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ON THE NEGATIVE SOLUTIONS OF Lp –BUSEMANN–PETTY PROBLEM
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(Communicated by J. Pečarić)

Abstract. Intersection bodies led to the solutions of Busemann-Petty problem by Lutwak. As-
sociated with Haberl and Ludwig’s Lp -intersection bodies, Yuan and Cheung researched re-
lated the Lp -Busemann-Petty problem. In this paper, we sequentially study Lp -Busemann-Petty
problem of Lp -intersection bodies and give its two negative forms.

1. Introduction

If K is a compact star shaped (about the origin) in n -dimensional Euclidean space
R

n , then its radial function, ρK = ρ(K, ·) : R
n\{0}→ [0,∞) , is defined by (see [3])

ρ(K,x) = max{λ � 0 : λx ∈ K}, x ∈ R
n\{0}.

If ρ(K, ·) is positive and continuous, K will be called a star body. The set of star
bodies (about the origin) in R

n is denoted by S n
o , for the set of all origin-symmetric

star bodies, we write S n
os .

The well-known Busemann-Petty problem is one of essential questions in Brunn-
Minkowski theory, it may be stated as follows:

PROBLEM 1.1 (BUSEMANN-PETTY PROBLEM). Let K and L be origin-symmetric
convex bodies. For all u ∈ Sn−1 , is there the implication

Vn−1(K ∩u⊥) ⊆Vn−1(L∩u⊥) ⇒V (K) � V (L)?

Here Sn−1 denotes the unit sphere in R
n , u⊥ is the (n− 1)-dimensional hyperplane

orthogonal to u , Vn−1 and V (K) respectively denote the (n− 1)- and n -dimensional
volume of body K .

Intersection bodies led to the solutions of Busemann-Petty problem by Lutwak. In
1988, Lutwak ([10]) introduced the intersection bodies as follows: For K ∈ S n

o , the
intersection body, IK , of K is a star body whose radial function is defined by

ρ(IK,u) = Vn−1(K∩u⊥)
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for all u ∈ Sn−1 .
Further, Lutwak ([10]) showed the following general Busemann-Petty problem for

star bodies by intersection bodies:

PROBLEM 1.2 (GENERAL BUSEMANN-PETTY PROBLEM). For K,L ∈ S n
o , is

there the implication
IK ⊆ IL ⇒V (K) � V (L)?

Obviously, if K and L both are origin-symmetric convex bodies, then problem
1.2 is problem 1.1. For problem 1.1, Gardner ([1]), Zhang ([24]) showed that it has an
affirmative answer for n � 4 and a negative answer for n � 5. For problem 1.2, Lutwak
([10]) gave its an affirmative answer if K is restricted to the class of intersection bodies
and two negative answers if K is not origin-symmetric star body or L is not intersection
body.

THEOREM 1.A. For K,L ∈ S n
o , if K is an intersection body, then

IK ⊆ IL ⇒V (K) � V (L).

And V (K) =V (L) if and only if K = L.

THEOREM 1.B. For K ∈ S n
o , if K /∈ S n

os , then there exists L ∈ S n
os , such that

IK ⊂ IL.

But
V (K) > V (L).

THEOREM 1.C. Suppose L ∈ S n
o is sufficiently smooth. If L is not intersection

body, then there exists K ∈ S n
os , such that

IK ⊂ IL.

But
V (K) > V (L).

During the past nearly three decades, the investigation of Busemann-Petty problem
have received considerable attention (see [1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 21, 22, 23, 24]).

In 2006, Haberl and Ludwig ([6]) introduced Lp -intersection bodies as follows:
For K ∈S n

o , nonzero p < 1, the Lp -intersection body, IpK , of K is an origin-symmetric
star body whose radial function is given by (see [6])

ρ p
IpK(z) =

∫
K
|z · x|−pdx =

1
n− p

∫
Sn−1

|z · v|−pρK(v)n−pdv (1.1)

for all z ∈ R
n . Here dv is the element with respect to spherical Lebesgue measure on

Sn−1 . Meanwhile, Haberl and Ludwig ([6]) pointed out that the intersection body of
K is obtained can as a limit of Lp -intersection body of K , i.e., for K ∈ S n

o and any
z ∈ R

n ,

ρIK(z) = lim
p→1−

1− p
2

ρ p
IpK(z).
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In addition, Haberl and Ludwig ([6]) also introduced the notion of asymmetric Lp -
intersection bodies.

Associated with Haberl and Ludwig’s Lp -intersection bodies, Yuan and Cheung
([20]) considered the following Lp -Busemann-Petty problem.

PROBLEM 1.3 (Lp -BUSEMANN-PETTY PROBLEM). For K,L ∈ S n
o , nonzero

p < 1, is there the implication

IpK ⊆ IpL ⇒V (K) � V (L)?

For problem 1.3, Yuan and Cheung ([20]) gave an affirmative answer and a nega-
tive answer as follows:

THEOREM 1.D. For K,L ∈ S n
o and nonzero p < 1 . If K is an Lp -intersection

body, then for 0 < p < 1 ,

IpK ⊆ IpL ⇒V (K) � V (L);

for p < 0 ,
IpK ⊆ IpL ⇒V (K) � V (L).

And V (K) =V (L) if and only if K = L.

THEOREM 1.E. For K ∈ S n
o , 0 < p < 1 . If K /∈ S n

os , then there exists L ∈ S n
os ,

such that
IpK ⊂ IpL.

But
V (K) > V (L).

Obviously, Theorem 1.D, Theorem 1.E is the Lp -version of Theorem 1.A, Theo-
rem 1.B, respectively.

Meanwhile, associated with asymmetric Lp -intersection bodies, Haberl ([5]) re-
searched corresponding Lp -Busemann-Petty problem and obtained its affirmative and
negative forms. Recently, according to general Lp -intersection bodies, Wang and Li
([18]) considered general Lp -Busemann-Petty problem. For the studies of Lp -Busemann-
Petty problem, also see [11, 15, 17].

The main goal of this paper is to study the negative forms of Lp -Busemann-Petty
problem. Our works belong to the field of Lp -dual Brunn-Minkowski theory. We first
extend the scope of negative solutions from S n

os to S n
o in Theorem 1.E.

THEOREM 1.1. For K ∈ S n
o , 0 < p < 1 . If K /∈ S n

os , then there exists L ∈ S n
o ,

such that
IpK ⊂ IpL.

But
V (K) > V (L).

Next, combining with the Lp -intersection bodies, we give the Lp -analogues of
Theorem 1.C.
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THEOREM 1.2. Suppose L∈S n
os is sufficiently smooth. If L is not Lp -intersection

body, then there exists K ∈ S n
os , such that for 0 < p < 1 ,

IpK ⊂ IpL.

But
V (K) > V (L).

The proofs of theorems 1.1-1.2 are completed in Section 3.

2. Background materials

2.1. Lp -radial Blaschke combinations, general Lp -radial Blaschke bodies

In 2015, Wang and Wang ([16]) defined the Lp -radial Blaschke combinations (also
called the Lp -dual Blaschke combinations) of star bodies as follows: For K,L ∈ S n

o ,
p 
= n and λ ,μ � 0 (not both 0), the Lp -radial Blaschke combination, λ ·K+̂pμ ·L ∈
S n

o , of K and L is defined by

ρ(λ ·K+̂pμ ·L, ·)n−p = λ ρ(K, ·)n−p + μρ(L, ·)n−p. (2.1)

Here λ ·K = λ 1/(n−p)K . If p = 1, then λ ·K+̂pμ ·L is the radial Blaschke combination
λ ·K+̂μ ·L .

Now, in order to prove our results, we will give the general Lp -radial Blaschke
bodies (also called the general Lp -dual Blaschke bodies) as follows: Let

λ = f1(τ) =
(1+ τ)2

2(1+ τ2)
, μ = f2(τ) =

(1− τ)2

2(1+ τ2)
(2.2)

with τ ∈ [−1,1] and L = −K in (2.1), and write

∇̃τ
pK = f1(τ) ·K+̂p f2(τ) · (−K). (2.3)

We call ∇̃τ
pK the general Lp -radial Blaschke body of K . From (2.2) and (2.3), we

easily see that ∇̃1
pK = K , ∇̃−1

p K = −K and

∇̃0
pK =

1
2
·K+̂p

1
2
· (−K). (2.4)

Here ∇̃0
pK is the Lp -radial Blaschke body ∇̃pK whose definition was given by Haberl

(see [5]).
For the general Lp -radial Blaschke bodies, by (2.2) we know

f1(τ)+ f2(τ) = 1. (2.5)

Hence, if K ∈ S n
os then ∇̃τ

pK ∈ S n
os . If K /∈ S n

os , we have the following conclusion.



ON THE NEGATIVE SOLUTIONS OF Lp -BUSEMANN-PETTY PROBLEM 783

PROPOSITION 2.1. For K,L ∈ S n
o and p 
= n. If K /∈ S n

os , then for τ ∈ [−1,1] ,

∇̃τ
pK ∈ S n

os ⇔ τ = 0. (2.6)

Proof. If τ = 0, by (2.4) we immediately get ∇̃τ
pK ∈ S n

os .
Conversely, notice that for any M ∈ S n

o and u ∈ Sn−1 , ρM(−u) = ρ−M(u) , thus
if ∇̃τ

pK ∈ S n
os , then ∇̃τ

pK = −∇̃τ
pK , i.e., for all u ∈ Sn−1 ,

ρn−p

∇̃τ
pK

(u) = ρn−p

−∇̃τ
pK

(u) = ρn−p

∇̃τ
pK

(−u),

by (2.3) we have

ρn−p
f1(τ)·K+̂p f2(τ)·(−K)

(u) = ρn−p
f1(τ)·K+̂p f2(τ)·(−K)

(−u).

This together with (2.1) yields

f1(τ)ρn−p
K (u)+ f2(τ)ρn−p

−K (u) = f1(τ)ρn−p
K (−u)+ f2(τ)ρn−p

−K (−u),

hence
f1(τ)ρn−p

K (u)+ f2(τ)ρn−p
−K (u) = f1(τ)ρn−p

−K (u)+ f2(τ)ρn−p
K (u),

i.e.,
[ f1(τ)− f2(τ)][ρn−p

K (u)−ρn−p
−K (u)] = 0.

Since K /∈ S n
os implies ρn−p

K (u)−ρn−p
−K (u) 
= 0, thus we obtain

f1(τ)− f2(τ) = 0.

This and (2.2) give τ = 0. �

2.2. Lp dual mixed volumes

For K,L ∈ S n
o , real p 
= 0 and λ ,μ � 0 (not both 0), the Lp -radial Minkowski

combination, λ ◦K+̃pμ ◦L ∈ S n
o , of K and L is defined by (see [5, 13])

ρ(λ ◦K+̃pμ ◦L, ·)p = λ ρ(K, ·)p + μρ(L, ·)p.

Here λ ◦K = λ 1/pK . The case p = 1 yields the radial Minkowski combination λ ◦
K+̃μ ◦L .

Based on the Lp -radial Minkowski combinations of star bodies, Haberl ([5]) showed
a class of Lp -dual mixed volumes: For M,N ∈ S n

o , p > 0 and ε > 0, the Lp -dual
mixed volume, Ṽp(M,N) , of M and N is defined by (for p � 1 see [19])

n
p
Ṽp(M,N) = lim

ε→0+

V (M+̃pε ◦N)−V(M)
ε

.
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From above definition, Haberl ([5]) gave the following integral representation of
Lp -dual mixed volume:

Ṽp(M,N) =
1
n

∫
Sn−1

ρn−p
M (u)ρ p

N(u)du. (2.7)

Here du is the element with respect to spherical Lebesgue measure on Sn−1 .
Taking M = N in (2.7), then we get

Ṽp(M,M) = V (M) =
1
n

∫
Sn−1

ρn
M(u)du. (2.8)

For the Lp -dual mixed volumes, the following corresponding Minkowski inequal-
ity was obtained by Haberl ([5]):

THEOREM 2.A. If M,N ∈ S n
o , n 
= p > 0 , then for p < n,

Ṽp(M,N) � V (M)
n−p

n V (N)
p
n , (2.9)

for p > n,

Ṽp(M,N) � V (M)
n−p

n V (N)
p
n .

In every inequality, equality holds if and only if M and N are dilatates.

2.3. L−p -cosine transformations

In 2008, Haberl ([5]) introduced the L−p -cosine transformations as follows: For
nonzero p < 1 and function f ∈C(Sn−1) , the L−p - cosine transformation is defined by

C−p f (u) =
∫

Sn−1
|u · v|−p f (v)dv, u ∈ Sn−1. (2.10)

Here C(Sn−1) denotes the set of all continuous functions on Sn−1 .
From (2.10) and (1.1), we easily see that for all u ∈ Sn−1 ,

ρ p
IpK

(u) =
1

n− p
C−pρn−p

K (u). (2.11)

If F,G ∈C(Sn−1) , write

(F,G) =
1
n

∫
Sn−1

F(u)G(u)du,

then by (2.10) we have

(C−p f ,g) = ( f ,C−pg) =
1
n

∫
Sn−1

∫
Sn−1

|u · v|−p f (u)g(u)dudv. (2.12)

For the L−p -cosine transformation C−p , Haberl ([5]) proved the following fact.

THEOREM 2.B. If nonzero p < 1 is not an integer, then C−p :Ce(Sn−1)→Ce(Sn−1)
is injective.

Here Ce(Sn−1) denotes the set of all even continuous functions on Sn−1 .
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3. Proofs of theorems 1.1-1.2

Theorems 1.1-1.2 show two negative forms of Lp -Busemann-Petty problem. In
this section, we will prove theorems 1.1-1.2. The proof of Theorem 1.1 needs the
following lemmas.

LEMMA 3.1. If K ∈ S n
o , nonzero p < 1 and τ ∈ [−1,1] , then

V (∇̃τ
pK) � V (K). (3.1)

Equality holds for τ ∈ (−1,1) if and only if K is origin-symmetric; for τ = ±1 , (3.1)
becomes an equality.

Proof. According to (2.1) and (2.7), we have for any Q ∈ S n
o ,

Ṽp(λ ·K+̂pμ ·L,Q) =
1
n

∫
Sn−1

ρn−p
λ ·K+̂pμ·L(u)ρ p

Q(u)du

=
λ
n

∫
Sn−1

ρn−p
K (u)ρ p

Q(u)du+
μ
n

∫
Sn−1

ρn−p
L (u)ρ p

Q(u)du

= λṼp(K,Q)+ μṼp(L,Q).

For nonzero p < 1, by inequality (2.9) we obtain

Ṽp(λ ·K+̂pμ ·L,Q) � [λV (K)
n−p

n + μV(L)
n−p

n ]V (Q)
p
n .

Let Q = λ ·K+̂pμ ·L in above inequality, then

V (λ ·K+̂pμ ·L)
n−p

n � λV (K)
n−p

n + μV(L)
n−p

n . (3.2)

And the equality condition of inequality (2.9) implies that equality holds in (3.2) for
λ ,μ > 0 if and only if K and L are dilatates (if λ = 0 or μ = 0, then (3.2) becomes
an equality).

From (3.2), (2.3), (2.2) and (2.5), and notice that V (K) =V (−K) , we get

V (∇̃τ
pK)

n−p
n � V (K)

n−p
n ,

this together with nonzero p < 1 gives inequality (3.1).
Because of f1(τ), f2(τ) > 0 when τ ∈ (−1,1) . Therefore, according to the equal-

ity condition of (3.2), we know that equality holds in (3.1) for τ ∈ (−1,1) if and only
if K and −K are dilatates, that is K is origin-symmetric.

If τ = ±1, then by ∇̃±1
p K = ±K we see that (3.1) becomes an equality. �

LEMMA 3.2. For K ∈ S n
o , nonzero p < 1 and τ ∈ [−1,1] , then

Ip(∇̃τ
pK) = IpK. (3.3)
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Proof. From (1.1), (2.1), (2.3) and (2.5), and notice that IpK = Ip(−K) , we have
that for all u ∈ Sn−1 ,

ρ(Ip(∇̃τ
pK),u)p =

1
n− p

∫
Sn−1

|u · v|−pρn−p

∇̃τ
pK

(v)dv

=
1

n− p

∫
Sn−1

|u · v|−p[ f1(τ)ρn−p
K (v)+ f2(τ)ρn−p

−K (v)]dv

= f1(τ)ρ p
IpK(u)+ f2(τ)ρ p

Ip(−K)(u) = ρ p
IpK(u).

This gives (3.3). �
Proof of Theorem 1.1. Since K /∈ S n

os , thus by inequality (3.1) we know that for
0 < p < 1 and τ ∈ (−1,1) ,

V (∇̃τ
pK) < V (K).

Choose ε > 0 such that
V ((1+ ε)∇̃τ

pK) < V (K).

From this, let L = (1 + ε)∇̃τ
pK , then L ∈ S n

o (Proposition 2.1 gives that for τ = 0,
L ∈ S n

os ; for τ ∈ (−1,1) and τ 
= 0, L ∈ S n
o \S n

os ) and satisfies V (L) < V (K) .

But by (3.3) and notice that Ip(cK) = c
n−p

p IpK for c > 0, we obtain that for 0 <
p < 1,

IpL = Ip((1+ ε)∇̃τ
pK) = (1+ ε)

n−p
p Ip(∇̃τ

pK) = (1+ ε)
n−p

p IpK ⊃ IpK. �

Proof of Theorem 1.2. Let C∞
e (Sn−1) denotes the set of all even and infinite smooth

functions on Sn−1 . Because of L ∈ S n
os is infinite smooth, thus ρL ∈ C∞

e (Sn−1) . By
Theorem 2.B we know that there exists ϕ ∈ C∞

e (Sn−1) , such that for nonzero p < 1,
ρ p

L = C−pϕ . Since L is not Lp -intersection body, hence function ϕ must be nega-
tive. Otherwise, if ϕ � 0 and notice ϕ ∈ C∞

e (Sn−1) , then there exists infinite smooth
Q ∈S n

os such that 1
n−pρn−p

Q = ϕ . From this, we know that C−pϕ = 1
n−pC−pρn−p

Q , this

together with (2.11) yields ρ p
L = ρ p

IpQ , i.e., L is an Lp -intersection body. This leads to
contradiction.

Therefore, choose F ∈ C∞
e (Sn−1) and F is not identically zero, such that F > 0

when ϕ < 0; F = 0 when ϕ � 0. From this, we have

(F,ϕ) =
1
n

∫
Sn−1

F(v)ϕ(v)dv < 0. (3.4)

And according to F ∈ C∞
e (Sn−1) , by Theorem 2.B we know that there exists g ∈

C∞
e (Sn−1) , such that F =C−pg . Because of ρL > 0 (L ∈S n

os ), thus there exists ε > 0,
such that ρn−p

L −εg > 0. Notice that ρn−p
L −εg∈C∞

e (Sn−1) , then there exists K ∈S n
os

is infinite smooth, such that ρn−p
K = ρn−p

L − εg . This yields

C−pρn−p
K = C−pρn−p

L − εC−pg,
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i.e.,
ρ p

IpK
= ρ p

IpL − εF < ρ p
IpL

.

This and 0 < p < 1 give IpK ⊂ IpL .
But by (2.7), (2.11) and (3.4) we have

V (L)− Ṽp(K,L) = Ṽp(L,L)− Ṽp(K,L) = (ρn−p
L ,ρ p

L )− (ρn−p
K ,ρ p

L ) = (ρn−p
L −ρn−p

K ,ρ p
L )

= (ρn−p
L −ρn−p

K ,C−pϕ) = (C−pρn−p
L −C−pρn−p

K ,ϕ) = (ρ p
IpL −ρ p

IpK ,ϕ)

= (εF,ϕ) = ε(F,ϕ) < 0.

Using inequality (2.9) we obtain

V (L) < Ṽp(K,L) � V (K)
n−p

n V (L)
p
n ,

i.e., V (K) > V (L) . �
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