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A NOTE ON ”REMARKS ON SOME INEQUALITIES FOR POSITIVE
SEMIDEFINITE MATRICES AND QUESTIONS FOR BOURIN”

JIANGUO ZHAO* AND QI JIANG

(Communicated by Josip Pecaric)

Abstract. Let A;, B; € ), be positive semidefinite matrices with A;B; = BjA; (i=1,2,---.m).
Then

G((é(z‘hBi)%)’) <wlog 6((5‘114’_)5(2&)%(;&)5)7

where r > 1. This result is a refinement of M. Hayajneh, S. Hayajneh and F. Kittaneh’s result.

1. Introduction

Throughout, let .#, be the space of n x n complex matrices. For A € .#,,, denotes
Ai(A) (j=1,2,---,n) by the eigenvalues of A with |A;(A)| > [A2(A)] = --- > |A.(A)].
The singular values of A denoted as ¢;(A)(j = 1,2,---,n), i.e., the eigenvalues of the
positive semidefinite matrix |A| = (A*A)% ,arranged as 01(A) > 02(A) > -+ > 0,4(A),
where A* is the conjugate transpose of A. Let A(A) := (A1(A4),A2(A),---,A,(A)), and
0(A):=(01(A),02(A),---,04(A)) be the vector of eigenvalues and the singular values
of A, respectively. For two Hermitian matrices A, B € .#,, A < (<)B means B—A is
positive semidefinite (definite). A norm || - || on .#, is called a unitarily invariant norm
if ||UAV| = ||A|| for A, U, V € .4, with U, V are unitaries. I, is the identity matrix
of ., .

Let us recall some definitions of majorizations. Given a real vector x = (x,xp, -,
Xn) € Z", we rearrange its components as X[y = X[y = -+ = X[ . For x= (x1,x2,+, %),
y=1y2, ) € Z", if

k k
Zx[i] < Zy[l]7 k= 1727"'ana
i=1 i=1

then we say that x is weakly majorized by y and denotes by x <,, y. If x <,, y and
2 Xi = 2 vi, then we say that x is majorized by y and denotes by x < y. Further, if
i=1 i=
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x = (x1,%2, -, Xn), y= (y1,¥2,-*,yn) € Z'} and

k k
[Txg <ITvi k=1.2..m,
i=1 i=1

then We say that x is weakly log-majorized by y and denotes by x <106 y. If X <700 ¥
and H X; = H i, then we say that x is log-majorized by y and denotes by x <;,¢ y. It

is Well known that if x <y10g ¥, then x <, y.

For ¢ € [0,1], the r— geometric mean of A, B € ., with A, B> 0 is defined as:
AfB:=AI(A"IBA ) Al (1)

When 1 = %, At B is the geometric mean of A and B. For convenience, we write AfB
2
instead of Aﬂ%B. AfB has an extremal property (see, e.g., [2, Theorem 4.1.3]):

AX
= : = * >
AEB max{x.x X,[XB}/O}. )

Very recently, M. Hayajneh, S. Hayajneh and F. Kittaneh [4, Theorem 2] obtained:
Let A;, B; € .4, be positive semidefinite matrices with A;B; = B;A; (i=1,2,---,m).
Then for all unitarily invariant norms,

[(Zats!) < N(Za)" (220 (24)°) ®

Inequality (3) is a refinement of the following inequality obtained by Audenaert
[1]: Let A;, B; € .4, be positive semidefinite matrices with A;B; = BjA; (i=1,2,---,m).
Then for all unitarily invariant norms,

[(Zafs) <[ (Sa) (Z8)]

Lin [7] and Hoa [6] presented a different proof for inequality (4), respectively.
Inequality (4) gave an affirmative answer to J. C. Bourin’s question: Given two positive
semidefinite matrices A, B and two positive real numbers p, g, is it true that

“4)

IAP™4 4+ BPTA| < [[(A + BP) (AT + BY)|| ? (5)

In this short note, we will present an inequality for weak log-majorizations, which
makes inequality (3) as a special case.

2. Main results

In this section, we mainly present an inequality for weak log-majorizations. To
achieve our goal, we need the following lemmas. The first lemma was obtained by J.
Matharu and J. Aujla [8, Theorem 2.10].
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LEMMA 1. Let A, B€ 4, with A, B>0 and t € [0,1]. Then
A(AEB) <10 A(A''B').
The next lemma was given by Hiai [5, Theorem 3.4].
LEMMA 2. Let A, B€ ., with A, B>0 and t € [0,1]. Then
A((A2BA2)") <yiog A (AEBAD),
forr>1.

In the sequel, we present the famous Fan dominance theorem (see, e.g., [9, Theorem
4.24)).

LEMMA 3. Let A, B € #,. Then
o(A) =wo(B) = Al <|B]
Sfor any unitarily invariant norm || - ||.

The lemma 4 was due to Bourin and Uchiyama [3, Theorem 1.2].

LEMMA 4. Let A, B> 0 and g : [0,4o0) — [0,4c0) be a convex function with
g(0) = 0. Then for every unitarily invariant norm || - ||

lg(A) +&(B)|| < llg(A+B)]-

It is now time to present the following theorem.

THEOREM 1. Let A;, B; € .#, be positive semidefinite matrices with A;B; = BiA;
(i=1,2,---,m). Then

m

((iAB ) )-<W10g6((ZAi>4L(ZBi>%(ZAl)%), ©)

i=1 i=1

—

where r > 1.

Proof. We firstly consider the case A;, B; >0 (i=1,2,---,m). Since A;B; = B;A;
11
(i=1,2,---,m), we have A;iB; = A/ B} = (A,-B,-)% . By the relation (2), we obtain

1
A AB)2 o,
(AiBi)7 B;

for i=1,2,---,m, which implies

Z A; g (AiBi)%
= i=1 m >0.
( ) > B;

i=1 i=1

'M§
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Using the relation (2) again, we get

m

(4

M
>
M

i=1 11
which implies
Mo((S@mt)) < Mo (SaomSm) ) @

fork=1,2,---,n

By Lemmas 1 and 2, we have

To((Earm)) <
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for k=1,2,---,n
Combining inequalities (7) and (8), we get the desired inequality (6).

For the general case, replacing A; and B; by A; +&l, and B;+ €I, (¢ > 0) for
i=1,2,---,m, respectively, and repeating the same process as above, we obtain

((i Ai+el)(B: +el,,)%)r>

m

<W,%o(<§ (A;+el) ) (Z(B[-i-gln))%(z(A + el ))%)

i=1 i=1
Letting € — 0", by continuity, we can also get inequality (6).
This completes the proof. [
REMARK 1. Let A;, B; € ., be positive semidefinite matrices with A;B; = B;A;
(i=1,2,---,m). Putting r =2 in inequality (6), we obtain

o((Bm)) <ame(($0) ($5)(30)°).

=1
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which implies,

o((Sam))<e(($a) (E)(E0)) @

i=1

By Lemma 3, inequality (9) is equivalent to inequality (3). Therefore, inequality
(6) is a refinement of inequality (3).

REMARK 2. Let A;, B; € ./, be positive semidefinite matrices with A;B; = BjA;
(i=1,2,---,m). By Lemma 4, we have (taking g(x) = x?)

L Mmoo\ 2
H;&&SQK;&WQ’M (10)

Combining inequalities (9) and (10), we get

[$an] <[ (40" () (2) |

Noting the fact: If X and Y are matrices with XY is Hermitian, then ||XY|| < [|[YX]|

(1)

for all unitarily invariant norms || - ||, inequality (11) gives
m m 1
<[[(5a)" () (50)°
i=1 i=1
<[(Z2)(Z)

i=1 i=1

m

=[(z) (28)])

On the other hand, let A and B be two positive semidefinite matrices and p, g be
two positive real numbers. Taking m =2, Ay =AP, By =A%, A, =BP, B, =B% in
inequality (12), we have

12)

Wﬁuﬂﬁﬂ<WM+WﬁmuﬁmM+mﬁ

<||ar +Bryas+ 59

which is just the inequality (5). So, we also get an affirmative answer to Bourin’s
question.
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