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LYAPUNOV–TYPE INEQUALITY FOR THE HADAMARD FRACTIONAL

BOUNDARY VALUE PROBLEM ON A GENERAL INTERVAL [a,b]

ZAID LAADJAL, NACER ADJEROUD AND QINGHUA MA ∗

(Communicated by J. Pečarić)

Abstract. In this paper, using two different methods, we studied an open problem and obtained
several results for Lyapunov-type and Hartman-Wintner-type inequalities for a Hadamard frac-
tional differential equation on a general interval [a,b] , (1 � a < b) with the boundary value
conditions.

1. Introduction

The first result in this domain is due to Lyapunov [1], can be stated as follows: If
a nontrivial continuous solution to the following boundary value problem{

u′′(t)+q(t)u(t) = 0, a < t < b,
u(a) = u(b) = 0,

(1)

exist, where q : [a,b] → R is a continuous function, then

∫ b

a
|q(s)| ds >

4
b−a

. (2)

Lyapunov’s inequality has proved useful in the study of various properties of dif-
ferential and difference equations. These applications include bounds for eigenvalues,
stability criteria for periodic differential equations, and estimates for intervals of dis-
conjugacy, etc. Recently, several articles from the inequality of Lyapunov have been
published about a differential equations of the integer order and fractional order, see
[5, 6, 7, 8, 9, 10] and references therein. For example, The following result for the
Riemann-Liouville fractional boundary value problem is found by D. O’Regan and B.
Samet [4] {

R
aDαu(t)+q(t)u(t) = 0, a < t < b, 3 < α � 4,
u(a) = u′(a) = u′′(a) = u′′(b) = 0,

(3)
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has a nontrivial continuous solution, then∫ b

a
|q(s)| ds >

Γ(α)(α −2)α−2

2(α −3)α−3(b−a)α−1 . (4)

In [2] Ma, Ma and Wang established a Lyapunov-type inequality for a differential
equation that depends on the Hadamard fractional derivative, for the boundary value
problem {

H
1 Dαu(t)−q(t)u(t) = 0, 1 < t < e, 1 < α � 2,

u(1) = u(e) = 0,
(5)

where q : [1,e] → R is a continuous function. They proved that if a nontrivial continu-
ous solution to the above problem, then∫ e

1
|q(s)| ds > Γ(α)λ 1−λ (1−α)expλ , (6)

where λ = 2α−1−
√

(2α−2)2+1
2 . And they have presented the following open problem for

readers: How to get the Lyapunov inequality for the following the Hadarmard fractional
boundary value problem (HFBVP){

H
a Dαu(t)−q(t)u(t) = 0, 1 � a < t < b, 1 < α � 2,

u(a) = u(b) = 0,
(7)

where H
a Dα is the Hadamard fractional derivative of order α , and q : [a,b] → R is a

continuous function.
In this paper we answered the previous question by using two methods, and also we

get the Hartman-Wintner-type inequalities. The interest of the article does not lie only
in the fact that has given the answer to the open problem, but also some mathematical
analysis skills and effort for overcoming the hard obstacles to find the maximum value
of the log-style Green’s function. The analysis skills can be used to deal with some
more complicated similar problems.

2. Preliminaries

DEFINITION 1. [3] Let a,b,α ∈ R
+ where a < b and n−1 < α � n with n∈ N ,

the Hadamard fractional integral of order α for a function f (t) is defined by

H
a Iα

t f (t) =
1

Γ(α)

∫ t

a

(
ln

t
s

)α−1
f (s)

ds
s

, a � t � b, (8)

with Γ is Euler function.

DEFINITION 2. [3] Let a,b∈ R
+ with a < b , the Hadamard fractional derivative

of order α ∈ R
+ for a function f (t) is defined by

H
a Dα

t f (t) =
1

Γ(n−α)
tn

dn

dtn

∫ t

a

(
ln

t
s

)n−α−1
f (s)

ds
s

, a � t � b, (9)

where n−1 < α � n with n ∈ N .
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LEMMA 1. [3] Let 0 < a < b and α > 0 where n− 1 < α � n and n ∈ N , the
equation H

a Dαu(t) = 0 has this solutions

u(t) =
i=n

∑
i=1

ci

(
ln

t
a

)α−i
, t ∈ [a,b], (10)

where ci ∈ R ,(i = 1, ...,n) are constants. And moreover

H
a Iα H

a Dαu(t) = u(t)+
i=n

∑
i=1

ci

(
ln

t
a

)α−i
, (11)

LEMMA 2. Let A,B ∈ R . Then

AB � (A+B)2

4
. (12)

3. Main results

LEMMA 3. Let u ∈C([a,b],R) , the following problem{
H
a Dαu(t)−q(t)u(t) = 0, 1 � a < t < b, 1 < α � 2,

u(a) = u(b) = 0,
(13)

has equivalent to the fractional integral equation

u(t) =
∫ b

a
G(t,s)q(s)u(s) ds, (14)

where

G(t,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(t,s) = g2(t,s)+ 1
Γ(α)

(
ln t

s

)α−1 1
s , a � s � t � b,

g2(t,s) = − 1
Γ(α)

(ln t
a )

α−1(ln b
s )

α−1

(ln b
a )

α−1
1
s , a � t � s � b,

(15)

with 1 � a < b.

Proof. Using Lemma 1, we have

u(t) = c1

(
ln

t
a

)α−1
+ c2

(
ln

t
a

)α−2
+

1
Γ(α)

∫ t

a

(
ln

t
s

)α−1
q(s)u(s)

ds
s

, (16)

where c1,c2 ∈ R .
Using the boundary condition u(a) = u(b) = 0, we get c2 = 0 and

c1 = −
(
ln b

a

)1−α

Γ(α)

∫ b

a

(
ln

b
s

)α−1

q(s)u(s)
ds
s

. (17)
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Substituting the values of c1 and c2 in (16), we obtain

u(t) = −
(
ln t

a

)α−1 (
ln b

a

)1−α

Γ(α)

∫ b

a

(
ln

b
s

)α−1

q(s)u(s)
ds
s

+
1

Γ(α)

∫ t

a

(
ln

t
s

)α−1
q(s)u(s)

ds
s

=
1

Γ(α)

∫ t

a

[(
ln

t
s

)α−1
−
(

ln
b
a

)1−α (
ln

t
a

)α−1
(

ln
b
s

)α−1
]

q(s)u(s)
ds
s

− 1
Γ(α)

∫ b

t

(
ln

b
a

)1−α (
ln

t
a

)α−1
(

ln
b
s

)α−1

q(s)u(s)
ds
s

=
∫ b

a
G(t,s)q(s)u(s) ds. (18)

The proof is complete. �

LEMMA 4. The Green’s function G defined in Lemma 3, has the following prop-
erties

1. g2(s,s) � G(t,s) � 0 , for all (t,s) ∈ [a,b]× [a,b].

2. For any (t,s) ∈ [a,b]× [a,b],

|G(t,s)| �|G(s,s)| = −g2(s,s) � 1

4(α−1)Γ(α)a

(
ln

b
a

)(α−1)

. (19)

Proof. We start by fixing an arbitrary s ∈ [a,b] . Differentiating G(t,s) with re-
spect to t , we get
For 1 � a < t � s � b , we have

∂
∂ t

g2 = − (α −1)(ln t
a )α−2(ln b

s )
α−1

Γ(α)(ln b
a)α−1st

� 0. (20)

On the other hand, by (15) note that g2(t,s) � 0, we obtain

g2(s,s) � g2(t,s) � g2(a,s) � 0. (21)

While for 1 � a � s < t � b , we have

∂
∂ t

g1 =
∂
∂ t

g2 +
(α −1)
Γ(α)st

(
ln

t
s

)α−2

= − (α −1)
Γ(α)st

(
ln t

a

)α−2 (
ln b

s

)α−1

(
ln b

a

)α−1 +
(α −1)
Γ(α)st

(
ln

t
s

)α−2

=
(α −1)

(
ln t

a

)α−2

Γ(α)st

⎡
⎣( ln t

a

ln t
s

)2−α

−
(

ln b
s

ln b
a

)α−1
⎤
⎦ . (22)
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By 1 � a � s < t � b , we get (
ln t

a

ln t
s

)2−α

� 1, (23)

and

−
(

ln b
s

ln b
a

)α−1

� −1, (24)

using (23) and (24), we obtain⎡
⎣( ln t

a

ln t
s

)2−α

−
(

ln b
s

ln b
a

)α−1
⎤
⎦� 0, (25)

So thus
∂
∂ t

g1 � 0. (26)

Using 1 � a � s < t � b , we get

g1(t,s) � g1(b,s) = 0. (27)

On the other hand, for all s ∈ [a,t), limt→s+ g1(t,s) = g1(s,s) , so for any t ∈ [s,b] ,

g1(s,s) � g1(t,s), (28)

and if t = s , then
g2(s,s) = g1(s,s), (29)

with g2(a,s) = g1(a,a) = 0 for all s ∈ [a,b] . By (21), (27), (28) and (29), we obtain

g2(s,s) = G(s,s) � G(t,s) � 0. (30)

Now we prove that

|G(s,s)|� 1
4α−1Γ(α)a

(
ln

b
a

)α−1

. (31)

We have G(s,s) = g2(s,s) = g1(s,s) � 0.
Using Lemma 2, we have

|G(s,s)| =
1

Γ(α)
(
ln b

a

)α−1
s

[(
ln

s
a

)(
ln

b
s

)]α−1

� 1

4α−1Γ(α)
(
ln b

a

)α−1
s

[(
ln

s
a

+ ln
b
s

)2
]α−1

=
1

4α−1Γ(α)s

(
ln

b
a

)α−1

� 1
4α−1Γ(α)a

(
ln

b
a

)α−1

.
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Therefore

|G(t,s)| � |G(s,s)| = −g2(s,s) � 1

4(α−1)Γ(α)a

(
ln

b
a

)α−1

. (32)

The proof is complete. �
We have the following Hartman-Wintner-type inequality.

THEOREM 1. If a nontrivial continuous solution to the Hadamard fractional bound-
ary value problem (7) exist, then

∫ b

a

1
s

(
ln

s
a

ln
b
s

)α−1

|q(s)|ds �
(

ln
b
a

)α−1

Γ(α). (33)

Proof. Let E = C([a,b],R) be the Banach space endowed with the norm

‖u‖ = sup
t∈[a,b]

|u(t)|.

We have

|u(t)| �
∫ b

a
|G(t,s)||q(s)||u(s)| ds,

which yields

‖u‖ �‖u‖
∫ b

a
|g2(s,s)||q(s)| ds.

Since u is non trivial, then ‖u‖ �= 0, so

1 �
∫ b

a

1(
ln b

a

)α−1 Γ(α)s

(
ln

s
a

ln
b
s

)α−1

|q(s)| ds,

from which the inequality in (33) follows. �

COROLLARY 1. If a nontrivial continuous solution to the Hadamard fractional
boundary value problem exist, then

∫ b

a

(
ln

s
a

ln
b
s

)α−1

|q(s)|ds � a

(
ln

b
a

)α−1

Γ(α). (34)

Proof. From Theorem 1, we have

∫ b

a

1
s

(
ln

s
a

ln
b
s

)α−1

|q(s)|ds �
(

ln
b
a

)α−1

Γ(α).

Next we note 1
a � 1

s , thus we get

∫ b

a

(
ln

s
a

ln
b
s

)α−1

|q(s)|ds � a

(
ln

b
a

)α−1

Γ(α). � (35)

We have the following Lyapunov-type inequality.
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THEOREM 2. If a nontrivial continuous solution to the Hadamard fractional bound-
ary value problem (7) exist, then

∫ b

a
|q(s)|ds � 4(α−1)Γ(α)a

(
ln

b
a

)1−α
. (36)

Proof. From the Corollary 1, we have

∫ b

a
|q(s)|ds � a

(
ln

b
a

)α−1 Γ(α)
max
s∈[a,b]

h(s)
, (37)

where

h(s) =
(

ln
s
a

ln
b
s

)α−1

. (38)

If s = a or s = b, then h(s) = 0. Else if s ∈]a,b[ , we differentiate h(s),

h′(s) =
(α −1)

s
(
ln s

a ln b
s

)2−α

(
ln

b
s
− ln

s
a

)

=
(α −1)

(
ln ab

s2

)
s
(
ln s

a ln b
s

)2−α ,

we have only one solution s0 =
√

ab of the equation h′(s) = 0 on ]a,b[. We obtain

max
s∈[a,b]

h(s) = h(s0) =

(
ln

√
ab
a

ln
b√
ab

)α−1

. (39)

We have

ab =
√

ab
√

ab ⇔ ln

√
ab
a

= ln
b√
ab

⇔
(

ln

√
ab
a

− ln
b√
ab

)2

= 0

⇔ 4

(
ln

√
ab
a

ln
b√
ab

)
=

(
ln

√
ab
a

)2

+
(

ln
b√
ab

)2

+2

(
ln

√
ab
a

ln
b√
ab

)

⇔
(

ln

√
ab
a

ln
b√
ab

)
=

1
4

(
ln

√
ab
a

+ ln
b√
ab

)2

=
1
4

(
ln

b
a

)2

⇔
(

ln

√
ab
a

ln
b√
ab

)α−1

=
1

4(α−1)

(
ln

b
a

)2(α−1)

, (40)

by (39) and (40),

max
s∈[a,b]

h(s) = h(s0) =
1

4(α−1)

(
ln

b
a

)2(α−1)

, (41)
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substituting (41) into (37), we obtain

∫ b

a
|q(s)|ds � 4(α−1)Γ(α)a

(
ln

b
a

)1−α
.

The proof is complete. �
We define the constants:

ξ1 = exp

(
1
2

[
[2(α −1)+ lnba]−

√
4(α −1)2 + ln2 b

a

])
, (42)

and

ξ2 = exp

(
1
2

[
[2(α −1)+ lnba]+

√
4(α −1)2 + ln2 b

a

])
, (43)

LEMMA 5. The function G defined in Lemma 3, satisfies the following property

max
t,s∈[a,b]

|G(t,s)|= 1
Γ(α)ξ1

⎛
⎝ ln ξ1

a ln b
ξ1

ln b
a

⎞
⎠

α−1

. (44)

Proof. We observe that g2([a,b]× [a,b])⊂G([a,b]× [a,b]), and by the first prop-
erty in the Lemma 4, we get

max
t,s∈[a,b]

|G(t,s)|= max
s∈[a,b]

|g2(s,s)|, (45)

where g2(s,s) = − 1

Γ(α)
(
ln b

a

)α−1

(
ln

s
a

ln
b
s

)α−1

s
.

It follows that we only need to get the maximum value of the function

f (s) =

(
ln

s
a

ln
b
s

)α−1

s
. (46)

We observe that f (a) = f (b) = 0. If s ∈]a,b[, differentiate f (s).

f ′(s) =

[
(α −1)

ln b
s − ln s

a(
ln s

a ln b
s

) −1

](
ln

s
a

ln
b
s

)α−1 1
s2 .

we have

f ′(s) = 0 ⇔ (α −1)
(
ln b

s − ln s
a

)
= ln s

a ln b
s

⇔ [2(α −1)+ lnb+ lna] lns− [(α −1)+ lnb] lna− ln2 s− (α −1) lnb = 0
⇔ ln2 s− [2(α −1)+ lnba] lns+[(α −1) lnba+ lnb lna] = 0
⇔ x2− [2(α −1)+ lnba]x+[(α −1) lnba+ lnb lna] = 0,



LYAPUNOV-TYPE INEQUALITY 797

where x = lns.
We get ⎧⎪⎨

⎪⎩
x1 = [2(α−1)+lnba]−√

Δ
2 = lnξ1,

x2 = [2(α−1)+lnba]+
√

Δ
2 = lnξ2,

(47)

where Δ = 4(α −1)2 + ln2 b
a .

We have

x2 >
lnba+

√(
ln b

a

)2
2

= lnb,

we obtain ξ2 /∈]a,b[. Also we have

x1 =
1
2

⎛
⎝2(α −1)+ lnba−

√(
2(α −1)+ ln

b
a

)2

−4(α −1)
(

ln
b
a

)⎞⎠

>
1
2

⎛
⎝2(α −1)+ lnba−

√(
2(α −1)+ ln

b
a

)2
⎞
⎠

=
1
2

(
2(α −1)+ lnba−2(α −1)− ln

b
a

)
= lna

⇒ ξ1 > a,

and

x1 =
1
2

⎛
⎝2(α −1)+ lnba−

√(
2(α −1)− ln

b
a

)2

+4(α −1) ln
b
a

⎞
⎠

<
1
2

⎛
⎝2(α −1)+ lnba−

√(
2(α −1)− ln

b
a

)2
⎞
⎠

=
1
2

(
2(α −1)+ lnba−

∣∣∣∣2(α −1)− ln
b
a

∣∣∣∣
)

� 1
2

(
2(α −1)+ lnba−

(
|2(α −1)|−

∣∣∣∣ln b
a

∣∣∣∣
))

=
1
2

(
2(α −1)+ lnba−

(
2(α −1)− ln

b
a

))
= lnb

⇒ ξ1 < b,

we obtaint ξ1 ∈]a,b[.
Hence

max
s∈[a,b]

| f (s)| = 1
ξ1

(
ln

ξ1

a
ln

b
ξ1

)α−1

. (48)
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Therefore

max
t,s∈[a,b]

|G(t,s)| = 1
Γ(α)ξ1

⎛
⎝ ln ξ1

a ln b
ξ1

ln b
a

⎞
⎠

α−1

. (49)

The proof is complete. �
We have the following Lyapunov-type inequality.

THEOREM 3. If a nontrivial continuous solution to the HFBVP (7) exist, then

∫ b

a
|q(s)| ds � Γ(α)ξ1

⎛
⎝ ln ξ1

a ln b
ξ1

ln b
a

⎞
⎠

1−α

, (50)

where ξ1 defined as in (42).

Proof. By Lemma 3, the solution of the HFBVP can be written as

u(t) =
∫ b

a
G(t,s)q(s)u(s) ds.

Thus for all t ∈ [a,b] , we have

|u(t)| �
∫ b

a
|G(t,s)| |q(s)| |u(s)| ds

� ‖u‖
∫ b

a
|G(t,s)| |q(s)|ds.

which yields

‖u‖ � ‖u‖
∫ b

a
|G(t,s)| |q(s)|ds.

Since u is non trivial, then ‖u‖ �= 0, so

1 �
∫ b

a
|G(t,s)| |q(s)|ds.

New, an application of Lemma 5, we obtain

∫ b

a
|q(s)|ds � Γ(α)ξ1

⎛
⎝ ln ξ1

a ln b
ξ1

ln b
a

⎞
⎠

1−α

.

The proof is complete. �

REMARK 1. Let a=1, b=e, from Theorem 3, we can conclude the main result in
[2], and we have solved the open problem in [2] using the directly analysis method. As
well as there have been an answer to the open problem with different method in the
paper [11].
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