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MARTÍNEZ-FERNÁNDEZ

(Communicated by T. Burić)

Abstract. Consumer theory studies how individuals make choices given the prices of goods, bud-
get constraints and their preferences. The preferences of a consumer are represented by a utility
measure. One of the most important examples of utility mappings is given by the Cobb-Douglas
functions. Frequently the quantities of goods involved in the selection problem are random in-
stead of deterministic. Motivated by the need to compare the preferences and investments of a
consumer when the quantities of goods are random and the utility belongs to the Cobb-Douglas
family, a new stochastic order is introduced. The order is analyzed in detail, providing charac-
terizations, conditions which lead to the order and properties derived from the order. Special
emphasis is placed on the antisymmetric property of the new ordering. The proposed stochastic
order weakens the concave order.

1. Motivation of the analysis

In economics, a utility is a representation of preferences over some set of goods.
A utility function can be defined as a mapping which specifies the satisfaction of a
consumer for all combinations of goods involved in a problem. Roughly speaking,
utility functions measure the degree of well-being such goods provide for consumers.

The microeconomic theory basic problem of consumer choice is the election be-
tween two goods given a budget constraint. Namely, let x1 and x2 stand for the units
purchased of two goods by a consumer, let p1 and p2 be the unit prices of both goods
respectively, and let m represent the income of the consumer, where prices and income
are fixed strictly positive values. Assume that for a consumer the utility of the purchased
goods is represented by a utility function U(x1,x2) , which follows the axioms of the
revealed preferences as in [14]. Clearly the aim of a consumer is the maximization of
his utility. That is, the optimization problem

maximize U(x1,x2)
with the constraint p1x1 + p2x2 � m
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since the amount spent on both goods cannot be greater than the income of the con-
sumer. Obviously the utility function will be maximize when p1x1 + p2x2 = m since
that mapping is increasing in both arguments. As a consequence we can express the
second good as a mapping of the first good, that is, x2 = − p1

p2
x1 + m

p2
.

Therefore the above optimization problem can be rewritten as a problem in one
dimension. Namely,

maximize U(x1,− p1

p2
x1 +

m
p2

)

with the constraint x1 ∈ [0,
m
p1

].

One of the most important families of utility (and production) functions is the
so-called Cobb-Douglas family, which was introduced in [5]. These functions have
been widely used in applied problems since they describe many economic problems
and enjoy important properties such the constant elasticity. The readers are referred to
[6] and [8] for the justification of the use of Cobb-Douglas utility functions in real-life
problems, to [1] for the use in economic growth theory, and to [15] for a characterization
of preferences represented by a Cobb-Douglas utility function.

Consider the family of Cobb-Douglas utility functions given by the mappings U :
R

2
+ →R , with U(x1,x2) = kxα

1 x1−α
2 for any (x1,x2)∈R

2
+, where k > 0 and α ∈ [0,1].

Assume that our optimization problem involves a Cobb-Douglas function. Let
a′ = p1

p2
, b = m

p2
and a = b

a′ . The consumer choice problem becomes

maximize ka′dxα
1 (−x1 +a)1−α

with the constraint x1 ∈ [0,a].

In many applied problems the goods that a consumer purchases are better de-
scribed by random variables than by constants since they are essentially random. This
fact usually appears when some good depends on a random variable that represents a
characteristic of that good. Clear examples arise when an investor buys all the harvest
of a season, that depends on the humidity, the land, the rain, the temperature, etc., and
so the final harvest is random instead of deterministic. The total amount of a good that
an investor can purchase frequently depends on stocks, evolution of financial markets,
climatology, political scene, foreign exchange rates, etc.

Under this framework, how could one compare investments? That is the main aim
of this manuscript. Namely, we propose a mathematical method to compare investments
in a two-good consumer choice problem with the above Cobb-Douglas utility functions,
when the amounts of goods involved in the problem are subject to randomness.

The structure of the paper is as follows. In Section 2 we collect the concepts
and results needed for our analysis. In Section 3 we introduce a new stochastic order to
approach the problem described above. In Section 4 we develop some characterizations
of the order, conditions which lead to the new stochastic order, and consequences of the
order. Relevant properties of the order are studied in Section 5. To conclude we analyze
the antisymmetric property of the new stochastic order in Section 6, providing a general
family of distributions in which that property is satisfied.
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2. Preliminaries

The mathematical concepts, notations and results needed for the analysis are in-
cluded in this section.

Stochastic orders are pre-order relations on sets of probabilities. Basically, a
stochastic order tries to rank probabilities in accordance with an appropriate criterion.
In [11], [13] and [3], the reader can find a clear and comprehensive introduction to the
theory of stochastic orderings.

Given a random variable X , FX will denote its distribution function, E(X) its
expected value, PX its induced probability, and if X is continuous, fX will stand for a
density mapping of X .

The integrated survival function of a random variable X with finite mean is the
mapping πX : R → R , with πX(t) = E(X − t)+ for any t ∈ R .

Let � denote a stochastic order on the set of probabilities on (R,BR), where BR

denotes the usual Borel σ -algebra on R . Let X and Y be random variables, X � Y
will mean that PX � PY . Thus univariate stochastic orderings are sometimes introduced
by means of random variables.

The following stochastic orderings will appear throughout the paper. Let X and Y
be two random variables, then

i) X is said to be smaller than Y in the concave order if E( f (X)) � E( f (Y ))
for all concave mappings f : R → R such that the above expectations exist. It will be
denoted by X �cv Y,

ii) X is said to be smaller than Y in the convex order if E( f (X)) � E( f (Y ))
for all convex mappings f : R → R such that the above expectations exist. It will be
denoted by X �cx Y,

iii) X is said to be smaller than Y in the increasing convex order if E( f (X))
� E( f (Y )) for all increasing convex mappings f : R → R such that the above expec-
tations exist. It will be denoted by X �icx Y.

A stochastic order � is said to be integral, when there exists a set F of real
measurable mappings, such that two probabilities P1 and P2 satisfy

P1 � P2 when
∫

f dP1 �
∫

f dP2

for any f ∈ F for which the above expectations exist. The set of mappings F is said
to be a generator of the order. The reader is referred to [10] and Chapter 2 of [11] for a
precise analysis of integral stochastic orders.

Let P be a probability on (R,BR) , and T : R → R be a measurable mapping,
P◦T−1 will denote the probability on BR given by P◦T−1(B) = P(T−1(B)) for any
B ∈ BR.

Let (Ω,A ) be a measurable space. Let μ ,ν : A → R be σ -finite measures,
μ � ν will mean that μ is absolutely continuous with respect to ν , that is, μ(A) = 0
for any A ∈ A such that ν(A) = 0 . In that case, dμ

dν will stand for a Radon-Nikodym
derivative of μ with respect to ν (see for instance [12] or [2]).

We will denote by L 1(μ) the set of mappings { f : Ω → R | f is measurable and∫
Ω | f |dμ < +∞}.
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The usual Borel measure on the real line will be denoted by θ .
If A is a subset of R , IA will stand for the indicator function of A .
The beta function will be denoted by B , that is, B : (0,∞)× (0,∞) → R , with

B(x,y) =
∫ 1
0 tx−1(1− t)y−1 dt for any (x,y) ∈ (0,∞)× (0,∞). On the other hand, Γ will

stand for the gamma mapping given by Γ : (0,+∞)→R, with Γ(x) =
∫ ∞
0 tx−1e−t dt for

any x ∈ (0,+∞).
When A belongs to BR , BA will stand for the inherited Borel σ -algebra on A .
For ease of reading of subsequent results, the following proposition on the differ-

entiability under the integral sign is included here. It is an immediate consequence of
Theorem 9.2 in [9].

PROPOSITION 1. Let (Ω,A ,μ) be a measure space. Let N ∈ A be a set with
μ(N) = 0 . Let I ⊂ R be an open interval. Let F : I×Ω → R be a function satisfying
that

i) for any x ∈ Ω\N , the mapping F(·,x) is differentiable on I ,

ii) for any t ∈ I , the mapping F(t, ·) is measurable,

iii) there is a mapping g ∈ L 1(μ) with | d
dt F(t,x)| � g(x) for each x ∈ Ω \N and

t ∈ I ,

iv) there exists t0 ∈ I such that F(t0, ·) ∈ L 1(μ) .

Then F(t, ·) ∈ L 1(μ) for any t ∈ I , and the mapping f : I → R given by

f (t) =
∫

Ω
F(t, ·)dμ is differentiable on I with f ′(t) =

∫
Ω

d
dt

F(t, ·)dμ

for any t ∈ I.

3. The Cobb-Douglas stochastic order

A mathematical model to approach the problem described in Section 1 is proposed
in this section. That model is based on a stochastic order.

In the first place we introduce the following families of probabilities and random
variables.

Let a > 0. Let us denote by P
a the set of probabilities associated with the mea-

surable space (R,BR) , such that P([0,a]) =1.
Let X

a be the set of random variables whose induced probabilities belong to the
class P

a .

DEFINITION 1. Let a > 0. The family of mappings

Fa = { f : [0,a] → R with f (x) = kxα (−x+a)1−α | k > 0, α ∈ [0,1]}

is said to be the Cobb-Douglas family.
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The mappings of the family Fa are concave.
From now on and given a > 0, for any α ∈ [0,1] we will denote by fα the function

fα : [0,a] → R , with fα (x) = xα(−x+a)1−α for any x ∈ [0,a].

DEFINITION 2. Let a > 0 and X ,Y ∈ X
a . It will be said that X is less than Y in

the Cobb-Douglas order if E( f (X)) � E( f (Y )) for any f ∈ Fa. This relation will be
denoted by X �CD Y.

Note that all mappings of Fa are bounded, thus the above expectations are finite.
Therefore the relation �CD is a pre-order.

Let us clarify the meaning of the order. Let X and Y stand for the randomvariables
associated with the units of a good in our framework, for instance, the harvest of a
cereal in two regions. Assume that an investor aims to buy one of them. How could he
compare both investments? The relation X �CD Y means that whatever Cobb-Douglas
utility function of Fa we consider, the expected utility is greater, or at least not lower,
when the number of units of the good is that associated with random variable Y . Thus
in the above example the investor should acquire the harvest associated with random
variable Y .

4. Necessary and/or sufficient conditions for the Cobb-Douglas order

In this section we develop some characterization results of the Cobb-Douglas or-
der. These results connect the new order with a special family of beta distributions.
Some inequalities for those beta distributions will be proved. Moreover, we obtain
conditions implied by the new order, and conditions which lead to the new stochastic
order.

In the first place we introduce a useful function for the comparison of random
variables by means of the Cobb-Douglas order.

DEFINITION 3. Let a > 0 and X ∈ X
a . The mapping φX : [0,1] → R , with

φX(α) =
∫
[0,a] fαdPX for any α ∈ [0,1] , will be said to be the discriminant Cobb-

Douglas function of X .

Note that φX is well defined since fα belongs to L 1(PX) for any α ∈ [0,1].
Observe that for any X ,Y ∈ X

a , X �CD Y if and only if φX � φY .
Characterizations of the order are proved below.

PROPOSITION 2. Let a > 0 and X ,Y ∈ X
a . Then X �CD Y if and only if

E
(
fB(α+1,2−α)(

X
a

)
)

� E
(
fB(α+1,2−α)(

Y
a

)
)

for any α ∈ [0,1] , where fB(α+1,2−α) stands for the density mapping of a beta distri-
bution with parameters α +1 and 2−α .
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Proof. We have that X �CD Y if and only if E( f (X)) � E( f (Y )) for any f ∈Fa ,
that is, if and only if for any α ∈ [0,1]

∫
[0,a]

xα(−x+a)1−α dPX �
∫

[0,a]
xα(−x+a)1−α dPY .

By a change of variable (see for instance [7]) given by the mapping T : R → R , with
T (x) = x/a , we have that

∫
[0,a]

xα(−x+a)1−α dPX =
∫

[0,1]
axα(1− x)1−α dPX ◦T−1.

Thus X �CD Y if and only if
∫

[0,1]
axα(1− x)1−α dPX

a
�

∫
[0,1]

axα(1− x)1−α dPY
a

for any α ∈ [0,1]. Observe that this is the same as

∫
[0,1]

xα(1− x)1−α

B(α +1,2−α)
dPX

a
�

∫
[0,1]

xα(1− x)1−α

B(α +1,2−α)
dPY

a

for any α ∈ [0,1], which concludes the proof. �

PROPOSITION 3. Let a > 0 and X ,Y ∈ X
a continuous random variables with

densities fX and fY respectively. We have that X �CD Y if and only if E( fX (aZα)) �
E( fY (aZα)) for any α ∈ [0,1] , where Zα stands for a beta random variable with pa-
rameters α +1 and 2−α .

Proof. Since X and Y are continuous so are X/a and Y/a . Moreover a fX (ax)
and a fY (ax) are densities of X/a and Y/a respectively. Thus

E( fB(α+1,2−α)(
X
a

)) =
∫

[0,1]

xα(1− x)1−α

B(α +1,2−α)
a fX (ax)dx = aE( fX (aZα)),

which proves the proposition. �
We state another characterization of the Cobb-Douglas order for continuous ran-

dom variables. First, we state the following technical lemma.

LEMMA 1. Let X be a continuous random variable. Then PX ◦F−1
X is equal to θ

on B[0,1].

Proof. Let x ∈ [0,1], then PX ◦ F−1
X ([0,x]) = P(FX(X) ∈ [0,x]) = x = θ ([0,x])

since FX(X) follows uniform distribution on the interval [0,1].
Since the class { [0,x] | x∈ [0,1]} is a π -system which generates B[0,1] , we obtain

the result (see for instance Theorem 3.3 in [4]). �
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PROPOSITION 4. Let a > 0 and X ,Y ∈ X
a continuous random variables with

densities fX and fY respectively. Then X �CD Y if and only if∫
[0,a]

FX(x)α(1−FX(x))1−α fX (aFX(x)) fX (x)dθ

�
∫

[0,a]
FY (x)α(1−FY (x))1−α fY (aFY (x)) fY (x)dθ

for any α ∈ [0,1].

Proof. Note that for any α ∈ [0,1] we have that∫
[0,a]

xα (a− x)1−α dPX =
∫

[0,a]
xα(a− x)1−α fX (x)dθ

=a2
∫

[0,1]
xα(1− x)1−α fX (ax)dθ = a2

∫
[0,1]

xα(1− x)1−α fX (ax)dPX ◦F−1
X ,

where the last inequality follows from Lemma 1. Observe that the last expression is the
same as

a2
∫

[0,a]
FX(x)α (1−FX(x))1−α fX (aFX(x))dPX

=a2
∫

[0,a]
FX(x)α (1−FX(x))1−α fX (aFX(x)) fX (x)dθ ,

which concludes the proof. �
By means of the above results we can derive some inequalities in relation to beta

distributions.
Let f : I → R , with I an open interval of R . The number of sign changes

of f in I is defined by S−( f ) = sup{x1<...<xn,xi∈I,n∈N} S−( f (x1), . . . , f (xn)), where
S−(y1, . . . ,yn) is the number of sign changes of the sequence y1, . . . ,yn , where zero
values are discarded.

PROPOSITION 5. Let a > 0 and X ,Y ∈ X
a continuous random variables with the

same mean. If S−( fX − fY )= 2 and the sequence of signs is +,−,+, then E( fX (aZα))�
E( fY (aZα)) for any α ∈ [0,1].

Proof. Theorem 3.A.44 in [13] reads that under the above conditions Y �cx X
holds. This is equivalent to X �cv Y. Note that all the mappings of Fa are concave,
which implies that X �CD Y. Now the result is a consequence of Proposition 3. �

We study some conditions implied by the Cobb-Douglas order and some which
imply that order. For that purpose we prove the following lemma.

LEMMA 2. Let a > 0 and X ∈ X
a with P(X ∈ (0,a)) = 1 . The discriminant

Cobb-Douglas function φX is infinitely derivable on (0,1) , with φ (n
X (α) =

∫
(0,a) x

α(a−
x)1−α lnn( x

a−x )dPX for any α ∈ (0,1) and any n ∈ N.
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Proof. We prove the result by induction. Let us begin with the case n = 1.
Consider the probability space ((0,a),B(0,a),PX) and the open interval I = (t1,t2) ,

with 0 < t1 < t2 < 1. Let F : I × (0,a) → R , with F(α,x) = fα (x) . Observe that
φX(α) =

∫
(0,a) F(α,x)dPX .

We will use Proposition 1 to obtain the first derivative of φX . Note that conditions
i), ii) and iv) in that result are trivially satisfied.

Let us see condition iii) . Given any α ∈ (0,1) , by means of L’Hôpital’s rule we
conclude that

lim
x→0+

xα lnx = 0 and lim
x→a−

(a− x)1−α ln(a− x) = 0.

Therefore we have that xt1 lnx and (a− x)1−t2 ln(a− x) are bounded on (0,a). So if
α ∈ (t1, t2) , it holds that |xα lnx| � max{|xt1 lnx|, |a lna|}� K1 and |(a− x)1−α ln(a−
x)| � max{|(a− x)1−t2 ln(a− x)|, |a lna|} � K2 for some constants K1 and K2 .

As a consequence, for any α ∈ (t1,t2)

|∂F
∂α

(α,x)| = |xα(a− x)1−α ln(
x

a− x
)| = |xα(a− x)1−α lnx− xα(a− x)1−α ln(a− x)|

�K1|(a− x)1−α |+K2|xα | � (K1 +K2)max{a,1}.

Thus condition iii) in Proposition 1 is also satisfied. Therefore φX is derivable on
(t1,t2) with φ ′

X(α) =
∫
(0,a) x

α (a− x)1−α ln( x
a−x )dPX . Since t1 and t2 are arbitrary

values with 0 < t1 < t2 < 1, we obtain the case n = 1.

Assume that the result is true for a natural number n , so φ (n
X (α) =

∫
(0,a) x

α(a−
x)1−α lnn( x

a−x )dPX . In order to apply Proposition 1 to obtain the differentiability of

φ (n
X , and in relation to condition iii) , note that

xα(a− x)1−α lnn+1(
x

a− x
) =

(
x

α
n+1 (a− x)

1−α
n+1 ln(

x
a− x

)
)n+1

.

By the previous inequalities we obtain that

|∂
n+1F

∂αn+1 (α,x)| � (
(K′

1 +K′
2)max{a,1})n+1

for some constants K′
1 and K′

2 . Therefore condition iii) is satisfied. Moreover, condi-
tions i) and ii) of Proposition 1 are also held, and iv) is a consequence of the above

inequality. Thus we obtain that φ (n+1
X (α) =

∫
(0,a) x

α(a− x)1−α lnn+1( x
a−x )dPX , which

proves the lemma. �

PROPOSITION 6. Let a > 0 and X ,Y ∈ X
a with P(X ∈ (0,a)) = P(Y ∈ (0,a)) =

1 , such that X �CD Y . Let D = {α ∈ (0,1) | φX (α) = φY (α)} . Then for every
d ∈ D we have that φ ′

X (d) = φ ′
Y (d), and so E(Xd(a−X)1−d ln( X

a−X )) = E(Yd(a−
Y )1−d ln( Y

a−Y )) .



A STOCHASTIC ORDER BASED ON COBB-DOUGLAS FUNCTIONS 813

Proof. We define the function W : [0,1] → R , with W (α) = φY (α)− φX (α) for
any α ∈ [0,1] . By Lemma 2 that mapping is infinitely derivable on (0,1) , with
W ′(α) = E(Y α(a−Y )1−α ln( Y

a−Y ))−E(Xα(a−X)1−α ln( X
a−X )) . Since X �CD Y we

have that W (α) � 0. Let d ∈ D , it holds that W (d) = 0, so d is a local minimum.
Therefore W ′(d) = φ ′

Y (d)−φ ′
X(d) = 0, which implies the result. �

A sufficient condition for the Cobb-Douglas order is analyzed in the following
proposition.

PROPOSITION 7. Let a > 0 and X ,Y ∈X
a with P(X ∈ (0,a)) = P(Y ∈ (0,1))= 1

and E(X) = E(Y ) . Let D = {α ∈ (0,1) | φX (α) = φY (α)} . If one of the following
conditions is satisfied

i) D = /0 and there exists d ∈ (0,1) with φX (d) < φY (d) ,

ii) D 
= /0 and for all d ∈ D it holds that

E
(
Xd(a−X)1−d ln(

X
a−X

)
)

= E
(
Yd(a−Y)1−d ln(

Y
a−Y

)
)

and

E
(
Xd(a−X)1−d ln2(

X
a−X

)
)

< E
(
Yd(a−Y)1−d ln2(

Y
a−Y

)
)
,

then we have that X �CD Y .

Proof. Consider the mapping W : [0,1]→R with W (α)= φY (α)−φX(α) . Lemma
2 says that W is infinitely derivable on (0,1) , with W (n(α)= E(Y α(a−Y)1−α lnn( Y

a−Y ))
−E(Xα(a−X)1−α lnn( X

a−X )) .
Let us study case i) . Note that if E(X) = E(Y ) then W (0) = W (1) = 0. Since

D = /0 and W is continuous on (0,1) , W is either positive or negative. We know
that there exists d ∈ (0,1) with φX (d) < φY (d) , so W > 0 on (0,1) . Thus for every
d ∈ (0,1) we have φX (d) < φY (d) , therefore X �CD Y .

Let us analyze case ii) . Suppose that the relation X �CD Y is false. So there exists
α with W (α) < 0. Since E(X) = E(Y ) , such a value α should be in (0,1) . We know
that D 
= /0 . Thus we can take d0 ∈ D with W (d0) = 0. Suppose that d0 > α , the case
d0 < α is analogous. Let us define I = {d ∈ D | d > α}. The set I is bounded and
non-empty, so it has an infimum. The continuity of W on (0,1) implies that such an
infimum is a minimum on I . Let us denote it by m . Using condition ii) we obtain that
m satisfies that W (m) = 0, W ′(m) = 0 and W ′′(m) > 0.

Therefore m is also a local minimum of W on (0,1) . Thus there exists m′ satis-
fying that α < m′ < m and W (m′) � W (m) = 0. We know that W (α) < 0, therefore
there exists m′′ ∈ [α,m′] with W (m′′) = 0. Thus m is not the minimum on I which is
a contradiction. Therefore X �CD Y . �

The following result shows an approximation condition which leads to the Cobb-
Douglas order.
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Let a > 0, l1, l2, . . . , ln ∈ (0,a) , with 0 < l1 < l2 < .. . < ln < a, and let α ∈ (0,1) .
Let gα ,l1,...,ln : [0,a] → R be the mapping defined as gα ,l1,...,ln(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r[(0,0),(l1, lα
1 (−l1 +a)1−α)](x) if x ∈ [0, l1],

r[(li, lα
i (−li +a)1−α),(li+1, lα

i+1(−li+1 +a)1−α)](x) if x ∈ (li, li+1],
1 � i � n−1,

r[(ln, lα
n (−ln +a)1−α),(a,0)](x) if x ∈ (ln,a],

where r[(x1,y1),(x2,y2)] stands for the equation of the line passing through the points
(x1,y1) and (x2,y2) .

PROPOSITION 8. Let a > 0 and let X ,Y ∈ X
a with E(X) = E(Y ) , such that

E
(
gα ,l1,...,ln(X)

)
� E

(
gα ,l1,...,ln(Y )

)
for any α ∈ (0,1), n ∈ N and l1, l2, . . . , ln ∈ (0,a) ,

with 0 < l1 < l2 < .. . < ln < a. Then X �CD Y .

Proof. Consider the mappings fα with α ∈ (0,1) . Let D be a countable dense
subset of (0,a) , say D = {a1,a2, . . .} .

Let us consider the class of mappings {gα ,ai(x)}ai∈D.
Since fα is concave, gα ,ai(x) � fα (x) for any x ∈ [0,a] . Because of the density

of D and the continuity of fα , we obtain that for any x ∈ [0,a] , fα(x) = sup{gα ,ai(x) |
ai ∈ (0,a), i ∈ N}.

Let fn,α : [0,a] → R given by fn,α (x) = max{gα ,a1(x), . . . ,gα ,an(x)} for any x ∈
[0,a] .

The sequence { fn,α}n is increasing for any α ∈ (0,1) . Moreover fn,α (x) � fα(x)
and limn fn,α(x) = fα(x) for any x ∈ [0,a] and α ∈ (0,1).

By means of the Monotone Convergence Theorem we obtain that

lim
n→∞

∫
[0,a]

fn,α dPX =
∫

[0,a]
fα dPX .

Let a(1), . . . ,a(n) stand for the arrangement of a1, . . . ,an in increasing order. We
should note that fn,α(x) � gα ,a(1),...,a(n)(x) � fα(x) for any x ∈ [0,a] , n ∈ N and α ∈
(0,1) . As a consequence limn→∞ E(gα ,a(1),...,a(n) (X)) = E( fα (X)).

Thus we have seen that E( fα(X)) � E( fα (Y )) for any α ∈ (0,1) . The above
inequality is also held when we consider α = 0 and α = 1 since X and Y have the
same expected value. Therefore X �CD Y . �

5. Relevant properties of the order

Some properties of the Cobb-Douglas order are analyzed in this section.
The first results say that the Cobb-Douglas order implies the equality of expected

values, and that order is preserved under weak convergence and mixtures.

PROPOSITION 9. Let a > 0 and X ,Y ∈ X
a such that X �CD Y . Then E(X) =

E(Y ) .
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Proof. Take f0 and f1 in Fa . Since X �CD Y we obtain that E(X) � E(Y ) and
E(a−X) � E(a−Y) , and so the result. �

PROPOSITION 10. The Cobb-Douglas order is closed with respect to weak con-
vergence.

Proof. Note that all the mappings of Fa are bounded and continuous. �

PROPOSITION 11. The Cobb-Douglas order is closed with respect to mixtures.

Proof. The Cobb-Douglas order is integral which implies the result. �
Using the budgetary constraint of our problem, we have written utility functions

based on the first good since x2 = −x1 + a . If we refer to the second good, the utility
function would be written as k(−x2 +a)αx1−α

2 .

Now we prove that the Cobb-Douglas order is preserved if we consider the second
good. From an economic point of view, the following result means that the consumer
choice does not depend on the good studied by the order.

PROPOSITION 12. Let a > 0 and X ,Y ∈ X
a . Then −X + a,−Y + a ∈ X

a, and
X �CD Y if and only if −X +a �CD −Y +a.

Proof. It is clear that −X +a and −Y +a belong to the set X
a .

On the other hand, by means of Proposition 2, −X +a �CD −Y +a if and only if

E
(
fB(α+1,2−α)(

−X +a
a

)
)

� E
(
fB(α+1,2−α)(

−Y +a
a

)
)

for any α ∈ [0,1]. We should observe that

fB(α+1,2−α)(
−X +a

a
) =

1
B(α +1,2−α)

(1− X
a

)α(
X
a

)1−α = fB(2−α ,α+1)(
X
a

)

because of the symmetry of the beta mapping in its arguments. Therefore −X +a �CD

−Y +a if and only if

E
(
fB(2−α ,α+1)(

X
a

)
)

� E
(
fB(2−α ,α+1)(

Y
a

)
)

for any α ∈ [0,1]. Now observe that {(α + 1,2−α) | α ∈ [0,1]} = {(2−α,α + 1) |
α ∈ [0,1]}, which implies the result applying Proposition 2. �

PROPOSITION 13. Let λ ,a > 0 and X ,Y ∈X
a such that X �CD Y . Then λX ,λY ∈

X
λa, and X �CD Y if and only if λX �CD λY .
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Proof. The first assertion is clear. In relation to the condition λX �CD λY , by
Proposition 2 that is held if and only if

E
(
fB(α+1,2−α)(

λX
λa

)
)

� E
(
fB(α+1,2−α)(

λY
λa

)
)

for any α ∈ [0,1], which is equivalent to X �CD Y. �
The mappings of Fa are concave, does the Cobb-Douglas order weaken the con-

cave order? As we prove below, the answer is affirmative. Of course we consider
probabilities whose support is in the interval [0,a] , with a > 0.

PROPOSITION 14. The concave order implies the Cobb-Douglas stochastic order,
but the converse is not true.

Proof. It is clear that the concave order implies the Cobb-Douglas order since the
mappings of Fa are concave for any a > 0.

Let us see that the converse is false.
Take a = 1 and let X ,Y ∈ X

1 discrete random variables whose supports are SX =
{0.25,0.75} and SY = {0.2,0.575} respectively, and with probability mass functions
given by P(X = 0.25)= P(X = 0.75)= 0.5, and P(Y = 0.2)= 0.2 and P(Y = 0.575)=
0.8.

In the first place we check that X �cv Y is false. Observe that the relation X �cv Y
is the same as Y �cx X , and this implies Y �icx X .

Let us consider the integrated survival mappings πX and πY of X and Y respec-
tively. It can be seen that πY (0.25) = 0.26 > 0.25 = πX(0.25) . Therefore the condition
πY (t) � πX(t) for any t ∈ R is not held, condition which is equivalent to Y �icx X (see
for instance Theorem 1.5.13 in [11]). Thus X �cv Y is false.

Consider the discriminant Cobb-Douglas functions φX and φY . Note that by
Lemma 2 these mappings are continuous on (0,1). The right continuity at 0 and the
left continuity at 1 are trivial in this case. Moreover φX (0) = φX (1) = E(X) = 0.5 =
E(Y ) = φY (1) = φY (0) .

The derivatives of φX and φY are φ ′
X(α) = E(hα(X)) and φ ′

Y (α) = E(hα(Y )) ,
with hα(x) = xα (1− x)1−α ln( x

1−x ) for any α ∈ (0,1) (see Lemma 2). Observe that
those expected values exist since X and Y do not induce probability in the points 0 and
1.

By Lemma 2 we obtain that φ ′′
X (α),φ ′′

Y (α) � 0 for any α ∈ (0,1) , and thus φX

and φY are convex.
Moreover, the right and left hand derivatives of φX and φY at 0 and at 1 satisfy that

φ
′+
X (0) = −0.2746 < −0.1190 = φ

′+
Y (0) and φ

′−
X (1) = 0.2746 > 0.0835 = φ

′−
Y (1) .

Therefore there are neighborhoods of 0 and 1 (in the interval [0,1]) in which
φX(α) � φY (α) for any α in both sets.

Since φY is convex, the mapping φ ′
Y is increasing and so |φ ′

Y (α)| < 0.12 for any
α ∈ (0,1) .

By means of this inequality let us see that φY (α) > 0.47 for any α ∈ [0,1] . It holds
that φY (0.44) > φY (0.45) and φY (0.45) < φY (0.47), those values greater than 0.47.
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The convexity of φY implies that its minimum is reached when α ∈ (0.44,0.47) . The
Mean Value Theorem reads that if α ∈ (0.44,0.47) , we have that φY (α) = φY (0.44)+
φ ′
Y (βα)(α − 0.44) for some βα ∈ (0.44,0.47) , and therefore φY (α) � φY (0.44)−

0.12(0.47−0.44)= 0.47171 > 0.47, as we have affirmed before.
Now observe that φX(0.13) = φX (0.87) < 0.47. So the convexity of φX implies

that φX (α) � φY (α) for any α ∈ [0.13,0.87].
To conclude, note that for any α ∈ (0,1) we have φ ′

X (0.13)=−0.1987<−0.12�
φ ′
Y (α) and φ ′

X(0.87) = 0.1987 > 0.12 � φ ′
Y (α) .

Using the convexity of φX , for any α1,α2 ∈ [0,0.13) it holds that φ ′
X (α1) <

φ ′
Y (α2) . In the same way, for any α1,α2 ∈ (0.87,1] , φ ′

X (α1) > φ ′
Y (α2) .

The Mean Value Theorem implies that for any α ∈ (0,0.13) we have that φX(α) =
φX(0)+φ ′

X (γα)α for some γα ∈ (0,α) , and φY (α) = φY (0)+φ ′
Y (ζα )α for some ζα ∈

(0,α) . Since φ ′
X (γα) < φ ′

Y (ζα) , we obtain that φX (α) < φY (α) for any α ∈ (0,0.13) .
In the same way it is possible to prove that φX (α) < φY (α) for any α ∈ (0.87,1) .
Thus we have obtained that φX � φY , that is, X �CD Y . Therefore the Cobb-

Douglas order weakens the concave order. �

PROPOSITION 15. Let a > 0. Let F cv
a = { f : [0,a] → R | f is concave}. Let F̃a

be the convex cone spanned by Fa . Then F̃a is not dense in F cv
a when we consider

the topology of uniform convergence.

Proof. Let us suppose that F̃a is dense in F cv
a when we consider the topology of

uniform convergence. By Theorem 2.3.5 a) of [11], the class F̃a is a generator of the
Cobb-Douglas order.

Let X ,Y ∈X
a such that X �CD Y and f ∈F cv

a . Therefore there exists a sequence
{ fm}m ⊂ F̃a such that limm fm = f uniformly.

It holds that ∫
[0,a]

fm dPX �
∫

[0,a]
fm dPY

for any m ∈ N since F̃a is a generator of �CD . The continuity of f on [0,a] and
the uniform convergence of { fm}m to f , imply that the sequence { fm}m is uniformly
bounded. Thus by the Dominated Convergence Theorem

∫
[0,a]

f dPX �
∫

[0,a]
f dPY ,

hence X �cv Y, which is a contradiction with Proposition 14. Therefore F̃a is not
dense in F cv

a for the uniform convergence. �
To conclude this section we include the following example in relation to beta dis-

tributions.

EXAMPLE 1. Let a = 1. Let Xn be a beta random variable with parameters n and
n for any n ∈ N . Then Xn �CD Xn+1 for any n ∈ N .
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Consider Proposition 2. We have that

E
(
fB(α+1,2−α)(Xn)

)
=

B(n+ α,n−α +1)
B(α +1,2−α)B(n,n)

and

E
(
fB(α+1,2−α)(Xn+1)

)
=

B(n+ α +1,n−α +2)
B(α +1,2−α)B(n+1,n+1)

.

By the properties of B and Γ functions, E
(
fB(α+1,2−α)(Xn)

)
� E

(
fB(α+1,2−α)(Xn+1)

)
if and only if n(n+1) � (n+ α)(n+1−α), equivalently 0 � α(1−α) , which holds
since α ∈ [0,1] . Thus Xn �CD Xn+1 for any n ∈ N.

6. On the antisymmetric property

In this section we approach the question of the antisymmetric property of the
Cobb-Douglas stochastic order.

Let a > 0 and X ,Y ∈ X
a , we denote by X ∼CD Y when X �CD Y and Y �CD X .

Let X ∈ X
a . Assume that P(X ∈ (0,a)) > 0. Define P′ : B(0,a) → R with

P′(B) =
P(X ∈ B)

P(X ∈ (0,a))

for any B ∈ B(0,a) . Clearly P′ is a probability.

Let X̂ be a random variable such that PX̂ = P′. Obviously X̂ ∈ X
a .

When we write X̂ we will assume the existence of the probability PX̂ , that is,
P(X ∈ (0,a)) > 0.

First of all, we prove that the antisymmetric property depends essentially on the
behaviour of the random variables in the open interval (0,a) .

PROPOSITION 16. Let a > 0 and X ,Y ∈ X
a such that X̂ and Ŷ exist. The fol-

lowing conditions are equivalent

i) X ∼CD Y

ii) P(X = 0) = P(Y = 0) , P(X = a) = P(Y = a) and X̂ ∼CD Ŷ .

Proof. In the first place note that for any α ∈ [0,1] and fα ∈ Fa ,

E( fα(X)) =
∫

[0,a]
fα (x)dPX = fα(0)P(X = 0)+ fα(a)P(X = a)+

∫
(0,a)

fα (x)dPX

= fα (0)P(X = 0)+ fα(a)P(X = a)+P(X ∈ (0,a))
∫

(0,a)
fα (x)dPX̂

= fα (0)P(X = 0)+ fα(a)P(X = a)+P(X ∈ (0,a))
∫

[0,a]
fα (x)dPX̂

= fα (0)P(X = 0)+ fα(a)P(X = a)+P(X ∈ (0,a))E( fα (X̂)).
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The same formula holds for random variable Y .
Now it is clear that condition ii) implies i) .
Let us see that i) leads to ii) .
Take α ∈ (0,1) and fα ∈ Fa . Observe that fα (0) = fα (a) = 0. Therefore

E( fα(X)) = P(X ∈ (0,a))E( fα(X̂)). Since X ∼CD Y we have that

P(X ∈ (0,a)) lim
α→1−

E( fα(X̂)) = P(Y ∈ (0,a)) lim
α→1−

E( fα(Ŷ ))

and
P(X ∈ (0,a)) lim

α→0+
E( fα (X̂)) = P(Y ∈ (0,a)) lim

α→0+
E( fα (Ŷ )).

Now note that the functions { fα}α∈[0,1] are uniformly bounded and

lim
α→1−

fα = f1 a.s. [PX̃ ] and lim
α→0+

fα = f0 a.s. [PX̃ ].

The same convergence results are obtained when we consider P̃Y .
As a consequence of the Dominated Convergence Theorem we conclude

lim
α→1−

E( fα (X̂)) = E( f1(X̂)) and lim
α→0+

E( fα(X̂)) = E( f0(X̂)).

Take α = 1. We have that

E( f1(X)) = P(X = a) f1(a)+P(X ∈ (0,a))E( f1(X̂)) = E( f1(Y ))

= P(Y = a) f1(a)+P(Y ∈ (0,a))E( f1(Ŷ )).

Therefore P(Y = a) f1(a) = P(X = a) f1(a) and so P(Y = a) = P(X = a) .
Reasoning in the same way with α = 0, we deduce that P(X = 0) = P(Y = 0) .

As a consequence we obtain that P(X ∈ (0,a)) = P(Y ∈ (0,a)) .
Now the result follows from the fact that

E( fα (X)) = fα(0)P(X = 0)+ fα(a)P(X = a)+P(X ∈ (0,a))E( fα(X̂)),

which leads to X̂ ∼CD Ŷ . �
Note that if a > 0, X ,Y ∈ X

a and X̂ and Ŷ do not exist, X ∼CD Y if and only if
P(X = 0) = P(Y = 0) and P(X = a) = P(Y = a) , because P(X ∈ (0,a)) = 0 implies
that

∫
(0,a) fα (x)dPX = 0 for any α ∈ [0,1].
Moreover, it is easy to prove that if a > 0, X ,Y ∈ X

a and X ∼CD Y , then X̂ and
Ŷ do exist or, X̂ and Ŷ do not exist, other cases are not possible.

Now we will focus our attention on finding a subfamily of X
a in which the order

satisfies the antisymmetric property.

DEFINITION 4. Let a > 0. Let X
a
ln be the set of random variables given by

X
a
ln = {X ∈ X

a | E
(∣∣(−X +a) lnn(

X
−X +a

)
∣∣) < +∞ for any n ∈ N}.
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Note that if X ∈ X
a
ln, then P(X = 0) = P(X = a) = 0.

We prove that the Cobb-Douglas order satisfies the antisymmetric property on X
a
ln ,

where equality is understood in distribution.

PROPOSITION 17. Let a > 0 and X ,Y ∈ X
a
ln . If X ∼CD Y , then FX = FY .

Proof. Let f : [0,a] → R , with f (x) = a− x . Let M =
∫
[0,a] f dPX . Note that

M > 0 since X ∈ X
a
ln .

By Proposition 9 we know that the condition X �CD Y implies that E(X) = E(Y ) ,
and so M = a−E(X) = a−E(Y) .

We define the measure P : B[0,a] → R , with

P(B) =
∫

B
f

1
M

dPX

for any B ∈ B[0,a].
It is clear that P is a probability. Moreover P is absolutely continuous with respect

to PX (P � PX ), and f 1
M is a Radon-Nikodym derivative of P with respect to PX

( dP
dPX

= f 1
M ). Thus, for any measurable mapping g : [0,a] → R

∫
(0,a)

gdP =
∫

(0,a)
g

f
M

dPX .

Let X ′ be a random variable such that PX ′ = P . Let α ∈ [0,1] and fα ∈ Fa . It
holds that∫

(0,a)
xα(−x+a)−α dPX ′ =

∫
(0,a)

xα(−x+a)−α −x+a
M

dPX

=
1
M

∫
(0,a)

xα(−x+a)1−α dPX =
1
M

E( fα (X)).

Consider now the mappings g : (−∞,∞) → R with g(x) = eαx , and T : (0,a) →
(−∞,∞) given by T (x) = ln( x

−x+a) . By a change of variable (see for instance [7]),

∫
(0,a)

g ◦T dPX ′ =
∫

(−∞,∞)
gdPX ′ ◦T−1,

and so
1
M

E( fα(X)) =
∫

(0,a)
(

x
−x+a

)α dPX ′ =
∫

(−∞,∞)
eαx dPX ′ ◦T−1.

Observe that this is true for any α ∈ [0,1] .
Proceeding in the same way with random variable Y ,

1
M

E( fα (Y )) =
∫

(0,a)
(

x
−x+a

)α dPY ′ =
∫

(−∞,∞)
eαx dPY ′ ◦T−1,

where PY ′ � PY and
dPY ′
dPY

= f
M .
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Thus, if X �CD Y and Y �CD X , then E( fα (X)) = E( fα(Y )), and so

∫
(−∞,∞)

eαx dPX ′ ◦T−1 =
∫

(−∞,∞)
eαx dPY ′ ◦T−1

for any α ∈ [0,1] .
Note that for any B ∈ BR ,

PX ′ ◦T−1(B) = P
ln( X ′

−X ′+a
)(B) and PY ′ ◦T−1(B) = P

ln( Y ′
−Y ′+a

)(B).

Let X̃ = ln( X ′
−X ′+a ) and Ỹ = ln( Y ′

−Y ′+a) .
Observe that for any n ∈ N we have that

E(X̃n) =
∫

R

xn dPX̃ =
∫

R

xn dPX ′ ◦T−1 =
∫

(0,a)
lnn(

x
−x+a

)dPX ′

=
∫

(0,a)

−x+a
M

lnn(
x

−x+a
) dPX =

1
M

E
(
(−X +a) lnn(

X
−X +a

)
)
.

This value is in R since X ∈ X
a
ln. Clearly the same result is obtained when we consider

random variables Ỹ and Y .
Therefore E(X̃n), E(Ỹ n) ∈ R for any n ∈ N . Moreover, we have seen that

∫
R

eαx dPX̃ =
∫

R

eαx dP̃Y ∈ R

for any α ∈ [0,1] . Thus the generating functions of X̃ and Ỹ exist and are equal in
[0,1] . Note that this interval does not contain a neighborhoodof 0, and as a consequence
the equality in distribution of X̃ and Ỹ cannot be guaranteed with the above formula.

We will prove that

d
dαn

∫
R

eαx dPX̃ =
∫

R

xneαx dPX̃ =
∫

R

xneαx dP̃Y =
d

dαn

∫
R

eαx dP̃Y

for any n∈N and α ∈ (0,1) . As a consequence we will be able to derive that E(X̃n) =
E(Ỹ n) , which implies that X̃ and Ỹ are equal in distribution. For this purpose we will
use Proposition 1.

We will argue by induction. Let us consider the case n = 1. Take the probability
space (R,BR,PX̃ ) and the open interval I = (0,z) ⊂ R , with z < 1. We define the
mapping F : I×R → R , with F(α,x) = eαx for any (α,x) ∈ I×R. In the first place
we have that d

dα F(α,x) = xeαx for any (α,x) ∈ I×R. It holds that

| d
dα

F(α,x)| = |xeαx| � |x|I(−∞,0](x)+
1
z′

e(z′+z)xI(0,∞)(x)

with z′ > 0 and z′ + z < 1.
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Let ω : R → R be the mapping on the right-hand side of the above inequality. Let
us see that ω ∈ L 1(PX̃) . On the one hand

∫
(−∞,0]

|x|dPX̃ =
∫

(−∞,0]
|x|dPT (X ′) =

∫
(−∞,0]

|x|dPX ◦T−1 =
∫

(0, a
2 ]
| ln( x

a− x
)|dPX ′

�
∫

(0,a)

1
M

(a− x)| ln( x
a− x

)|dPX = E(|(a−X) ln(
X

a−X
)|) 1

M
< +∞.

On the other hand ∫
(0,+∞)

1
z′

e(z+z′)x dPX̃ =
∫

( a
2 ,a)

1
z′

(
x

a− x
)(z+z′) dPX ′

�
∫

(0,a)

1
z′

(
x

a− x
)(z+z′) 1

M
(a− x)dPX < +∞

since z+ z′ < 1.
As a consequence, condition iii) in Proposition 1 holds. Moreover, conditions

i), ii) and iv) are easy to check. Applying that proposition we conclude that

d
dα

∫
R

F(α,x)dPX̃ =
∫

R

xeαx dPX̃

for any α ∈ (0,z) . Since z < 1 is arbitrary, the result is also true when α ∈ (0,1) . The
same result holds when we consider random variable Ỹ .

Since we have that ∫
R

eαx dPX̃ =
∫

R

eαx dP̃Y

for any α ∈ [0,1] , we deduce that
∫

R

xeαx dPX̃ =
∫

R

xeαx dP̃Y

for any α ∈ (0,1) .
By means of the Dominated Convergence Theorem, taking limit as α tends to 0

from the right, the mapping ω being a bound of xeαx of class L 1(PX̃) and L 1(P̃Y ),
we deduce that ∫

R

xdPX̃ =
∫

R

xdP̃Y ,

that is, E(X̃) = E(Ỹ ). So the result is true when n = 1.
Let us suppose that the result is true for some natural number n . Let us see that it

holds for the value n+1.
Consider the probability space (R,BR,PX̃) and the interval I = (0,z) , with z < 1.

We define the mapping F : I ×R → R , with F(α,x) = xneαx for any (α,x) ∈ I ×R .
We have that d

dα F(α,x) = xn+1eαx for any (α,x) ∈ I×R . On the other hand

| d
dα

F(α,x)| = |xn+1eαx| � |xn+1|I(−∞,0](x)+Kn+1e
(z′+z)xI(0,∞)(x)
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where z′ > 0 and z′ + z < 1, and Kn+1 is any constant satisfying that xn+1 � Kn+1ez′x .
Let ω̃ : R → R be the mapping on the right-hand side of the above inequality. In

a similar way to the case n = 1, it can be seen that ω̃ ∈ L 1(PX̃). That is, we have
condition iii) in Proposition 1. Conditions i), ii) and iv) are easy to analyze.

By means of Proposition 1 we obtain that

d
dα

∫
R

F(α,x)dPX̃ =
∫

R

xn+1eαx dPX̃

for any α ∈ (0,z) . Since z < 1 is arbitrary, we have the same result for any α ∈ (0,1) .
Obviously we obtain the same equality with random variable Ỹ .

By hypothesis we have that∫
R

xneαx dPX̃ =
∫

R

xneαx dP̃Y

for any α ∈ (0,1) , and so ∫
R

xn+1eαx dPX̃ =
∫

R

xn+1eαx dP̃Y .

Reasoning in the same way as n = 1, the Dominated Convergence Theorem im-
plies that

E(X̃n+1) =
∫

R

xn+1 dPX̃ =
∫

R

xn+1 dP̃Y = E(Ỹ n+1).

Thus we conclude that E(X̃n) = E(Ỹ n) for any n ∈ N. As a consequence X̃ and
Ỹ have the same distribution.

The injectivity of the logarithm implies that X ′/(X ′ −a) and Y ′/(Y ′ −a) have the
same distribution. Applying the same argument, we have that X ′ and Y ′ are equal in
distribution.

Now note that PX ′ � PX and f/M is a Radon-Nikodym derivative of PX ′ with
respect to PX . Thus for any b ∈ (0,a) it holds that∫

(0,a)

M
−x+a

I(0,b](x)dPX ′ =
∫

(0,a)
I(0,b](x)dPX = FX(b),

and the same formula holds for the random variables Y and Y ′ .
So we obtain that FX(b) = FY (b) for any b ∈ (0,a) . The right continuity of dis-

tribution functions implies that FX(0) = FY (0) . Moreover FX(a) = FY (a) = 1 since
X ,Y ∈ X

a.
Therefore we have seen that FX = FY , which concludes the proof. �

COROLLARY 1. Let a > 0 and X ,Y ∈ X
a such that X ∼CD Y . If any of the

following conditions is satisfied

i) for any n ∈ N

E
(∣∣X lnn(

a−X
X

)
∣∣) < +∞ and E

(∣∣Y lnn(
a−Y

Y
)
∣∣) < +∞,
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ii) there exists ε ∈ (0,a) with P(X ∈ (0,a− ε]) = P(Y ∈ (0,a− ε]) = 1,

iii) there exists ε ∈ (0,a) such that P(X ∈ [ε,a)) = P(Y ∈ [ε,a)) = 1,

then we have that FX = FY .

Proof. In relation to i) , observe that such a condition implies that a−X ,a−Y ∈
X

a
ln . Moreover X ∼CD Y is equivalent to a−X ∼CD a−Y as Proposition 12 reads.

Applying Proposition 17 we deduce that Fa−X = Fa−Y and then FX = FY .
With respect to ii) , observe that such a condition implies those in i) . Note that

E
(∣∣X lnn(

a−X
X

)
∣∣) = E

(∣∣(X 1
n ln(a−X)−X

1
n lnX

)n∣∣).
It is clear that P(X ∈ (0,a− ε]) = 1 implies that X

1
n ln(a−X) is a bounded random

variable. Moreover, by means of L’Hôpital’s rule it is possible to prove that the mapping
x→ x

1
n lnx is bounded when x ∈ (0,a−ε]. As a consequence, the above expectation is

finite and the result follows from i) .
To conclude with iii) , note that if P(X ∈ [ε,a)) = 1 then P(a−X ∈ (0,a−ε])= 1.

Now the result follows from Proposition 12 and ii) in this corollary. �
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