators C<q>
n are going to the graph

of the function f .

Figure 1: Approximation process by C<q>
n

EXAMPLE 4.2. We consider f : R → R , f (x) = −4x4

3
+

5x3

3
− x2

2
. For n =

100, an = 1− 1
n2 and q ∈ {0.7;0.8;0.9} the convergence of the operators C<q>

n to the

function f is illustrated in Figure 2. We note that if the sequence (qn) converges to 1
the operators C<q>

n are going to the graph of the function f .

EXAMPLE 4.3. We consider f : R → R , f (x) = sin(2πx) . For q = 0.8, n = 10

and an = 1− 1
n2 the convergence of the operators S<q,1>

n , C<q>
n to the function f is

illustrated in Figure 3. From this graph follows that the operator C<q>
n introduced in

this paper converges faster than the Stancu operator S<q,1>
n for this particular choice of

function f . A similar example is given in Figure 4 for the function f (x) = x3ex+1 .
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Figure 2: Approximation process by C<q>
n

Figure 3: Approximation process by S<q,1>
n , C<q>

n
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Figure 4: Approximation process by S<q,1>
n , C<q>

n

Acknowledgement. Project financed from Lucian Blaga University of Sibiu re-
search grants LBUS-IRG-2018-04.

RE F ER EN C ES

[1] T. ACAR, A. ARAL, On Pointwise Convergence of q-Bernstein Operators and Their q-Derivatives,
Numerical Functional Analysis and Optimization, 36(3), 2015, 287–304.

[2] A.M. ACU, C.V. MURARU, V.A. RADU, F.D. SOFONEA, Some approximation properties of a Dur-
rmeyer variant of q-Bernstein-Schurer operators, Mathematical Methods in Applied Science, 39(18),
2016, 5636–5650.

[3] A.M. ACU, C.V. MURARU, V.A. RADU, On the monotonicity of q-Schurer-Stancu type polynomials,
Miskolc Mathematical Notes, 19 (1), 2018, 19–28.

[4] A.M. ACU, Stancu-Schurer-Kantorovich operators based on q-integers, Applied Mathematics and
Computation, 259, 2015, 896–907.
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