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Abstract. In this paper, we use the Taylor series of hyperbolic functions coshx and sinhx to get
some generalized inequalities for the Heinz operator means.

1. Introduction

Throughout this paper, B+ denotes the set of all positive invertible operators on
a Hilbert space H . For A,B ∈ B+ and ν ∈ [0,1], the weighted arithmetic operator
mean A∇νB and geometric mean A�νB, are defined as follows:

A∇νB = (1−ν)A+ νB,

A�νB = A
1
2 (A− 1

2 BA− 1
2 )νA

1
2 .

We refer the reader to F. Kubo and T. Ando [5]. When ν = 1/2 we write A∇B and
A�B for brevity, respectively. The Heinz operator mean is defined by

Hν(A,B) =
A�νB+A�1−νB

2
,

where A,B ∈ B+ and ν ∈ [0,1]. It is easy to see that the Heinz operator mean interpo-
lates the arithmetic-geometric operator mean inequality [4]:

A�B � Hν (A,B) � A∇B.

In this paper, we study some operator inequalities related to Heinz means. Since
A,B are positive and invertible, ν can be extended to (−∞,+∞) in the definition of
Arithmetic mean, Geometric mean and Heinz mean. For recent results treating the
Heinz means, we refer the reader to [2, 3, 6, 7, 8].

Mathematics subject classification (2010): 47A63.
Keywords and phrases: Heinz operator inequality, Heinz operator mean, hyperbolic functions.

c© � � , Zagreb
Paper JMI-13-48

715

http://dx.doi.org/10.7153/jmi-2019-13-48


716 G. SHI

2. Main results

The main idea is that we can use the Taylor series of hyperbolic functions coshx
and sinhx to get some refinements of inequalities of the Heinz means. To be specific,
if we let α = 1−2t and x = (loga− logb)/2, then we have

coshαx =
a1−tbt +atb1−t

2
√

ab
=

Ht(a,b)√
ab

,

and
sinhαx

αx
=

a1−tbt −atb1−t

(1−2t)(loga− logb)
1√
ab

.

So by improving some inequalities of hyperbolic functions, we can get some refine-
ments of Heinz means inequalities.

THEOREM 2.1. Let A,B ∈ B+, and r,s,t ∈ R with t,r �= 1/2. If |1−2r| � |1−
2t|, then

(
1− (1−2s)2

(1−2r)2

)
A�B+

(1−2s)2

(1−2r)2 Hr(A,B)

�
(

1− (1−2s)2

(1−2t)2

)
A�B+

(1−2s)2

(1−2t)2 Ht(A,B). (2.1)

Proof. We first show that the following inequality

(
1− β 2

γ2

)
+

β 2

γ2 coshγx �
(

1− β 2

α2

)
+

β 2

α2 coshαx (x ∈ R) (2.2)

holds for real numbers α,β ,γ with α,γ �= 0 and |γ| � |α| . By the Taylor series of
coshx we have

[(
1− β 2

α2

)
+

β 2

α2 coshαx

]
−

[(
1− β 2

γ2

)
+

β 2

γ2 coshγx

]

=
[
1− β 2

α2 +
β 2

α2

(
1+

α2x2

2!
+

α4x4

4!
+ · · ·

)]

−
[
1− β 2

γ2 +
β 2

γ2

(
1+

γ2x2

2!
+

γ4x4

4!
+ · · ·

)]

=
[

β 2

α2

(
α2x2

2!
+

α4x4

4!
+ · · ·

)]
−

[
β 2

γ2

(
γ2x2

2!
+

γ4x4

4!
+ · · ·

)]

= β 2
[
(α2 − γ2)

x4

4!
+(α4− γ4)

x6

6!
+ · · ·

]

� 0.
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Then (2.2) holds. Now let α = 1−2t,β = 1−2s,γ = 1−2r and x = (loga− logb)/2.
Then it follows that for a,b > 0,(

1− (1−2s)2

(1−2r)2

)√
ab+

(1−2s)2

(1−2r)2 Hr(a,b) �
(

1− (1−2s)2

(1−2t)2

)√
ab+

(1−2s)2

(1−2t)2 Ht(a,b).

Hence, for invertible positive operator X we have(
1− (1−2s)2

(1−2r)2

)
X

1
2 +

(1−2s)2

(1−2r)2 Hr(X ,1) �
(

1− (1−2s)2

(1−2t)2

)
X

1
2 +

(1−2s)2

(1−2t)2 Ht(X ,1).

Substituting X with A− 1
2 BA− 1

2 , and multiplying both sides with A
1
2 , we have the in-

equality (2.1). �

COROLLARY 2.2. Under the assumptions of Theorem 2.1, if t = 1 then for |1−
2r| � 1 , (

1− (1−2s)2

(1−2r)2

)
A�B+

(1−2s)2

(1−2r)2 Hr(A,B)

�
(

1− (1−2s)2
)

A�B+(1−2s)2A∇B. (2.3)

If r = 1 then for 1 � |1−2t|,(
1− (1−2s)2

)
A�B+(1−2s)2A∇B

�
(

1− (1−2s)2

(1−2t)2

)
A�B+

(1−2s)2

(1−2t)2 Ht(A,B). (2.4)

If s = r then for |1−2s|� |1−2t|,

Hs(A,B) �
(

1− (1−2s)2

(1−2t)2

)
A�B+

(1−2s)2

(1−2t)2 Ht(A,B). (2.5)

If s = t then for |1−2r|� |1−2s|,(
1− (1−2s)2

(1−2r)2

)
A�B+

(1−2s)2

(1−2r)2 Hr(A,B) � Hs(A,B). (2.6)

Moreover the inequalities (2.3) and (2.4) are equivalent, and (2.5) and (2.6) are
equivalent.

Now define a function Fν : R+ → R,(ν ∈ R) by

Fν(x) =

⎧⎪⎨
⎪⎩

xν − x1−ν

logx
, x > 0,x �= 1,

2ν −1, x = 1.

Then we have
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THEOREM 2.3. Let r,s,t ∈ R with t,r �= 1/2. If |1− 2r| � |1− 2t| and A,B ∈
B+, then

(
1− (1−2s)2

(1−2r)2

)
A�B+

(1−2s)2

(1−2r)2

1
2r−1

A
1
2 Fr(A− 1

2 BA− 1
2 )A

1
2

�
(

1− (1−2s)2

(1−2t)2

)
A�B+

(1−2s)2

(1−2t)2

1
2t−1

A
1
2 Ft(A− 1

2 BA− 1
2 )A

1
2 .

Proof. By a similar argument as in Theorem 2.1, for the case of sinhx/x we have
(

1− β 2

γ2

)
+

β 2

γ2

sinhγx
γx

�
(

1− β 2

α2

)
+

β 2

α2

sinhαx
αx

holds for real numbers α,β ,γ with α,γ �= 0 and |γ| � |α|. And then for a,b > 0 and
r,s,t ∈ R with t,r �= 1/2 and |1−2r|� |1−2t|, we have

(
1− (1−2s)2

(1−2r)2

)
+

(1−2s)2

(1−2r)2

a1−rbr −arb1−r

(1−2r)(loga− logb)
1√
ab

�
(

1− (1−2s)2

(1−2t)2

)
+

(1−2s)2

(1−2t)2

a1−tbt −atb1−t

(1−2t)(loga− logb)
1√
ab

.

Hence the conclusions follow. �

THEOREM 2.4. Let r,s ∈ R with r,s �= 1
2 . If

(1−2s)2

(1−2r)2 � 5
3
,

then for A,B ∈ B+,

(
1− 1

3
(1−2s)2

(1−2r)2

)
A�B+

1
3

(1−2s)2

(1−2r)2 Hr(A,B) � 1
2s−1

A
1
2 Fs(A− 1

2 BA− 1
2 )A

1
2 .

Proof. For real numbers β ,γ with β ,γ �= 0, and β 2/γ2 � 5/3, we have

sinhβx
βx

= 1+
β 2x2

3!
+

β 4x4

5!
+ · · ·

= 1− 1
3

β 2

γ2 +
1
3

β 2

γ2 +
1
3

β 2

γ2

γ2x2

2!
+

1
3

3
5

β 2

γ2

β 2γ2x4

4!
+

1
3

3
7

β 2

γ2

β 4γ2x6

6!
+ · · ·

� 1− 1
3

β 2

γ2 +
1
3

β 2

γ2

(
1+

γ2x2

2!
+

γ4x4

4!
+

3
7

(
5
3

)2 γ6x6

6!
+ · · ·

)

� 1− 1
3

β 2

γ2 +
1
3

β 2

γ2

(
1+

γ2x2

2!
+

γ4x4

4!
+

γ6x6

6!
+ · · ·

)

= 1− 1
3

β 2

γ2 +
1
3

β 2

γ2 coshγx.
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Let β = 1−2s,γ = 1−2r, and x = (loga− logb)/2. It follows that

(
1− 1

3
(1−2s)2

(1−2r)2

)
+

1
3

(1−2s)2

(1−2r)2

Hr(a,b)√
ab

� a1−sbs−asb1−s

(1−2s)(loga− logb)
1√
ab

.

Hence the conclusion follows. �
It has been proved that for β 2 � α2/3,

coshβx � sinhαx
αx

.

See [6]. Now we consider its converse version.

THEOREM 2.5. Let t,s∈ R with t �= 1
2 . If 3(1−2s)2 � (1−2t)2, then for A,B ∈

B+,

Hs(A,B) � 1
2t−1

A
1
2 Ft(A− 1

2 BA− 1
2 )A

1
2 .

Proof. For β 2 � α2/3, one has

coshβx = 1+
β 2x2

2!
+

β 4x4

4!
+

β 6x6

6!
+ · · · � 1+

α2x2

3!
+

α4x4

5!
+

α6x6

7!
+ · · · = sinhαx

αx
.

Therefore,

coshβx � sinhαx
αx

.

Let α = 1−2t,β = 1−2s, and x = (loga− logb)/2. Then it follows that for a,b > 0,

Hs(a,b) � a1−tbt −atb1−t

(1−2t)(loga− logb)
1√
ab

.

Hence the conclusion for positive operators follows. �

REMARK 2.6. In the above Theorem, when t = s, we have

Ht(A,B) � 1
2t−1

A
1
2 Ft(A− 1

2 BA− 1
2 )A

1
2

holds for t ∈ R, t �= 1/2. And we also get the condition for

Hs(a,b) � L(a,b)

is

s �
1− 1√

3

2
or s �

1+ 1√
3

2
,
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where L(a,b) is the logarithmic mean defined by

L(a,b) =
a−b

loga− logb
for a,b > 0.

Notice that for 3(1−2s)2 � (1−2t)2, we have

Hs(A,B) � 1
2t−1

A
1
2 Ft(A− 1

2 BA− 1
2 )A

1
2 .

See [7].

There is a basic monotonicity of Heinz means.

PROPOSITION 2.7. Set s,t ∈ R satisfying |1−2s|� |1−2t|. If A,B ∈ B+, then

Hs(A,B) � Ht(A,B),

and

1
2s−1

A
1
2 Fs(A− 1

2 BA− 1
2 )A

1
2 � 1

2t−1
A

1
2 Ft(A− 1

2 BA− 1
2 )A

1
2 .

Proof. By the monotonicity of coshx and sinhx/x and using the same arguments
as above, we can easily get the conclusions. �

LEMMA 2.8. Consider the function

H(t) =
(t−1)2 logt

t2−1−2t logt

defined on (1,∞). Then H(t) is strictly increasing on (1,∞), and

lim
t→1

H(t) = 3.

Proof. Firstly we have

H ′(t) =
(t−1)

[
(t−1)2(t +1)+2t(t−1) logt−2t(t +1) log2 t

]
t(t2−1−2t logt)2 .

Let
f (t) = (t −1)2(t +1)+2t(t−1) logt−2t(t +1) log2 t.

Then f (1) = 0 and

f ′(t) = 3(t−1)(t +1)−6logt− (4t +2) log2 t, f ′(1) = 0;

f ′′(t) = 6t−6
1
t
−4log2 t− (8t +4)

1
t
log t, f ′′(1) = 0;

f ′′′(t) =
2−8t +6t2 +(4−8t) logt

t2
, f ′′′(1) = 0.
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Now let
h(t) = 2−8t +6t2 +(4−8t) logt.

Then h(1) = 0 and

h′(t) = 12t−16−8logt +4
1
t
, h′(1) = 0;

h′′(t) =
12t2−8t−4

t2
, h′′(1) = 0.

Hence f (t) is strictly increasing on (1,∞) and f (t) > 0 on (1,∞). And since t2−1−
2t logt > 0 on (1,∞), H(t) is strictly increasing on (1,∞). Direct calculations show
that

lim
t→1

H(t) = 3.

Hence H(t) > 3 on (1,∞). �

LEMMA 2.9. Consider the equation

x(coshx−1)
sinhx− x

= 2p+1 (x > 0). (2.7)

Then for p > 1, there is uniquely one solution xp > 0 for the equation.

Proof. According to Lemma 2.8, If p > 1, then there is uniquely one solution
tp > 1 for the equation

H(t) = 2p+1.

Setting t = expx (x > 0), one has

H(t) =
x(coshx−1)

sinhx− x
. (2.8)

Hence the conclusion follows. �
Now we consider the hyperbolic sine. Define

G(x) =
sinhx− x

x2p+1 x > 0,

where p � 1. Then we have

THEOREM 2.10. Let p > 1,s �= 1/2, and μ � 1. If A,B ∈ B+ with A � μB or
B � μA, then we have

1
2s−1

A
1
2 Fs(A− 1

2 BA− 1
2 )A

1
2 �

(
1+

1
22p G(xp)|1−2s|2p(logμ)2p

)
A�B,

where xp is the solution of the equation

x(coshx−1)
sinhx− x

= 2p+1.
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Proof. Direct calculations show that

G′(x) =
x2p+1(coshx−1)− (2p+1)x2p(sinhx− x)

x4p+2 .

If G′(x) = 0, then
x(coshx−1) = (2p+1)(sinhx− x),

i.e.,

x(coshx−1)
sinhx− x

= 2p+1.

So if xp > 0 is the unique solution (According to Lemma 2.9) of the equation (2.7),
then G(x) gets its minimum at xp. Hence we have

sinhβx
βx

� 1+G(xp)(βx)2p.

It follows that

a1−sbs−asb1−s

(1−2s)(loga− logb)
1√
ab

� 1+
1

22p G(xp)|1−2s|2p| loga− logb|2p.

And the result follows. �
Now for p � 1, define

F(x) =
coshx−1

x2p , x > 0.

Then we have

THEOREM 2.11. Let p � 1,μ � 1, and A,B ∈ B+ with A � μB or B � μA. If
yp > 0 satisfies the equation

xsinhx
2(coshx−1)

= p,

then for s ∈ R,

Hs(A,B) �
(

1+
1

22p F(yp)|1−2s|2p(logμ)2p
)

A�B.

Proof. Notice that

F ′(x) =
x2p sinhx−2px2p−1(coshx−1)

x4p .

Let F ′(x) = 0. Then we have

xsinhx−2p(coshx−1) = 0.
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i.e.,

xsinhx
2(coshx−1)

= p. (2.9)

If we set x = log t where t > 1, then the equation (2.9) is equivalent to

t +1
2(t−1)

log t = p. (2.10)

And there is only one solution tp > 1 for this equation and F(log t) gets its minimum
at tp according to [2]. So if some yp > 0 satisfies the equation (2.9), F(x) get its
minimum at yp, and

F(yp) =
coshyp−1

y2p
p

.

Hence,

coshβx � 1+F(yp)β 2px2p.

Finally, we get

Hs(a,b) �
(

1+
1

22p F(yp)|1−2s|2p| loga− logb|2p
)√

ab,

and the result follows. �
In particular, when p → 1 we have 1

22p F(xp) = 1
8 , which can be verified by the

following argument.
Since

coshβx = 1+
β 2x2

2!
+

β 4x4

4!
+ · · · � 1+

β 2x2

2!
.

Letting β = 1−2s and x = (loga− logb)/2 we obtain

Hs(a,b)√
ab

� 1+
1
8
(1−2s)2(loga− logb)2,

which is equivalent to the case of p = 1 in Theorem 2.11. That is,

Hs(A,B) �
(

1+
1
8
(1−2s)2(logμ)2

)
A�B.

REMARK 2.12. Theorem 2.11 can be considered as another version and proof of
Theorem 2.2 (1) of [2].
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