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Abstract. The generalized trigonometric functions which have a short history, were introduced
by Lindqvist two decades ago. Since 2012, many mathematician began to study their classical
inequalities, general convexity and concavity, multiple-angle formulas and parameter convexity
and concavity. A number of results have been obtained. This is a survey. Some new refinements,
generalizations, applications, and related problems are summarized.

1. Introduction

It is well known from calculus that

arcsinx =
∫ x

0

1

(1− t2)1/2
dt

for 0 � x � 1 and
π
2

= arcsin1 =
∫ 1

0

1

(1− t2)1/2
dt.

For 1 < p < ∞ and 0 � x � 1, the arcsine may be generalized as

arcsinp x =
∫ x

0

1

(1− t p)1/p
dt (1.1)

and
πp

2
= arcsinp 1 =

∫ 1

0

1

(1− t p)1/p
dt. (1.2)

The inverse of arcsinp on [0,
πp
2 ] is called the generalized sine function, denoted by

sinp and may be extended to (−∞,∞) . See [29] and closely related references therein.
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For x ∈ [0,
πp
2 ] , the generalized cosine function cosp x is defined by

cosp x =
dsinp x

dx
. (1.3)

It is easy to see that
cosp x = (1− sinp

p x)1/p (1.4)

and
dcosp x

dx
= −cos2−p

p xsinp−1
p x. (1.5)

The generalized tangent function tanp x is defined as

tanp x =
sinp x
cosp x

, x ∈ R\
{

kπp +
πp

2
: k ∈ Z

}
. (1.6)

From 1.6, it follows that

d tanp x
dx

= 1+ | tanp x|p, x ∈
(
− πp

2
,

πp

2

)
. (1.7)

The generalized secant function secp x is defined as

secp x =
1

cosp x
, x ∈

[
0,

πp

2

)
. (1.8)

It follows from 1.6 and 1.7 that

secp
p x = 1+ tanp

p x, x ∈
(

0,
πp

2

)
(1.9)

and
dsecp x

dx
= secp x tanp−1

p x, x ∈
[
0,

πp

2

)
. (1.10)

The generalized cosecant function cscp x may be defined as

cscp x =
1

sinp x
, x ∈

(
0,

πp

2

]
. (1.11)

It is clear that

cscp
p x = 1+

1
tanp

p x
, x ∈

(
0,

πp

2

)
(1.12)

and
dcscp x

dx
= −cscp x

tanp x
, x ∈

(
0,

πp

2

)
. (1.13)

The generalized inverse hyperbolic sine function arcsinhpx is defined by

arcsinhp(x) =

⎧⎨
⎩
∫ x

0

1

(1+ t p)1/p
dt, x ∈ [0,∞),

−arcsinhp(−x), x ∈ (−∞,0).
(1.14)
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The inverse of arcsinhp is called the generalized hyperbolic sine function and denoted
by sinhp .

The generalized hyperbolic cosine function coshp x is defined as

coshp x =
dsinhp x

dx
. (1.15)

It is easy to show that

(coshp
p x)− ∣∣sinhp x

∣∣p = 1, x ∈ R (1.16)

and
dcoshp x

dx
= cosh2−p

p xsinhp−1
p x, x � 0. (1.17)

The generalized hyperbolic tangent function and the generalized hyperbolic secant
function are defined as

tanhp x =
sinhp x
coshp x

(1.18)

and

sechpx =
1

coshp x
. (1.19)

Their derivatives are

d tanhp x
dx

= 1− tanhp
p x = sechp

px, x � 0 (1.20)

and
dsechpx

dx
= −sechpx tanhp−1

p x. (1.21)

Recently, Takeuchi [47] studied the (p,q)-trigonometric functions depending on
two parameters. For p = q , these functions reduce to the so-called p -trigonometric
functions introduced by Lindqvist in his highly cited paper [34]. In present, there has
been a vivid interest on the generalized trigonometric and hyperbolic functions, numer-
ous papers have been published on the studies of generalized trigonometric functions
and their inequalities. The following ( p,q )-eigenvalue problem with Dirichlét bound-
ary condition was considered by Drábek and Manásevich [23]. Let φp(x) = |x|p−2x.
For T,λ > 0 and p,q > 1{

(φp(u′))′ + λ φq(u) = 0, t ∈ (0,T ),
u(0) = u(T ) = 0.

They found the complete solution to this problem. The solution of this problem also
appears in [47, Thm 2.1]. In particular, for T = πp,q the function u(t) = sinp,q(t) is a
solution to this problem with λ = p/q(p−1) , where

πp,q =
∫ 1

0
(1− tq)−1/p dt =

2
q
B

(
1− 1

p
,
1
q

)
. (1.22)
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For p = q , πp,q reduces to πp , see [6]. In order to give the definition of the function
sinp,q , first we define its inverse function arcsinp,q , then the function itself. For x ∈
[0,1] , set

Fp,q(x) = arcsinp,q =
∫ x

0
(1− tq)−1/p dt . (1.23)

The function Fp,q : [0,1] → [0,πp,q/2] is an increasing homeomorphism, and

sinp,q = F−1
p,q

is defined on the the interval [0,πp,q/2] . The function sinp,q can be extended to [0,πp,q]
by

sinp,q(x) = sinp,q(πp,q− x), x ∈ [πp,q/2,πp,q].

By oddness, the further extension can be made to [−πp,q,πp,q] . Finally, the functions
sinp,q is extended to whole R by 2πp,q -periodicity, see [25].

In this survey, we give an account of the work in the generalized trigonometric and
hyperbolic functions. In many of these results, the l’Hôspital Monotone Rule is a very
useful tool. Because of practical constraints, we have to exclude many fine papers and
have limited our bibliography to those papers most closely connected to our work.

This survey is organized as follows: In Section 1, we give the introduction. Sec-
tion 2 gives multiple-angle formulas of generalized trigonometric functions. Section 3
presents classical inequalities for generalized trigonometric and hyperbolic functions.
In Section 4, we focus on general convexity and concavity for generalized trigonomet-
ric and hyperbolic functions. In section 5, Some Turán type inequalities have been
obtained. Section 6 shows some new results about generalized elliptic integrals. Fi-
nally, we gives some open problems in Section 7.

2. Multiple-angle formulas of generalized trigonometric functions

Motivated by addition formula for sine function, Edmunds, Gurka and Lang ob-
tained a very beautiful result named by Edmunds-Gurka-Lang identity:

sin4/3,4(2x) =
2sin4/3,4 x(cos4/3,4 x)1/3

(1+4(sin4/3,4 x)4(cos4/3,4 x)4/3)1/2
(2.1)

for x ∈ [0,π4/3,4/4] in [25]. The proof of formula 2.1 applied the addition formula of
the Jacobian elliptic function.

Later, in 2012, Bhayo and Vuorinen gave two sub-additive inequalities. For p,q >
1, then

sinp,q(r+ s) � sinp,q(r)+ sinp,q(s), r,s ∈ (0,πp,q/4); (2.2)

and
sinhp,q(r+ s) � sinhp,q(r)+ sinhp,q(s), r,s ∈ (0,∞). (2.3)

See Lemma 2.14 of reference [13] in detail.
Recently, Takeuchi [51] gave an alternative proof of formula 2.1 based on multiple-

angle formula of lemniscate function slx in 2016. In the paper, he also presented
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multiple-angle formulas between two kind of the generalized trigonometric functions
with parameters (2, p) and (p∗, p) where p∗ = p

p−1 .

THEOREM 2.1. (Theorem 1.1 [51]) For p ∈ (1,∞) and x ∈ [0,2−2/pπ2,p] =
[0,πp∗,p/2] , we have

sin2,p(22/px) = 22/p sinp∗,p xcosp∗−1
p∗,p x (2.4)

and

cos2,p(22/px) = cosp∗
p∗,p x− sinp

p∗,p x = 1−2sinp
p∗,p x = 2cosp∗

p∗,p x−1. (2.5)

Moreover, for x ∈ R , we have

sin2,p(22/px) = 22/p sinp∗,p x|cosp∗,p x|p∗−2 cosp∗,p x (2.6)

and

cos2,p(22/px) = |cosp∗,p x|p∗ − |sinp∗,p x|p = 1−2|sinp∗,p x|p = 2|cosp∗,p x|p∗ −1.
(2.7)

The general multiple-angle formulas of generalized trigonometric functions with
single and two parameters are still open.

3. Classical inequalities for generalized trigonometric and hyperbolic functions

3.1. Mitrinović-Adamović-type inequalities and Lazarević-type inequalities

In 2012, Klén, Vuorinen and Zhang [32] obtained Mitrinović-Adamović inequal-
ity and Lazarević inequality for generalized trigonometric and hyperbolic functions,
showing that, for all p ∈ (1,∞) and x ∈ (0,

πp
2 )

(cosp(x))α <
sinp(x)

x
< 1 (3.1)

with the best constant α = 1
p+1 , and that, for all p ∈ (1,∞) and x ∈ (0,∞) ,

(coshp(x))α <
sinhp(x)

x
< (coshp(x))β , (3.2)

with the best constants α = 1
p+1 and β = 1.

In 2013, Bhayo and Yin solved conjecture 3.12 posed by Klén, Vuorinen and
Zhang [32]. Using different methods, the conjecture also had been proved by Song
et. in [45]. In [19], they gave the following inequalities:

For p ∈ [2,∞) and x ∈ (0,
πp
2 ) , then(

x
sinhp(x)

)p

<
sinp(x)

x
<

x
sinhp(x)

, (3.3)
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and
1

(coshp(x))β <
sinp(x)

x
<

1
(coshp(x))α , (3.4)

with the best constants α = 1
p+1 and β = log( πp

2 )
log(coshp(

πp
2 ))

.

The inequality 3.4 had also been obtained by Yang. See Theorem 1.6 of reference
[53].

3.2. Huygens-type inequalities

In 2012, Klén, Vuorinen and Zhang [32] obtained the following inequalities of
Huygens-type for the generalized trigonometric and hyperbolic functions

psinp(x)
x

+
tanp(x)

x
> 1+ p, (3.5)

for p > 1 and x ∈ (0,
πp
2 ) ;

psinhp(x)
x

+
tanhp(x)

x
> 1+ p, (3.6)

for p > 1 and x > 0.
In the same paper, they also showed that

(p+1)
sinp(x)

x
+

1
cosp(x)

> p+2, f or p > 1,x ∈ (0,
πp

2
), (3.7)

and

(p+1)
sinhp(x)

x
+

1
coshp(x)

> p+2, f or p > 1,x > 0. (3.8)

In 2014, Yin, Huang and Qi [59] obtained the second Huygens-type inequalities.

px
sinp(x)

+
x

tanp(x)
> 1+ p, f or p ∈ (1,2],x ∈ (0,

πp

2
), (3.9)

and px
sinhp(x)

+
x

tanhp(x)
> 1+ p, f or p ∈ (1,2],x ∈ (0,∞). (3.10)

The formulas (3.5) and (3.9) had also been obtained by Neumann in 2014. See
formulas (41) and (43) of references [39]. A particular case p = 2 of formulas (3.5),
(3.9) and (3.10) also appeared [37] in 2014.

3.3. Wilker-type inequalities

In 2012, Klén, Vuorinen and Zhang [32] obtained Wilker-type inequalities for
generalized hyperbolic functions(

sinhp(x)
x

)p

+
tanhp(x)

x
> 2, (3.11)
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for p > 1 and x > 0.
In 2014, Yin, Huang and Qi proved Wilker-type inequalities involving the gener-

alized sine and tangent functions: For p > 1 and x ∈ (0,
πp
2 ) , then

(
sinp(x)

x

)p

+
tanp(x)

x
> 2. (3.12)

In the same paper, they also proved the second Wilker-type inequalities, showing that,
for x ∈ (0,

πp
2 ), p ∈ (1,2] , (

x
sinp x

)p

+
x

tanp x
> 2 (3.13)

and that, for x > 0, p ∈ (1,2] ,

(
x

sinhp(x)

)p

+
x

tanhp(x)
> 2. (3.14)

Later, Yin and Huang [57] generalized above the first and second Wilker-type
inequalities, showing that, for x ∈ (0,

πp
2 ), p > 1,α − pβ � 0,β > 0,

(
sinp x

x

)α
+
(

tanp x

x

)β
> 2 (3.15)

and that, for p > 1,x > 0,α − pβ � 0,β > 0,

(
sinhp x

x

)α
+
(

tanhp x
x

)β
> 2. (3.16)

Using different method, Neumann [37] and Yin el. [59] proved the following
inequality (

t
sinp(t)

)p

+
t

tanp t
<

(
sinp(t)

t

)p

+
tanp t

t
(3.17)

for p > 1 and t ∈ (0,
πp
2 ) . Applying AGM inequality, Yin, Huang and Qi had proved

that, for p � 2, t > 0 and x ∈ (0,
πp
2 ) ,

(
x

sinp(x)

)pt

+
(

x
sinhp(x)

)t

> 2 (3.18)

and

p

(
x

sinp(x)

)t

+
(

(
x

sinhp(x)

)t

> p+1. (3.19)
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3.4. Cusa-Huygens-type inequalities

In 2012, Klén, Vuorinen and Zhang proved the following Cusa-Huygens type in-
equalities for generalized trigonometric and hyperbolic functions, showing that, for
p ∈ (1,2] and x ∈ (0,

πp
2 ] ,

sinp(x)
x

<
cosp(x)+ p

1+ p
� cosp(x)+2

3
(3.20)

and that, for p ∈ (1,2] and x > 0,

sinhp(x)
x

<
coshp(x)+ p

1+ p
. (3.21)

Later, Yin and Huang [57] obtained the following version of 3.20: For p ∈ (1,2]
and x ∈ (0,

πp
2 ] ,

(
p+ cosp x

p+1

)α
<

sinp(x)
x

<

(
p+ cosp x

p+1

)β
. (3.22)

The constants α =
ln( 2

πp
)

ln( p
p+1 ) and β = 1 are best possible.

In 2013, Yin and Huang [56] also obtained the following inequality

(
2+ cosp x

3

)α
<

sinp x
x

<

(
2+ cosp x

3

)β
(3.23)

for p∈ (1,2] and x∈ (0,
πp
2 ] . The constants α =

ln( 2
πp

)

ln( 2
3 )

and β = 3
p+1 are best possible.

3.5. Neumann inequality

In 2014, by using Schwab-Borchadt mean, Neumann proved that

(cosp t)
1

p+1 <

[
sinp t

tanh−1(sinp t)

] 1
p

<
sinp t

t
, for p > 1,x ∈ (0,

πp

2
)

and

(coshp t)
1

p+1 <

[
sinhp t

tanh−1(sinhp t)

] 1
p

<
sinhp t

t
, for p > 1,x > 0.

3.6. Bounds of generalized trigonometric and hyperbolic functions

In 2013, Bhayo and Vuorinen [14] gave some bounds of generalized trigonometric
and hyperbolic functions by using properties of hypergeometric function. Their results
read as follows
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THEOREM 3.1. (Theorem 1.1 [14]) For p > 1 and x ∈ (0,1) , we have(
1+

xp

p(1+ p)

)
x < arcsinp x <

πp

2
x,(

1+
1− xp

p(1+ p)

)
(1− xp)1/p < arccosp x <

πp

2
(1− xp)1/p,

(p(1+ p)(1+ xp)+ xp)x
p(1+ p)(1+ xp)1+1/p

< arctanp x < 21/pbp

(
xp

1+ xp

)1/p

.

THEOREM 3.2. (Theorem 1.2 [14]) For p > 1 and x ∈ (0,1) , we have

z

(
1+

log(1+ xp)
1+ p

)
< arcsinhpx < z

(
1+

1
p

log(1+ xp)
)

,z =
(

xp

1+ xp

)1/p

,

x

(
1− 1

1+ p
log(1− xp)

)
< arctanhpx < x

(
1− 1

p
log(1− xp)

)
.

Later, in [13], they also gave bounds of generalized trigonometric and hyperbolic
functions with two parameters, showing that for p,q > 1 and x ∈ (0,1) ,

(1) x
(
1+ xq

p(1+q)

)
< arcsinp,q x < min

{
πp,q
2 x,(1− xq)−1/(p(1+q))x

}
,

(2)
(

xp

1+xq

)1/p
L(p,q,x) < arcsinhp,qx <

(
xp

1+xq

)1/p
U(p,q,x) ,

where L(p,q,x) = max

{(
1− qxq

p(1+q)(1+xq)

)−1
,(xq +1)1/p

(
pq+p+qxq

p(q+1)

)−1/q
}

, and

U(p,q,x) =
(
1− xq

1+xq

)−q/(p(q+1))
.

In 2014, Baricz, Bhayo and Pogány presented some new lower and upper bounds
for the functions arctanp(x) and arctanhp(x) in [5].

THEOREM 3.3. (Theorem 6 [5]) For p > 1,x ∈ (0,1) , there holds

arctanhp(x) <
x
2

⎛
⎝1− 2

p
log(1− x

p
2 )+

2
2
p b p

2

(1+ x
p
2 )

2
p

⎞
⎠ ,

arctanp(x) < x

(
1− 1

p(1+ p)
log(1− xp)− 1

p
log(1+ xp)

)
=: Rp(x),

where

bs :=
1
2s

{
ψ
(

1+ s
2s

)
−ψ

(
1
2s

)}
.

Moreover, we have

arctanhp(x) >
x
2

(
1− 2

2+ p
log(1− x

p
2 )+

p(2+ p)(1+ x
p
2 )+4x

p
2

p(2+ p)(1+ x
p
2 )1+ 2

p

)
,
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and

arctanp(x) > x

(
1+

1
p(1+ p)

log(1− xp)− 2
1+2p

log(1+ xp)
)

=: Lp(x).

In addition, they also proved that

xF

(
1
p
,1+

1
p
;2+

1
p
;−xp

)
< arcsinhpx < xF

(
−1+

1
p
,
1
p
;
1
p
;−xp

)
, p,x ∈ (0,1)

(3.24)
and

arctanp(x) > xF(2,
1
p
;2+

1
p
;−xp) (3.25)

by proving that the function

x �→ arcsinhp(x)
xF(−1+ 1

p , 1
p ; 1

p ;−xp)

is decreasing on (0,1) for all p ∈ (0,1) , while the functions

x �→
xF( 1

p ,1+ 1
p ;2+ 1

p ;−xp)

arcsinhp(x)

and

x �→
xF(2, 1

p ;2+ 1
p ;−xp)

arctanp(x)

are increasing on (0,1) for all p > 0.

3.7. Grünbaum-type inequalities

In 2014, Baricz, Bhayo and Pogány gave Grünbaum-type inequalities for general-
ized inverse trigonometric functions.

THEOREM 3.4. (Theorem 5 [5]) Let x,y,z ∈ (0,1) be such that z2 = x2 + y2 . If
p � 1 , then the following Grünbaum type inequalities are true

1+
arcsinp(z2)

z2 � arcsinp(x2)
x2 +

arcsinp(y2)
y2 ,

1+
arctanhp(z2)

z2 � arctanhp(x2)
x2 +

arctanhp(y2)
y2 .

Moreover, if p � 2 , then we have

1+
arctanp(z2)

z2 � arctanp(x2)
x2 +

arctanp(y2)
y2 ,

1+
arcsinhp(z2)

z2 � arcsinhp(x2)
x2 +

arcsinhp(y2)
y2 ,

and the last inequality is reversed when p ∈ (0,1] .
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Recently, Yin and Huang generalized these inequalities to generalized inverse
trigonometric function with two parameters in 2015. See [58].

4. General convexity and concavity for generalized trigonometric and hyperbolic
functions

For two distinct positive real numbers x and y , the Arithmetic mean, Geometric
mean, Logarithmic mean, Harmonic mean and the Power mean of order t ∈ R are
respectively defined by

A(x,y) =
x+ y

2
, G(x,y) =

√
xy,

L(x,y) =
x− y

log(x)− log(y)
, x �= y,

H(x,y) =
1

A(1/x,1/y)
,

and

Mt =

⎧⎨
⎩
(

xt+yt

2

)1/t
, t �= 0,

√
xy, t = 0.

Let f : I → (0,∞) be continuous, where I is a sub-interval of (0,∞) . Let M and N
be the means defined above, then we call that the function f is MN-convex (concave)
if

f (M(x,y)) � (�)N( f (x), f (y)) f or all x,y ∈ I.

Recently, generalized convexity/concavitywith respect to general mean values has
been studied by Anderson et al. in [4]. We recall one of their results as follows.

LEMMA 4.1. ([4], Theorem 2.4) Let I be an open sub-interval of (0,∞) and let
f : I → (0,∞) be differentiable. Then f is HH-convex (concave) on I if and only if
x2 f ′(x)/ f (x)2 is increasing (decreasing).

In [4], Baricz studied that if the functions f is differentiable, then it is (a,b)−convex
(concave) on I if and only if x1−a f ′(x)/ f (x)1−b is increasing (decreasing).

It is important to mention that (1,1)-convexity means the AA-convexity, (1,0)−
-convexity means the AG−convexity, (0,0)-convexity means the AG-convexity, and
(0,0)-convexity means GG−convexity.

Recently, Bhayo and Yin considered extensively LL-convex, II-convex by using
Chebshev inequality in [17, 18]. They presented the following results.

LEMMA 4.2. ([17], Theorem 1) Let f : I → (0,∞) be a continuous and I ⊆ (0,∞) ,
then

1. L( f (x), f (y)) � (�) f (L(x,y)) ,
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2. L( f (x), f (y)) � (�) f (A(x,y)) ,

if f is increasing and log-convex(concave).

LEMMA 4.3. ([18], Theorem 1) Let f : I → (0,∞) and I ⊆ (0,∞) . Then the fol-
lowing inequalities holds true:

I( f (x), f (y)) � f (I(x,y)) (I( f (x), f (y)) � f (A(x,y))).

If the function f (x) is a continuous differentiable, increasing and log-convex(concave).

Other results of MN-convexity may see references [60, 18]. When these results
applied to generalized trigonometric and hyperbolic functions, we can obtain a number
of inequalities.

In 2015, [15], Bhayo and Vuorinen proved some power mean inequalities for gen-
eralized trigonometric functions with single parameter.

THEOREM 4.1. ([15] Theorem 1.1) For p > 1,t � 0 and r,s ∈ (0,1) , we have

(1) arcsinp(Mt (r,s)) � Mt(arcsinp(r),arcsinp(s)) ,

(2) arctanhp(Mt (r,s)) � Mt(arctanhp(r),arctanhp(s)) ,

(3) arctanp(Mt(r,s)) � Mt(arctanp(r),arctanp(s)) ,

(4) arcsinhp(Mt(r,s)) � Mt(arcsinhp(r),arcsinhp(s)) .

THEOREM 4.2. ([15] Theorem 1.2) For p > 1,t � 0 and r,s ∈ (0,1) , the follow-
ing relations hold

(1) sinp(Mt(r,s)) � Mt(sinp(r),sinp(s)) ,

(2) cosp(Mt(r,s)) � Mt(cosp(r),cosp(s)) ,

(3) tanp(Mt(r,s)) � Mt(tanp(r), tanp(s)) ,

(4) tanhp(Mt(r,s)) � Mt(tanhp(r), tanhp(s)) ,

(5) sinhp(Mt(r,s)) � Mt(sinhp(r),sinhp(s)) .

Using the same method, Baricz, Bhayo and Klén obtained some power mean in-
equalities for generalized trigonometric functions with two parameters.

THEOREM 4.3. ([7] Theorem 1) If p,q > 1 and a � 1 , then arcsinp,q is (a,a)−
-convex on (0,1), arctanp,q is (a,a)−convex on (0,1), while arcsinhp,q is (a,a)−convex
on (0,∞) . In other words, if p,q > 1 and a � 1 , then we have

arcsinp,q(Ma(r,s)) � Ma(arcsinp,q(r),arcsinp,q(s)), r,s ∈ (0,1),
arctanp,q(Ma(r,s)) � Ma(arctanp,q(r),arctanp,q(s)), r,s ∈ (0,1),

arcsinhp,q(Ma(r,s)) � Ma(arcsinhp,q(r),arcsinhp,q(s)), r,s > 0.
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THEOREM 4.4. ([7] Theorem 2) If p,q > 1 and a � 1 , then sinp,q is (a,a)−
-concave, and cosp,q, tanp,q,sinhp,q are (a,a)−convex on (0,1). In other words, if
p,q > 1,a � 1 and r,s ∈ (0,1) , then the next inequalities are valid

sinp,q(Ma(r,s)) � Ma(sinp,q(r),sinp,q(s)),
cosp,q(Ma(r,s)) � Ma(cosp,q(r),cosp,q(s)),
tanp,q(Ma(r,s)) � Mt(tanp,q(r), tanp,q(s)),

sinhp,q(Ma(r,s)) � Mt(sinhp,q(r),sinhp,q(s)).

The next theorems improve some of the above results.

THEOREM 4.5. ([7] Theorem 3) If p,q > 1,a � 0 and b ∈ R or 0 < a � b and
b � 1 , then arcsinp,q is (a,b)−convex on (0,1), and in particular if p = q, then the
function arcsinp = arcsinp,p is (a,b)−convex on (0,1). In other words, if p,q > 1,a �
0 , and b ∈ R or 0 < a � b and b � 1 , then for all r,s ∈ (0,1) we have

arcsinp,q(Ma(r,s)) � Mb(arcsinp,q(r),arcsinp,q(s)).

THEOREM 4.6. ([7] Theorem 4) If p,q > 1,a � 0 � b or 0 < a � b and a � 1 ,
then arcsinhp,q is (a,b)−convex on (0,∞) , and in particular if p = q, then the function
arcsinhp = arcsinhp,p is (a,b)−concave on (0,∞) . In other words, if p,q > 1,a � 0 �
b or 0 < b � a and a � 1 , then for all r,s ∈ (0,∞) we have

arcsinhp,q(Ma(r,s)) � Mb(arcsinhp,q(r),arcsinhp,q(s)).

Due to geometric convexity (concavity), Bhayo and Vuorinen [13] posed a con-
jecture in 2012:

CONJECTURE 4.1. For p,q ∈ (1,∞) and r,s ∈ (0,1) , we have

(1) sinp,q(
√

rs) �
√

sinp,q(r)sinp,q(s) ,

(2) sinhp,q(
√

rs) �
√

sinhp,q(r)sinhp,q(s) .

Very quickly, the conjecture has been proved to be correct by Jiang et. in [29].
In 2014, Bhayo and Yin gave some logarithmic mean inequalities for generalized

trigonometric functions by using Lemma 4.2. Their results read as follows:

THEOREM 4.7. ([17] Theorem 2) For x,y ∈ (0,πp/2) , the following inequalities

1. L(sinp(x),sinp(y)) � sinp(L(x,y)), p > 1 ,

2. L(cosp(x),cosp(y)) � cosp(L(x,y)), p � 2 .

THEOREM 4.8. ([17] Theorem 3) For p > 1 , we have

1. L( 1
sinp(x)

, 1
sinp(y)

) � 1
sinp(A(x,y)) , x,y ∈ (0,πp/2) ,



846 L. YIN, L.-G. HUANG, Y.-L. WANG AND X.-L. LIN

2. L( 1
cosp(x)

, 1
cosp(y)

) � 1
cosp(L(x,y)) , x,y ∈ (0,πp/2) ,

3. L(tanhp(x), tanhp(y)) � tanhp(A(x,y)), x,y ∈ (0,∞) ,

4. L(arcsinhp(x),arcsinhp(y)) � arcsinhp(A(x,y)), x,y ∈ (0,1) ,

5. L(arctanp(x),arctanp(y)) � arctanp(A(x,y)), x,y ∈ (0,1) .

Later, in 2014, Cui and Yin [22] obtained logarithmic mean inequalities for gener-
alized trigonometric functions with two parameters.

5. Parameter convexity and concavity for generalized trigonometric and
hyperbolic functions

In 2015, Baricz, Bhayo and Vuorinen began to discuss parameter convexity and
concavity of generalized trigonometric functions in [6]. Their main results read as
follows.

THEOREM 5.1. ([6] Theorem 1) For all x ∈ (0,1) fixed, the following hold:

(1) The functions p �→ arcsinp(x) and p �→ arctanhp(x) are strongly decreasing and
log-convex on (1,∞) . Moreover, p �→ arcsinp(x) is strictly geometrically convex
on (1,∞) .

(2) The function p �→ arctanp(x) is strictly increasing and concave on (1,∞) . In
particular, the following Turán type inequalities are valid for all p > 2 and x ∈
(0,1)

arcsin2
p(x) < arcsinp−1(x)arcsinp+1(x),

arctanh2
p(x) < arctanhp−1(x)arctanhp+1(x),

arctan2
p(x) > arctanp−1(x)arctanp+1(x).

THEOREM 5.2. ([6] Theorem 2) For all x ∈ (0,1) fixed, the following hold:

(1) p �→ arcsinp,q(x) is completely monotonic and log-convex on (1,∞) for q > 1 .

(2) p �→ arcsinp,q(x) is strictly geometrically convex on (1,∞) for q > 1 .

(3) q �→ arcsinp,q(x) is completely monotonic and log-convex on (1,∞) for p > 1 .

(4) p �→ arcsinhp,q(x) is strictly increasing and concave on (1,∞) for q > 1 .

(5) q �→ arcsinhp,q(x) is strictly increasing and concave on (1,∞) for p > 1 .

In particular, the following Turán type inequalities are valid for all p > 2,q > 1 and
x ∈ (0,1)

arcsin2
p,q(x) < arcsinp−1,q(x)arcsinp+1,q(x),
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arcsinh2
p,q(x) > arcsinhp−1,q(x)arcsinhp+1,q(x).

Moreover, for p > 1,q > 2 and x ∈ (0,1) , we have the next Turán type inequalities

arcsin2
p,q(x) < arcsinp,q−1(x)arcsinp,q+1(x),

arcsinh2
p,q(x) > arcsinhp,q−1(x)arcsinhp,q+1(x).

In the same paper, they also posed two conjectures.

CONJECTURE 5.1. For x ∈ (0,1) fixed, the function p �→ arcsinhp(x) is strictly
concave on (1,∞) . In particular, the following Turán type inequality is valid for all
p > 2 and x ∈ (0,1)

arcsinh2
p(x) > arcsinhp−1(x)arcsinhp+1(x).

CONJECTURE 5.2. The following Turán type inequalities hold for all p > 2 and
x ∈ (0,1)

sin2
p(x) > sinp−1(x)sinp+1(x),

cos2
p(x) > cosp−1(x)cosp+1(x),

tan2
p(x) < tanp−1(x) tanp+1(x),

sinh2
p(x) < sinhp−1(x)sinhp+1(x),

tanh2
p(x) > tanhp−1(x) tanhp+1(x).

Later, Karp and Prilepkina [31] studied extensively the conjectures in 2015. Using
an auxiliary Lemma, they obtained the following results, showing that, for each fixed
y ∈ (0,1) , the function p �→ sinp(y) is strictly log-concave on (0,∞) , and that, for
each fixed y ∈ (0, log2) , the function p �→ tanp(y) is strictly convex on (1,∞) , and the
function p �→ cosp(y) is strictly concave on (1,∞) respectively, and that, for each fixed
y ∈ (0,∞) , the functions p �→ sinhp(y) and p �→ coshp(y) are strictly log-concave on
(0,∞) , the function p �→ tanhp(y) is strictly concave on (0,∞) .

6. Generalized complete elliptic integrals

We may define all kinds of general complete elliptic integrals via generalized
trigonometric functions.

6.1. Complete p-elliptic integrals

In 2016, Takeuchi [50] defined a new form of the generalized complete elliptic
integrals via generalized trigonometric functions with single parameter. We repeat the
definition of complete p−elliptic integrals of the first kind Kp(k) and of the second
kind Ep(k) : for k ∈ (0,1)

Kp(k) :=
∫ πp

2

0

dθ

(1− kp sinp
p θ )1− 1

p

=
∫ 1

0

dt

(1− t p)
1
p (1− kpt p)1− 1

p

, (6.1)
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Ep(k) :=
∫ πp

2

0
(1− kp sinp

p θ )
1
p dθ =

∫ 1

0

(
1− kpt p

1− t p

) 1
p

dt. (6.2)

In the paper, he showed Legendre’s relation for Kp(k) and Ep(k)

K′
p(k)Ep(k)+Kp(k)E ′

p(k)−Kp(k)K′
p(k) =

πp

2
, f or k ∈ (0,1), (6.3)

where k′ := (1−kp)
1
p ,K′

p(k) = Kp(k′) and E ′
p(k) := Ep(k′) , and observed relationship

between the complete p-elliptic integrals and the Gaussian hyperbolic functions. As
applications of complete p-elliptic, Takeuchi also gave a computation formula of πp

with p = 3 and an elementary proof of Ramanujan’s cubic transformation.
Later, Yin and Mi [60] presented some Landen type inequalities related to Kp(k)

as follows.

THEOREM 6.1. ([60] Theorem 2.1) Let a,b,c ∈ R, p > 1 such that c is not a
negative integer or zero and consider the function H : (0,1) �→ (0,∞) , defined by

H(x) = F(a,b;c;x)
F( 1

p ,1− 1
p ;1;x)

. Then the following results are true.

(1) If a+ b− c � 0 and p2ab � max{(p− 1)c,(p− 1)} , then H(x) is increasing,
and

F(a,b;c;rp)

F
(
a,b;c; ppr

(1+r)p

) � Kp(r)

Kp

(
p p√r
1+r

) , (6.4)

F
(
a,b;c;

(
1−r
1+r

)p
)

F(a,b;c;1− rp)
�

Kp
( 1−r

1+r

)
Kp
(
(1− rp)1/p

) (6.5)

hold true for each other r ∈ (0,1) .

(2) If a+ b− c � 0 and p2ab � max{(p− 1)c,(p− 1)} , then H(x) is increasing,
and

F(a,b;c;rp)

F
(
a,b;c; ppr

(1+r)p

) � Kp(r)

Kp

(
p p√r
1+r

) , (6.6)

F
(
a,b;c;

(
1−r
1+r

)p
)

F(a,b;c;1− rp)
�

Kp
(

1−r
1+r

)
Kp
(
(1− rp)1/p

) (6.7)

hold true for each other r ∈ (0,1) .

6.2. Complete (p,q)-elliptic integrals

In 2015, for all p,∈ (1,∞) and r ∈ (0,1) , the complete (p,q)-elliptic integrals of
the first and second kinds [20, 48] are defined by

Kp,q(r) :=
∫ πp,q

2

0
(1− rq sinq

p,q t)(1/p−1)dt,K′
p,q = K′

p,q(r) = Kp,q(r′)
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and

Ep,q(r) :=
∫ πp,q

2

0
(1− rq sinq

p,q t)1/pdt,E ′
p = E ′

p,q(r) = Ep,q(r′),

respectively. Here, p,q > 1,r ∈ (0,1) and r′ = (1− rp)1/p .
In [20], Bhayo and Yin studied Turán type inequalities and series representation

of complete (p,q)−elliptic integrals in detail. Their main results read as follows.

THEOREM 6.2. ([18] Theorem 2.6) For p,q > 1 and r ∈ (0,1) , we have

(1) The function r �→ Kp,q(r) is strictly increasing and log-convex. Moreover, r �→
Kp,q(r) is strictly geometrically convex on (0,1) .

(2) The function r �→ Ep,q(r) is strictly decreasing and geometrically concave on
(0,1) .

THEOREM 6.3. ([18] Theorem 2.7) For fixed r ∈ (0,1) and q > 0 ,

(1) The functions p �→ Kp,q(r) is strictly increasing and log-concave on (0,∞) ,

(2) The function p �→ Ep,q(r) is strictly increasing and log-concave on (0,∞) .

(3) The functions q �→ Kp,q(r) is strictly decreasing and log-convex on (0,∞) ,

(4) The function q �→ Ep,q(r) is strictly decreasing and log-convex on (0,∞) .

In particular, for r ∈ (0,1) , the following Turán type inequalities hold true

Kp,q(r)2 � Kp−1,q(r)Kp+1,q(r), p > 1,q > 0,

Ep,q(r)2 � Ep−1,q(r)Ep+1,q(r), p > 1,q > 0,

Kp,q(r)2 � Kp,q−1(r)Kp,q+1(r), p > 0,q > 1,

Ep,q(r)2 � Ep,q−1(r)Kp,q+1(r), p > 0,q > 1.

THEOREM 6.4. ([18] Theorem 2.9) For p,q > 1 and r ∈ (0,1),λ < 1
2 , we have

Kp,q(r) =
πp,q

2

∞

∑
n=0

( 1
p −1

n

)
1

(1−λ )n+1− 1
p

n

∑
j=0

(−1) j
(

n
j

)(− 1
q

j

)( 1
p −1− 1

q

j

)
λ n− jrq j,

(6.8)

and

Ep,q(r) =
πp,q

2

∞

∑
n=0

( 1
p
n

)
1

(1−λ )n− 1
p

n

∑
j=0

(−1) j
(

n
j

)(− 1
q

j

)( 1
p −1− 1

q

j

)
λ n− jrqn.

(6.9)
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Later, Bhayo and Yin [20] gave two interesting inequalities. First of all, they
denoted the function

Δp,q(r) =
Ep,q− (r′)pKp,q

rp − E ′
p,q− rpK′

p,q

(r′)p

and obtained following theorems.

THEOREM 6.5. ([20] Theorem 1.3) The function Δp,q is strictly increasing and

strictly convex from (0,1) onto

(
(1− 1

p )πp,q

2(1+ 1
q− 1

p )
−1,1− (1− 1

p )πp,q

2(1+ 1
q− 1

p )

)
for p,q satisfy the fol-

lowing conditions:

(i) 2+ 1
p + 1

p2 � 5
p + 1

q < 3+ 1
p2 ;

(ii) ε(p,q) > 0 ;

where

ε(p,q) = 20− 42
p

+
6
q

+
21
p2 − 2

q2 −
20
pq

+
9

p2q
− 3

p3 −
1

p3q
.

Moreover, for all r ∈ (0,1) , we have

(1− 1
p)πp,q

2(1+ 1
q − 1

p)
−1+ α(r) < Δp,q(r) <

(1− 1
p )πp,q

2(1+ 1
q − 1

p)
−1+ β r (6.10)

with best possible constants α = 0 and β = 2− (1− 1
p )πp,q

(1+ 1
q− 1

p )
.

THEOREM 6.6. ([20] Theorem 1.4) For all r,s ∈ (0,1) and p,q satisfying condi-
tions (i) and (ii), we have

(1− 1
p)πp,q

2(1+ 1
q − 1

p)
−1 < Δp,q(rs)−Δp,q(r)−Δp,q(s) < 1−

(1− 1
p)πp,q

2(1+ 1
q − 1

p)
. (6.11)

Theorem 6.5 and 6.6 generalized results of Alzer and Richards in [2]. It is worth
to note that Yin and Huang also denoted another (p,q)−elliptic integrals in 2015. The
reader may see the reference [56] for more. Very recently, Takeuchi [52] gave a new
complete (p,q,r)− elliptic integrals with three parameters. These integrals are defined
by

Kp,q,r(k) :=
∫ 1

0

dt

(1− tq)
1
p (1− kqtq)

1
r

(6.12)

and

Ep,q,r(k) :=
∫ 1

0

1− kqtq1/r∗

1− tq
1
p

dt, (6.13)

where p ∈ P
∗ := (−∞,0)∪ (1,∞],q,r ∈ (1,∞) and 1/r+1/r∗ = 1.



A SURVEY FOR GENERALIZED TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 851

For p ∈ P
∗ and q,r ∈ (1,∞) , using sinp,q θ and πp,q , we can express Kp,q,r(k)

and Ep,q,r(k) as follows.

Kp,q,r(k) =
∫ πp,q/2

0

dθ
(1− kq sinq

p,q θ )1/r
, (6.14)

Ep,q,r(k) =
∫ πp,q/2

0
(1− kq sinq

p,q θ )1/r∗dθ . (6.15)

In the paper, he proved Legendre type relation:
Let p ∈ P

∗,q,r ∈ (1,∞) and k ∈ (0,1) . Then

Ep,q,r∗(k)Kp,r,q∗(k′)+Kp,q,r∗(k)Ep,r,q∗(k′)−Kp,q,r∗(k)Kp,r,q∗(k′) =
πp,qπs,r

4
, (6.16)

where k′ := (1− kq)1/r and 1/s = 1/p−1/q .
The research has just begun, and there are a lot of work remains to be further

research.

7. Open problems

Here, we enumerate several open problems or unsolved problems.

OPEN PROBLEM 7.1. (conjecture 3.29 [32]) For p ∈ (2,∞) and x ∈ (0,πp/2) ,

sinhp(x)
x

<
p+1

p+ cosp(x)
. (7.1)

OPEN PROBLEM 7.2. (conjecture [31]) There exists p0 ∈ (0,1) such that the
function p �→ sinp(y) is strictly concave on (p0,∞) for all y ∈ (0,1) . If p ∈ (0, p0) ,
concavity is violated for some y ∈ (0,1) .

OPEN PROBLEM 7.3. (open problem 3.1 [54]) For all p ∈ (1,2] and x ∈ (0,πp) ,
then

ln(1− sinp(x))
lncosp(x)

<
x+ p

x
. (7.2)

OPEN PROBLEM 7.4. (conjecture 3.8 [14]) For a fixed x ∈ (0,1) , the functions
sinp

(πpx
2

)
, tanp

(πpx
2

)
,sinhp(cpx) are monotone in p∈ (1,∞) . For fixed x > 0, tanhp(x)

is increasing in p ∈ (1,∞) .

OPEN PROBLEM 7.5. (open problem 4.1 [59]) For p ∈ (1,+∞) ,

psinp x

x
+

tanp x

x
>

px
sinp x

+
x

tanp x
(7.3)

is valid on (0,
πp
2 ) .



852 L. YIN, L.-G. HUANG, Y.-L. WANG AND X.-L. LIN

RE F ER EN C ES

[1] M. ABRAMOWITZ, I. STEGUN, EDS., Handbook of mathematical functions with formulas, graphs
and mathematical tables, National Bureau of Standards, Dover, New York, 1965.

[2] H. ALZER, K. RICHARDS, A note on a function involving complete elliptic integrals: Monotonicity,
convexity, inequalities, Anal. Math., 41(2015), 133–139.

[3] G. E. ANDREWS, R. ASKEY AND R. ROY, Special functions, Cambridge University Press, Cam-
bridge, 1999.

[4] G. D. ANDERSON, M. K. VAMANAMURTHY AND M. VUORINEN, Genenalized convexity and in-
equalities, J. Math. Anal. Appl., 335 (2007), 1294–1308.
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[27] V. HEIKKALA, H. LINDÉN, M. K. VAMANAMURTHY AND M. VUORINEN,Generalized elliptic inte-
grals and the Legendre M-function, J. Math. Anal. Appl., 338 (2008), 223–243, arXiv:math/0701438.

[28] V. HEIKKALA, M. K. VAMANAMURTHY AND M. VUORINEN, Generalized elliptic integrals, Com-
put. Methods Funct. Theory, 9, No. 1(2009), 75–109, arXiv:math/0701436.

[29] W. D. JIANG, M. K. WANG, Y. M. CHU, Y. P. JIANG, F. QI, Convexity of the generalized sine
function and the generalized hyperbolic sine function, J. Approx. Theory, 174 (2013), 1–9.

[30] J. C. KUANG, Applied inequalities (Second edition), Shan Dong Science and Technology Press, Jinan,
2002.

[31] D. B. KARP AND E. G. PRILEPKINA,Parameter convexity and concavity of generalized trigonometric
functions, J. Math. Anal. Appl., 421, No. 1 (2015), 370–382, http://arxiv.org/abs/1402.3357 .
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