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ADDITIVE s–FUNCTIONAL INEQUALITIES AND

PARTIAL MULTIPLIERS IN BANACH ALGEBRAS

CHOONKIL PARK

Abstract. In this paper, we solve the additive s -functional inequalities

‖ f (x+ y− z)− f (x)− f (y)+ f (z)‖ � ‖s( f (x− y)+ f (y− z)− f (x− z))‖, (0.1)

where s is a fixed nonzero complex number with |s| < 1 , and

‖ f (x− y)+ f (y− z)− f (x− z)‖ � ‖s( f (x+ y− z)− f (x)− f (y)+ f (z))‖, (0.2)

where s is a fixed nonzero complex number with |s| < 1 .
Furthermore, we prove the Hyers-Ulam stability of the additive s -functional inequalities

(0.1) and (0.2) in complex Banach spaces. This is applied to investigate partial multipliers in
Banach ∗ -algebras and unital C∗ -algebras, associated with the additive s -functional inequalities
(0.1) and (0.2).
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