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Abstract. The Orlicz-Lorentz Busemann-Petty centroid inequality was recently established by
Nguyen [16]. In this paper, using shadow systems, a new proof of the Orlicz-Lorentz Busemann-
Petty centroid inequality is given.

1. Introduction

The concept of centroid body is one of the central notions in Brunn-Minkowski
theory. The classical affine isoperimetric inequality that relates the volume of a con-
vex body with that of its centroid body was conjectured by Blaschke. This conjecture
was first proved by Petty [17] which is now known as the Busemann-Petty centroid in-
equality. The Lp centroid body is a natural extension of the centroid body, which was
introduced by Lutwak, Yang and Zhang [13]. Using Steiner symmetrization, the Lp

Busemann-Petty centroid inequality was established in [13]. Based on the shadow sys-
tem, an alternative proof of the Lp Busemann-Petty centroid inequality was given by
Campi and Gronchi [2]. Using concepts introduced by Ludwig [11], Haberl and Schus-
ter [6] were led to establish asymmetric versions of the Lp Busemann-Petty centroid
inequality. In [15], Lutwak, Yang and Zhang introduced the Orlicz centroid body and
established Orlicz Busemann-Petty centroid inequality for the convex body with the ori-
gin as an interior point. These works initiate an extension of the Lp Brunn-Minkowski
theory to an Orlicz-Brunn-Minkowski theory. By extending the method of Lutwak,
Yang and Zhang, an extension to star bodies was obtained by Zhu [29]. Another proof
of the Orlicz Busemann-Petty centroid inequality was given by Li and Leng [10], who
used shadow system. For more information on the Lp and Orlicz Brunn-Minkowski
theory see references [1]-[10],[12]-[30].

Very recently, the Orlicz-Lorentz centroid body was introduced by Nguyen in
[16], which includes Orlicz centroid body as a special case, and the Orlicz-Lorentz
Busemann-Petty centroid inequality was also established.
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We consider a strictly convex function φ : [0,∞) → [0,∞) such that φ(t) > 0 if
t > 0, φ(0) = 0 and limt→∞ φ(t) = ∞ . The class of such φ will be denoted by C . A
function ω : I → (0,∞) is called a weight function if ω is nonincreasing function which
is locally integrable with respect to the Lebesgue measure μ on I = (0, |μ |) such that∫
I ω(t)dt = ∞ if I = (0,∞) , here |μ | denotes the total measure of μ .

Let K ⊂ R
n be a convex body that contain the origin in its interior with volume

|K| . In this paper, we consider the measure space (K,BK ,μK) . Using the Orlicz-
Lorentz norm, the support function of Orlicz-Lorentz centroid body Γφ ,ωK is defined
by [16]

hΓφ ,ωK(x) = inf

{
λ > 0 :

∫ 1

0
φ

(
f ∗x,K(t)

λ

)
ω(t)dt < 1

}
, (1.1)

where fx,K is defined as fx,K(y) = x · y with y ∈ K , x · y denotes the standard inner
product of vectors x and y in R

n and hK denotes the support function of K , f ∗x,K is
the decreasing rearrangement of fx,K (See Section 2 for unexplained terminology and
notation).

In particular, when ω ≡ 1, the definition of Orlicz-Lorentz centroid body coin-
cides with the definition of Orlicz centroid body given by Lutwak, Yang and Zhang for
even convex function φ in R . Note that Lutwak, Yang and Zhang defined the Orlicz
centroid body for any convex function φ : R → [0,∞) such that φ is decreasing on
(−∞,0] and increasing on [0,∞) . Their definition is more general than ours in this
case. Moreover, when φ(t) = t p and ω ≡ 1, we again obtain the defintion of the Lp

centroid body given in [13].
In this paper, inspired by the works of Campi and Gronchi [2] and Nguyen [16],

we will give another proof of the Orlicz-Lorentz Busemann-Petty centroid inequality.

Orlicz-Lorentz Busemann-Petty centroid inequality. If φ ∈ C , ω is a weight
function on (0, 1) and K is a convex body in R

n containing the origin in its interior,
then the volume ratio

|Γφ ,ωK|
|K|

is minimized if and only if K is an origin-centered ellipsoid.

This paper is organized as follows. In Section 2, we collect some basic concepts
and various facts of convex bodies. In Section 3, we prove some results which will be
used. The proof of Orlicz-Lorentz Busemann-Petty centroid inequality will be given in
Section 4.

2. Preliminaries

Good general references for the theory of convex bodies are provided by the book
of Schneider [19]. Our setting will be Euclidean n -space R

n . The set of all invertible
n×n matrices will be denoted by GL(n) .
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A convex body is a compact convex subset of R
n with non-empty interior. For a

convex body K , its support function hK is defined by

hK(x) = h(K,x) = max{x · y : y ∈ K} for x ∈ R
n.

Let K n denote the set of all convex bodies of R
n and let K n

0 denote the set of
all convex bodies containing the origin in its interior of R

n .
A subset K ⊂R

n is a star-shaped about the origin if for any x∈K then the segment
{tx : t ∈ [0,1]} is contained in K . For a star-shaped about the origin K , its radial
function ρK : R\{0}→ [0,∞] is defined by

ρK(x) = maxλ > 0 : λx ∈ K.

If ρK is strict positive and continuous, then we call K a star body. Let S n
0 denote the

set of all star bodies with respect to the origin in R
n .

Let (Ω,Σ,μ) be a measure space with an σ -finite, non atom measure μ . Given
any measurable function f : Ω → R , we define the distribution function of f by

μ f (t) = μ({x : | f (x)| > t}), ∀t > 0,

and the decreasing rearrangement of f by

f ∗(t) = inf{λ > 0 : μ f (λ ) � t}, t > 0.

We denote I = (0,μ(Ω)) . For φ ∈ C and a weight function ω , we define the
Orilcz-Lorentz space Λφ ,ω on (Ω,Σ,μ) to be the set of all measurable functions f on
Ω such that ∫

I
φ

(
f ∗(t)

λ

)
ω(t)dt < ∞,

for some λ > 0. If the function f ∈ Λφ ,ω , its Orlicz-Lorentz norm is defined by

‖ f‖Λφ ,ω = inf

{
λ > 0 :

∫
I
φ

(
f ∗(t)

λ

)
ω(t)dt � 1

}
. (2.1)

Let K be a convex body in R
n . We consider the measure space (Ω,Σ,μ)= (K,BK ,μK)

here and where BK denotes σ -algebra of all Lebesgue measurable subset of K , and
μK denotes the normalized measure on K whose density is 1K(x)dx/|K| for any
Lebesgue measurable K ⊂ R

n of positive measure.
A shadow system along the unit direction v is a family of convex hulls in R

n ,

Kt = conv{z+ α(z)tv : z ∈ A ⊂ R
n},

where A is an arbitrary bounded set of points, α is a real bounded function on A , and
the parameter t runs in an interval of the real axis.

A parallel chord movement along the unit direction v , a particular type of a shadow
system, is a family of convex bodies Kt in R

n defined by

Kt = {z+ β (z|v⊥)tv : z ∈ K, 0 � t � 1},
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where K is a convex body in R
n and β is a continuous real function on v⊥ = {z ∈ R

n :
〈v,z〉 = 0} . Note that |Kt | and the orthogonal projection Kt |v⊥ of Kt are independent
of t .

For a direction v , define a convex body by

K = {x+ sv : x ∈ K|v⊥,s ∈ R, f (x) � s � g(x)}.

Then the parallel chord movement with speed function β (x) = −( f (x) + g(x)) and
t ∈ [0,1] is such that K0 = K , K1 = Kv , the reflection of K in the hyperplane v⊥ , and
K 1

2
is the Steiner symmetral of K with respect to v⊥ .

THEOREM A. Let Ht ,t ∈ [t1,t2] , be a one-parameter family of convex bodies such
that Ht |v⊥ is independent of t. Assume the bodies Ht are defined by

Ht =
{

x+ yv : x ∈ Ht |v⊥, y ∈ R, ft(x) � y � gt(x)
}

, ∀t ∈ [t1, t2],

for suitable functions ft ,gt . Then Ht ,t ∈ [t1,t2] is a shadow system of convex sets along
the direction v if and only if for every x ∈ Ht |v⊥ ,

1. gt(x) and ft (x) are convex functions of the parameter t in [t1,t2] ,

2. fμr+(1−μ)s(x) � μgr(x)+ (1− μ) fs(x) � gμr+(1−μ)s(x) , for every r,s ∈ [t1,t2] ,
μ ∈ [0,1] .

3. Proofs of the main results

LEMMA 3.1. If {Kt : 0 � t � 1} is a parallel chord movement along the unit
direction v, then the orthogonal projection of Γφ ,ωKt onto v⊥ is independent of t .

Proof. If x ∈ v⊥ , then by the definition of distribution function and the fact |Kt |=
|K0| = |K| , we have

μKt
fx,Kt

(s) = μKt ({y ∈ R
n : | fx,Kt (y)| � s}) =

1
|Kt |

∫
{y∈Kt :|〈x,y〉|�s}

dy

=
1
|K|

∫
{z∈K:|〈x,z〉+β (z|v⊥)t〈x,v〉|�s}

dz =
1
|K|

∫
{z∈K:|〈x,z〉|�s}

dz = μK
fx,K (s),

this means f ∗x,Kt
(s) = f ∗x,K(s) for any s > 0. From the definition of Orilcz-Lorentz

centroid body (1.1), then

hΓφ ,ωK(x) = λ ⇔
∫ 1

0
φ

(
f ∗x,K(t)

λ

)
ω(t)dt = 1.

Hence for x ∈ v⊥ , then hΓφ ,ωKt (x) = hΓφ ,ωK(x) . �
The following lemma shows that hΓφ ,ωKt (x) is continuous with respect to t .
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LEMMA 3.2. The support function hΓφ ,ωKt (u) is a Lipschitz function of t , that is,
for t1, t2 ∈ [0,1] and x ∈ R

n \ {0}
|hΓφ ,ωKt1

(x)−hΓφ ,ωKt2
(x)| � |t1 − t2| ‖β (·|v⊥)〈x,v〉‖φ ,ω .

Proof. From the definition of ‖ · ‖φ ,ω , we have

‖ f1‖φ ,ω = λ1 ⇐⇒
∫

I
φ

(
f ∗1 (t)
λ1

)
ω(t)dt = 1,

and

‖ f2‖φ ,ω = λ2 ⇐⇒
∫

I
φ

(
f ∗2 (t)
λ2

)
ω(t)dt = 1.

By the fact that φ(g∗) = (φ(|g|))∗ for any measurable function g , we have

φ
(

( f1 + f2)∗(t)
λ1 + λ2

)
=

(
φ

( | f1 + f2|
λ1 + λ2

))∗
(t).

From the convexity of the function φ , we have

φ
( | f1 + f2|

λ1 + λ2

)
� λ1

λ1 + λ2
φ

( | f1|
λ1

)
+

λ2

λ1 + λ2
φ

( | f2|
λ2

)
.

Therefore

φ
(

( f1 + f2)∗(t)
λ1 + λ2

)
� λ1

λ1 + λ2
φ

(
f ∗1 (t)
λ1

)
+

λ2

λ1 + λ2
φ

(
f ∗2 (t)
λ2

)
.

Hence

‖ f1 + f2‖φ ,ω � λ1 + λ2 = ‖ f1‖φ ,ω +‖ f2‖φ ,ω . (3.1)

Thus

|‖ f1‖φ ,ω −‖ f2‖φ ,ω | � ‖ f1 − f2‖φ ,ω .

From the fact

hΓφ ,ωKt (x) = ‖〈x, ·〉+ β (·|v⊥)t〈x,v〉‖φ ,ω ,

we have

|hΓφ ,ωKt1
(x)−hΓφ ,ωKt2

(x)| � |t1− t2| ‖β (·|v⊥)〈x,v〉‖φ ,ω . �

The convex body Γφ ,ωKt can be represented by

Γφ ,ωKt = {x+ lv : x ∈ Γφ ,ωK0|v⊥, ft(x) � l � gt(x)},
where ft and −gt are convex functions defined on Γφ ,ωK0|v⊥ .
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LEMMA 3.3. If {Kt : 0 � t � 1} is a parallel chord movement along the unit
direction v, then for every x ∈ relint Γφ ,ωK0|v⊥ ,

gt(x) = inf
u∈v⊥

{hΓφ ,ωKt (u+ v)−〈x,u〉}, (3.2)

and

ft (x) = sup
u∈v⊥

{〈x,u〉−hΓφ ,ωKt (u− v)}. (3.3)

Proof. Let u ∈ v⊥ . From the definition of the overgraph, it follows immediately
that x+gt(x) ∈ Γφ ,ωKt . The definition of the support function shows that

〈x+gt(x)v,u+ v〉� hΓφ ,ωKt (u+ v).

Hence,

〈x,u〉+gt(x) � hΓφ ,ωKt (u+ v),

for u ∈ v⊥ .

Since Γφ ,ωKt has support hyperplane at x+gt(x)v ∈ ∂ (Γφ ,ωKt) , for
x ∈ relint Γφ ,ωK0|v⊥ , there exists a vector u′ + v , with u′ ∈ v⊥ , so that

〈x+gt(x)v,u′ + v〉= hΓφ ,ωKt (u
′ + v).

Therefore,

gt(x) = inf
u∈v⊥

{hΓφ ,ωKt (u+ v)−〈x,u〉}.

Formula (3.3) can be shown in the same way. �

THEOREM 3.1. If {Kt : 0 � t � 1} is a parallel chord movement along the unit
direction v, then Γφ ,ωKt is a shadow system along the same direction v.

Proof. In order to prove the family Γφ ,ωKt is a shadow system, we need only
prove the functions ft and gt satisfy the conditions (1) and (2) in Theorem A.

First, we prove gt(x) and − ft(x) are convex functions of t . We just prove the
convexity of gt , and the convexity of − ft can be proved in the same way. By Lemma
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3.3, the triangular inequality of Orlicz-Lorentz norm (3.1), we have

2g t1+t2
2

(x) = inf
u∈v⊥

{
hΓφ ,ωKt1+t2

2

(2u+2v)−〈x,2u〉
}

= inf
u∈v⊥

{
‖〈2u+2v, ·〉+ β (·|v⊥)(t1 + t2)‖φ ,ω −〈x,2u〉

}

= inf
u1,u2∈v⊥

{
‖〈u1 +u2 +2v, ·〉+ β (·|v⊥)(t1 + t2)‖φ ,ω −〈x,u1 +u2〉

}

� inf
u1,u2∈v⊥

{
‖〈u1 + v, ·〉+ β (·|v⊥)t1‖φ ,ω +‖〈u2 + v, ·〉+ β (·|v⊥)t2‖φ ,ω

−x · (u1 +u2)}
= inf

u1∈v⊥

{
‖〈u1 + v, ·〉+ β (·|v⊥)t1‖φ ,ω − x ·u1

}

+ inf
u2∈v⊥

{
‖〈u2 + v, ·〉+ β (·|v⊥)t2‖φ ,ω − x ·u2

}

= gt1(x)+gt2(x).

Second, we prove that ft and gt satisfy (2) of Theorem A. Let u1,u2 ∈ v⊥ and

hΓφ ,ωKt1
(−μu1 + μv) = λ1, hΓφ ,ωKμt1+(1−μ)t2

(u2− v) = λ2.

Then we have

(1−θ ) ft2(x) = sup
u∈v⊥

{〈x,(1−θ )u〉−hΓφ ,ωKt2
((1−θ )(u− v))}

= sup
−u1,u2∈v⊥

{〈x,u2−θu1〉−hΓφ ,ωKt2
(u2−θu1− (1−θ )v)}

� sup
−u1,u2∈v⊥

{〈x,u2−θu1〉−hΓφ ,ωKt1
(−θu1 + θv)

−hΓφ ,ωKθ t1+(1−θ )t2
(u2− v)}

= sup
−u1∈v⊥

{〈x,−θu1〉−hΓφ ,ωKt1
(−θu1 + θv)}

+ sup
u2∈v⊥

{〈x,u2〉−hΓφ ,ωKθ t1+(1−θ )t2
(u2− v)}

= −θgt1(x)+ fθt1+(1−θ)t2(x).

This is the first inequality. The second inequality follows by interchanging t1 with t2
and x with −x .

Therefore, we deduce Γφ ,ωKt is a shadow system along the same direction v . �

THEOREM 3.2. If {Kt : 0 � t � 1} is a parallel chord movement with speed func-
tion β , then the volume of Γφ ,ωKt is strictly convex function of t unless β is linear.

Proof. By Fubini’s theorem we have

|Γφ ,ωKt | =
∫

(Γφ ,ωK0)|v⊥
[gt(x)− ft(x)]dx. (3.4)
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Hence the volume of Γφ ,ωKt is a convex function of t follows from the convexity of
gt(x) and − ft(x) with respect to t . If

|Γφ ,ωKt1+t2
2

| = 1
2
|Γφ ,ωKt1 |+

1
2
|Γφ ,ωKt2 |

for some t1, t2 ∈ [0,1] , then we deduce that

g t1+t2
2

(x)− f t1+t2
2

(x) =
1
2
(gt1(x)+gt2(x))−

1
2
( ft1(x)+ ft2(x)) (3.5)

for almost every x ∈ Γφ ,ωK0 . Take a point x from the interior of (Γφ ,ωK0)|v⊥ . Then
there exist u1,u2,u3,u4 ∈ v⊥ such that

(gt1(x)+gt2(x))− ( ft1(x)+ ft2(x))
=hΓφ ,ωKt1

(u1 + v)+hΓφ ,ωKt2
(u2 + v)+hΓφ ,ωKt1

(u3− v)+hΓφ ,ωKt2
(u4− v)

−〈x,u1〉− 〈x,u2〉− 〈x,u3〉− 〈x,u4〉
=‖〈u1 + v, ·〉+ β (·|v⊥)t1‖φ ,ω +‖〈u2 + v, ·〉+ β (·|v⊥)t2‖φ ,ω

+‖〈u3 + v, ·〉−β (·|v⊥)t1‖φ ,ω +‖〈u4 + v, ·〉−β (·|v⊥)t2‖φ ,ω −〈x,u1〉− 〈x,u2〉− 〈x,u3〉
− 〈x,u4〉.

By the triangular inequality of Orlicz-Lorentz norm we have

(gt1(x)+gt2(x))− ( ft1(x)+ ft2(x))

�2(‖〈u1 +u2

2
+ v, ·〉+ β (·|v⊥)

t1 + t2
2

‖φ ,ω +‖〈u3 +u4

2
+ v, ·〉−β (·|v⊥)

t1 + t2
2

‖φ ,ω

−〈x, u1 +u2

2
〉− 〈x, u3 +u4

2
〉)

=2(hΓφ ,ωKt1+t2
2

(
u1 +u2

2
+ v)+hΓφ ,ωKt1+t2

2

(
u3 +u4

2
+ v)−〈x, u1 +u2

2
〉− 〈x, u3 +u4

2
〉)

�2(g t1+t2
2

(x)− f t1+t2
2

(x)).

By (3.5) and the equality condition of the triangular inequality, there exists a constant
c such that

〈u1 +u2

2
+ v,z〉+ β (z|v⊥)

t1 + t2
2

= c〈u3 +u4

2
+ v,z〉+ cβ (z|v⊥)

t3 + t4
2

, (3.6)

for every z ∈ K0 , owing to the continuity of β . Setting z = z′ + λv in (3.6), where
z′ ∈ K0|v⊥ . By differentiating with respect to the parameter λ , it turns out that c = 1.
Then we conclude that β is a linear function. �

4. Proof of the Orlicz-Lorentz centroid inequality

In order to obatain the Orlicz-Lorentz Busemann-Petty centroid inequality, the
following lemmas will be needed.
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LEMMA 4.1. (Shephard [20]) The volume of a shadow system is a convex function
of the parameter t .

LEMMA 4.2. (Nguyen [16]) Let φ ∈ C and ω is a weight function on (0,1) . If
K ∈ S n

0 and A ∈ GL(n) then Γφ ,ω(AK) = AΓφ ,ωK.

LEMMA 4.3. (Nguyen [16]) Let φ ∈ C and ω is a weight function on (0,1) . If
Ki,K ∈ S n

0 and Ki → K , then Γφ ,ωKi → Γφ ,ωK in K n
0 .

Proof of the Orlicz-Lorentz centroid inequality.

Proof. Theorem 3.1 and Lemma 4.1 imply that the volume of Γφ ,ωKt is a convex
function of t . From Lemma 4.2, we have Γφ ,ω(Kv) = (Γφ ,ωK)v . Then

|Γφ ,ωK 1
2
| � 1

2
|Γφ ,ωK0|+ 1

2
|Γφ ,ωK1| = |Γφ ,ωK|,

that is, the volume of the Orlicz-Lorentz centroid body is not increased after a Steiner
symmetrization. Lemma 4.3 implies that the ratio |Γφ ,ωK|/|K| is continuous in the
Hausdorff metric. Therefore it attains its minimum value when K is a ball.

If the speed function β of the parallel chord movement is linear, then Kt is a linear
image of K , for every t in the range of the movement. If K is not an origin symmetric
ellipsoid, it is well known, see [18], that there exists a direction v such that the Steiner
symmetral of K along the direction v is not an linear image of K . Therefore, by
Theorem 3.2, |Γφ ,ωK|/|K| is minimized if and only if K is an ellipsoid centered at the
origin. The Orlicz-Lorentz Busemann-Petty centroid inequality is proved. �
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