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Abstract. In this short review note we show that the new proof of Theorem 1.1 given by Zheng
Jie Sun and Ling Zhu in the paper Simple proofs of the Cusa-Huygens-type and Becker-Stark-type
inequalities is logically incorrect and present another simple proof of the same.

1. Remarks

The sharp circular inequality [1, 5]
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is known as Cusa-Huygens inequality. C.-P. Chen, W.-S. Cheung [2] and József Sándor
[6] extended and sharpened inequality (1) independently. Their common result is as
stated below:
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with the best positive constants θ ≈ 1.1137399 and ϑ = 1.

In 2013, Zheng Jie Sun and Ling Zhu [7, Theorem 1.1] presented new proof of
inequalities in (2). The authors of this paper [7] obtained that
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Using (3) they proved (2). In what follows, we explain how intermediate result (3)
is logically incorrect.

By virtue of (1) we have
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which gives
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since x cosx− sinx < 0 as cosx < sinx
x [3].

This in turn results in to
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Thus it is clear that, the result in (3) is logically incorrect. The authors of [7] still proved
their main result (2)[7, Theorem 1.1] using this incorrect result (3), which is a mathe-
matical mistake. So their proof as they claimed cannot be considered as a new proof
of inequalities in (2). However, they gave new and simple proof of another theorem [7,
Theorem 1.2].

2. Main result

We give simple proof of (2) by using following lemma.

LEMMA 1. (l’Hôpital’s Rule [4] of monotonicity): Let f ,g be two real valued
functions which are continuous on [a,b] and derivable on (a,b) and g′ �= 0. Then

the functions f (x)− f (a)
g(x)−g(a) and f (x)− f (b)

g(x)−g(b) are increasing(or decreasing) on (a,b) if f ′/g′

is increasing(or decreasing) on (a,b) . The monotonicity in the conclusion is strict if
f ′/g′ is strictly monotone.

Simple Proof of Double Inequality (2):
Consider,
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differentiation
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where f3(x) = (sinx− x cosx)(2+ cosx) and f4(x) = x sin2 x with f3(0) = 0 =
f4(0). Again differentiating we get
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such that g(x) = 2−2 sinx
x and h(x) = 1

2 cosx+ sinx
x

.

Now cosx and sinx/x are clearly positive decreasing functions and sinx/x < 1, we
have that g(x) and h(x) are both positive increasing functions which are differentiable
on (0,π/2) . Therefore h(x),h′(x) > 0 and g(x),g′(x) > 0. Hence, [g(x)h(x)]′ > 0,
which shows that f ′3(x)/ f ′4(x) is strictly increasing in (0,π/2) . By Lemma 1, f (x) is
also strictly increasing in (0,π/2). Therefore

f (0+) < f (x) < f (π/2); 0 < x < π/2.

Consequently, θ = f (π/2) = ln(2/π)
ln(2/3) ≈ 1.1137399 and ϑ = f (0+) = 1 by l’Hôpital’s

rule. �
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