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MULTIDIMENSIONAL HARDY-TYPE INEQUALITIES
ON TIME SCALES WITH VARIABLE EXPONENTS

0. O. FABELURIN, J. A. OGUNTUASE AND L.-E. PERSSON

(Communicated by J. Pecari¢)

Abstract. A new Jensen inequality for multivariate superquadratic functions is derived and proved.
The derived Jensen inequality is then employed to obtain the general Hardy-type integral inequal-
ity for superquadratic and subquadratic functions of several variables.

1. Introduction

Hardy’s discrete inequality reads: if p > 1 and {ax}}._, is a sequence of nonneg-

ative real numbers, then
p
o 1 & p P oo
Y (;2@) < (—) Y al. (1.1)

k=1 r=1) .3

Furthermore, G. H. Hardy [9] announced (without proof) that if p > 1 and the function
f is nonnegative and integrable over the interval (0,x), then

/Om (%/Oxf(f)dt>pdx§ (%)p/omfp(x)dx. (1.2)

Inequality (1.2) was finally proved by Hardy [10] in 1925. Thus, inequality (1.2) is
usually referred to in the literature as the classical Hardy integral inequality while in-

P
equality (1.1) is its discrete analogue. The constant (#) on the right hand sides of

both inequalities (1.1) and (1.2) is the best possible.

Note that (1.1) follows from (1.2), which was pointed out by Hardy [9] but there
he also informed that a proof of (1.1) was given to him already in a private letter from
E. Landau in 1921. More information concerning the interesting prehistory of Hardy’s
inequality can be found in [15].

In the last five decades, the Hardy inequality (1.2) has been extensively studied and
generalized. A lot of information as regarding applications, alternative proofs, variants,
generalizations and refinements abound in the literature (see e.g. the books [11, 16, 17]
and the references cited therein).
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In his PhD thesis, S. Hilger [12] (see also [6, 13, 14]) initiated the calculus of time
scales in order to create a theory that will unify discrete and continuous analysis. This
new concept has inspired researchers to study Hardy inequalities on time scales. The
first known work in this direction is probably due to P. Rehak [19] who in 2005 derived
Hardy integral inequality on time scales. Indeed, he showed that

T e

where a > 0,p > 1 and f is a nonnegative function.
For notations here and in the sequel see Section 2.
In 2001, R. P. Agarwal et al. [1] obtained the following Jensen’s inequality on time

scales , ,
o (1 [ rooar) < ;1 et

Moreover, T. Donchev et al. [8] employed the above result to derive the following
Hardy-type inequality involving multivariate convex functions on time scales:

THEOREM 1.1. Let (Qy,.#,up) and (Qy,.Z,Ap) be two time scale measure
spaces and U C R" be a closed convex set. Let K : Q — R be defined by K(x) :=
Jo, k(x,y)Ay <o, X € Qy, where k(x,y) >0 is a kernel. Moreover; let § : Q) — R
and the weight w = w(y) be defined by

= [ (2500 o,

Then for each convex function @,

[ €0 (i [, o) ars [ wopogina )

holds for all Ax-integrable functions f: Qp — R" such that f(Q,) C U C R".

In a recent paper, Oguntuase and Persson [18] presented a number of Hardy-type in-
equalities on time scales using superquadraticity technique which is based on the ap-
plication of Jensen dynamic inequality. For some recent developments on Hardy-type
inequalities on time scales and related results we refer interested reader to the book [3].

Motivated by the above results, our main aim in this paper is to first establish a
Jensen inequality for multivariate superquadratic functions and then employ it to derive
some new general Hardy-type inequalities for multivariate superquadratic functions in-
volving more general kernels on arbitrary time scales.

The paper is organized as follows: In Section 2, we recall some basic notions, def-
initions and results on multivariate superquadratic functions on time scales. In Section
3 we state and prove our main results.
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2. Preliminaries, definitions and some basic results

First, we recall that a time scale (or measure chain) T is an arbitrary nonempty
closed subset of the real line R with the topology of the subspace R. Examples of time
scales are the real numbers R and the discrete time scale Z. Since a time scale T may
or may not be connected, we need the concept of jump operators. For ¢ € T, we define
the forward jump operator ¢ : T — T by

o(t)=inf{seT:s>r}
and the backward jump operator by
p(r)=inf{seT:s<t}.

If o(t) > 1, we say that ¢ is right-scattered and if p(r) < we say that 7 is left-scattered.
The points that are both right-scattered and left-scattered are called isolated. If o (r) =1,
then 7 is said to be right-dense, and if p(r) = then 7 is said to be left-dense. The
points that are simultaneously right-dense and left-dense are called dense. The mapping
U : T — [0,e0) defined by
u(r) = o)1

is called the graininess function. If T has a left-scattered maximum M, then define
Tk = T\ {M}; otherwise TX = T. Let f: T — R be a function. Then we define the
function f°: T=R by f°(¢) = f(o(t)) forall r € T. Also, for a function f: T — R,
the delta derivative is defined by

£o(5) = f6)

s—to(s)#  O(s)—1t

A =

A function f: T — R is called rd-continuous provided it is continuous at all right-dense
points in T and its left-sided limits exists (finite) at all left-dense points in T. We refer
interested readers to the books [2], [6] and [7] for more details concerning the calculus
of time scales. Note that we have

o(t)=t, ult)=0, fA =7, /bf(t)Atszf(t)dt, when T = R,

b—1
o(t)=t+1, u(t) =1, fA=Af, /bf(t)At: Zf(t), when T = Z.

The following Fubini’s theorem on time scale in [5] will be needed in the proof of
our results in Section 3:

LEMMA 2.1. Let (Q,.#,up) and (A,.L, ), be two finite dimensional time
scale measures spaces. If f: QX A— R isa Ua X Aa-integrable function and define

the function ¢(y) = [o f(x,y)Ax forae. y € A and @(x)= [, f(x,y)Ay fora.e.
x €Q, then ¢ is Apn—integrable on A, @ is Ua-integrable on Q and

/QAX/Af(x,y)Ay=/AAy/Qf(x,y)AX- (2.1)
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Moreover, M. Anwar et al. [4] result on the Jensen inequality for convex functions
in several variables on time scales will also be needed.

THEOREM 2.2. Let (Q1,Z1,ua) and (Q3,%2,Ax) be two time scale measure
spaces. Suppose U C R" is a closed convex set and ® € C(U,R) is convex. Moreover,
let k: Q) x Qy — R be nonnegative such that k(x,.) is Ax — integrable. Then

o (fgz k(x,y)f(y)Ay> . Joo, k(x,3)@(£(y)) Ay

2.2
Jo KCo 1Ay T Ko 0)AY @2

holds for all functions £: Q, — U, where fi(y) are Ua, -integrableforall j € {1,2,...,n},
and [q, k(x,y)E(y)A(y) denotes the n-tuple

(/ ke fi (0 /knyz /kxyfn (>>.

In the sequel, we make the following definitions, assumptions and notations.
(Al) Q =Q) = [a,l) = [a17ll)qr X [a27l2)’[ X [an,ln)’ﬂ‘, where 0 < a; < [; <o
(A2.) a <b if componentwise a; < b;, i =1,2,...,n

(A3.) k:[a,1) x [a,]1) — R4 is such that

1 if a<y<o(x) <],
k(x,y) = 2.3
(xy) {0 otherwise, @3)
that is
1 if g;<yi<olx)<li=1,....,n
k(x17"7xn7y17"'7yn) = {0 otf:erwijilse ( l) l (24)

(Ad) ®(u)=ul,p>1.

REMARK 2.3. Under the assumptions (Al- A4), for m = 1, Theorem 2.2 yields
the inequality

P
1 o(x) o(x)

ni/ / SOty ) A1 .. Ay,

[1(o(xi) —a;) ° “

i=1

1 o(x1) o(x1)
gni/ / SO, n)) Ay .. Ay (2.5)

[1(o(xi) —a;) ° “
i=1

We will also need the following Lemmas for the proof of our main results in the paper.
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LEMMA 2.4. Let B >0 and a,b,l € T be such that 0 <a <b < 1.
@) If B > 1, then
! 1
/ (s—a)f'As < 5 (- —(p-a] < / ((s)—a)P~As.  (2.6)
b
Gi) If B < 1, then

/bl(s—a)ﬁ_lAs> % (- — (b )] >/bl(a(s)—a)ﬁ—1As. 2.7)

Proof. For case (i), let § > 1. Then by applying Keller’s chain [6], we find that

((-a) —ﬁ/ + (1= ) —a)P " dh
/3/ (t—a)+(1—h)(t—a)P~" dn
=B(r—a)P~ L.
Integrating, we obtain
/ljl(t—a)ﬁ71N< é [l—a)ﬁ—(b—a)ﬁ . 2.8)
On the other hand,
(¢-aP) —B/ (=R —a)Pan
< B/ +(1=n)(o() ) dn
—a) 71,
yielding 1
é[(z—a)ﬁ—(b—a)ﬁ} < /b (6(1) — a)P~'Ar. (2.9)

Finally, combining inequalities (2.8) and (2.9) yields the desired result.
(ii). For the case < 1, the proof is similar to the proof of (i), except that the inequali-
ties signs are reversed. [

LEMMA 2.5. Let n € N. If 0 < x; < yj, for 1 <i<n. Then

n

H - xl Hyt sz (2.10)
i=1

Proof. The proof is performed by induction and just noting that

(v2 —x2)(y1 —x1) = yay1 —x2x1 —xX2(y1 — x1) —x1(y2 — x2)
<yayr —xoxp. O
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3. Multidimensional Hardy-type inequalities for convex functions on time scales

Our first main result reads:

THEOREM 3.1. Let 0 < a < b < . Let the functions p,[3 : [a,b)r — R be de-
fined, respectively, by

0 0<X<ba 0> 0<x<b7
px)y=4" and B(x)=1{ " 3.1)
P1, x > b, B, x> b.

Moreover, assume that p,,p € R\ {0} are such that p, > 1,py =1 or p, > 1,p; <0

or po <0,p1 =1 or p, <0,p; <0. If f:a,l] = R is non-negative A-integrable and
f € Culla,l],R) for which

/:1 ab"f” (V15 >9n) (H ( "””))

3.2)
n(yi—ai\PY Avi A
1— - Ay, < oo,
X ,Hl<li—ai> V1 Vn <
then
p(x)
ll n O'(xl) O'(xl)
/ / / / FO15 - yn) A1 .. Ay,
a) ay ajy

bl b,, n l
</ P s n - _ﬁ(X)
” g P9 (yy Yn) (HB ( a;) )
nfo o\ BW
x [1—]‘[(?‘_?) ]Ayl...Ay,,—Hm (3.3)

i=1

where I, =0 if I < b (so that B(x) = B, and p(x) = p,) and
hl by n 1 B _
I():/ / fpl(yla“':yn)H[ﬁ_ ((yi—ai> ﬁl_(li_ai) ﬁl>:|AylAyn
ay an i=1 1

b, by n
_/ fpf?(yh...,yn)l—[|:ﬁL <(yi_ai)_ﬁ0—(li_ai)_ﬁo>:| AylAyn
aj an i=1 o

(3.4)
If 0 < p(x) < 1, then (3.3) holds in the reverse direction.
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Proof. Let b > [. By applying Jensen’s inequality (see Remark 2.3), Lemma 2.1
and Lemma 2.4, we find that

[, /"

p(x)

o(xy) o(xy)
/ / FOrs- o yn) A1 ... Ay,

a) ap aj

ll ln 1 O'(xl) O'(xl)
o A e L LN
ap an H(G( aj aj

I Xi) — aj)

><H (x;) —a;) PoAx ... Ax,
—1

/ll b fpo y17 7yn l/ll / )_(ﬁ0+1)Axl Mn]
n = 1

XAy ... Ay,

bl hn
S/ P (H ( ﬁm))
ay dan
n B(x)
Yi— 4
x[l—ﬂ(li_al) ]Ayl...Ayn.

Hence, (3.3) is proved for this case.

Next, let b < I. By applying Jensen’s inequality (see Remark 2.3) and Lemma 2.1,
we find that

p(x)
Ul I o(x1) o(x1)
/ / / / SO, yn)Ayr ... Ayn
_ al) ay ap
X H(G(x,-) —a)) ﬁ("’)Axl Ax,,
i=1
Po
by o(xy) o(x)
/ / _— / / SO1, - vn)Ayr ... Ay,
ap H ) ajy ajy

< [1(o(x) ~ ai) " PoAx, ... Ax,
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P1

ln bl n

/ / fyh S Yn)Ay1 .. Ay,
><H ﬁlel Ax,

P1
o(x) o (xn)

AT rremrd Y ST

n _al) hl hn
><H ﬁlel - Ax,,

by by by N
/ / fpo yla 7)’11 / ai)_ﬁ"Axl...Axn Ay ... Ay,
1 Yn
by N I, n
"’/ / P Y155 Vn) / / o(xi) —a;) ﬂ"Axl Axp | Ayy LAy,
by b 1

1 I, n
o b fPl Yis-- ayn (/ ﬁUA)Q A)Cn> A}HA}’n
by n y

=1, (3.5)

By Lemma 2.4 and Lemma 2.5, we find that

]g/bl,,,/bnf%(yl,...,yn [é i—a) —(bi—ai)_ﬁ0>]

A
+/h' "fm (V1s--3Yn) [ ((b,-—ai)iﬁ —(li—ai)ﬁl>]A)’1~~~Ayn

i=1

1 ..Ayn

n

Ay
—F/bl pr 15+ +9n) ﬁ [ﬁl ( —a) P —(l,-—ai)_m)} Ayi... Ay,

i=1
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- /” /” fpo(yl,...,mi]j [Bi (i=a) P —(ti—a) P ”)} At B

S S

nfyi—a\ PO
X 1-]‘[(—) Ayy... Ay, +1,. (3.6)

imr \li—ai

By combining the inequalities (3.5) with (3.6) the inequality (3.3) follows so that the
proof is complete. [
The next result concerns the dual version of Theorem 3.1 when the Hardy operator

1 o(x1) o(x1)
H o) — o [ [T A A
(o(x;) —a;) "™ “

I

1

is replaced by the dual Hardy operator

* oY) AL LAy,
H*.fxl7 L Xn —)H xl _al/ f(ylv ay)yl y
ot o) l_Il(G(yi)_ai)(yi—ai)

=

Our next main result concerning the dual Hardy operator H* reads:

THEOREM 3.2. Let 0 < a < b < . Let the functions p,[3 : [a,b)r — R be de-
fined, respectively, by

7 0<x<b, : 0<x<b,
plx) =37 Bl =1P (3.7)
P1, x> b, Bi, x>b.

Moreover, assume that p,,p € R\ {0} are such that p, > 1,py =1 or p, > 1,p; <0
or po <0,p1 =1 or p, <0,p; <0. If f:]a,l] - R is non-negative A-integrable and
f€Cullal],R) for which

/zlw.../;fpl(yl,...,yn) (ﬁ%) [l_ﬁl@:j)ﬁw

o Ay ... Ay, < oo, (3.8)

(o(vi) —ai) (vi —ai)

=3

i

then

/:/Zm ﬁ(a(xi) /xl /6 - yl»_al;y(;j_ai) Avi ... Ay,

i=1
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é/llw.../lnmfl’l(yl,...,yn) (}j%) [1_: (;;:Zgﬁ(y)]

Avi.. Ay,
x - Y ‘1, (3.9)

(0(vi) —ai) (vi — ai)

l:1=

i

where I, =0 if L < b (so that B(x) = B, and p(x) = p,) and

I(,_/ / P01, 9m) )l" [% <( —ai)ﬁl—(li—ai)m)]A)’l---A)’n

_al)(yt —ai

/ /ln S0 0n) ." [é ((}’i—ai)ﬁ” - (li—ai)ﬁu>] Ayy...Ayp.

—a;)(yi —a;) =1

(3.10)

If 0 < p(x) < 1, then (3.9) holds in the reverse direction.

Proof. Let b > 1. Applying Jensen’s inequality (see Remark 2.3) and Lemma 2.1,
we obtain that

p(x)

~ ~ “ 1y---5)n
// H / / fOLs:s0n) Ayy ... Ay,
h | =1 o(x) Jo(xw)

(o () — a)(yi — a)
., Bx)-1
o (H(xi_ai)> Axy...Ax,

i=1
(0(xi) —a)

T

f‘"1 i ,yn)Am -Ayn
/ /z,,/xl /xn a;)(vi — ai)

i,

n Bi-1
X (H(xi—ai)> Ax1 ...Ax,,

i=1

/ /l f”‘m, - Yn) l[/ /ly<: )ﬁllel...Axn]

—(1
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XAy ... Ay,
oo oo ), n (yi_ai)/i(y) . n li—ai B(y)
<[ .. Y Wi 47 ) g
Jy o, oo (12505 ,Ul<yi—ai>
x AVt A . G.11)

n

I1(o(yi) — ai)(yi — ai)

i=1

Finally, let b < [. Also the proof of this case is completely analogous to the correspond-
ing part of the proof of Theorem 3.1 so we leave out the details. [
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