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UPPER AND LOWER BOUNDS FOR THE OPTIMAL

CONSTANT IN THE EXTENDED SOBOLEV

INEQUALITY. DERIVATION AND NUMERICAL RESULTS

SH. M. NASIBOV AND E. J. M. VELING

Abstract. We prove and give numerical results for two lower bounds and eleven upper bounds
to the optimal constant k0 = k0(n,α) in the inequality

‖u‖2n/(n−2α) � k0 ‖∇u‖α
2 ‖u‖1−α

2 , u ∈ H1(Rn),

for n = 1, 0 < α � 1/2 , and n � 2, 0 < α < 1.
This constant k0 is the reciprocal of the infimum λn,α for u ∈ H1(Rn) of the functional

Λn,α =
‖∇u‖α

2 ‖u‖1−α
2

‖u‖2n/(n−2α)
, u ∈ H1(Rn),

where for n = 1, 0 < α � 1/2, and for n � 2, 0 < α < 1.

The lowest point in the point spectrum of the Schrödinger operator τ = −Δ + q on R
n

with the real-valued potential q can be expressed in λn,α for all q− = max(0,−q) ∈ Lp(Rn),
for n = 1, 1 � p < ∞, and n � 2, n/2 < p < ∞, and the norm ‖q−‖p.
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